コード例 #1
0
ファイル: dataproc.py プロジェクト: ymcidence/neuron
def vol_proc(vol_data,
             crop=None,
             resize_shape=None, # None (to not resize), or vector. If vector, third entry can be None
             interp_order=None,
             rescale=None,
             rescale_prctle=None,
             resize_slices=None,
             resize_slices_dim=None,
             offset=None,
             clip=None,
             extract_nd=None,  # extracts a particular section
             force_binary=None,  # forces anything > 0 to be 1
             permute=None):
    ''' process a volume with a series of intensity rescale, resize and crop rescale'''

    if offset is not None:
        vol_data = vol_data + offset

    # intensity normalize data .* rescale
    if rescale is not None:
        vol_data = np.multiply(vol_data, rescale)

    if rescale_prctle is not None:
        # print("max:", np.max(vol_data.flat))
        # print("test")
        rescale = np.percentile(vol_data.flat, rescale_prctle)
        # print("rescaling by 1/%f" % (rescale))
        vol_data = np.multiply(vol_data.astype(float), 1/rescale)

    if resize_slices is not None:
        resize_slices = [*resize_slices]
        assert resize_shape is None, "if resize_slices is given, resize_shape has to be None"
        resize_shape = resize_slices
        if resize_slices_dim is None:
            resize_slices_dim = np.where([f is None for f in resize_slices])[0]
            assert len(resize_slices_dim) == 1, "Could not find dimension or slice resize"
            resize_slices_dim = resize_slices_dim[0]
        resize_shape[resize_slices_dim] = vol_data.shape[resize_slices_dim]

    # resize (downsample) matrices
    if resize_shape is not None and resize_shape != vol_data.shape:
        resize_shape = [*resize_shape]
        # allow for the last entry to be None
        if resize_shape[-1] is None:
            resize_ratio = np.divide(resize_shape[0], vol_data.shape[0])
            resize_shape[-1] = np.round(resize_ratio * vol_data.shape[-1]).astype('int')
        resize_ratio = np.divide(resize_shape, vol_data.shape)
        vol_data = scipy.ndimage.interpolation.zoom(vol_data, resize_ratio, order=interp_order)

    # crop data if necessary
    if crop is not None:
        vol_data = nd.volcrop(vol_data, crop=crop)

    # needs to be last to guarantee clip limits.
    # For e.g., resize might screw this up due to bicubic interpolation if it was done after.
    if clip is not None:
        vol_data = np.clip(vol_data, clip[0], clip[1])

    if extract_nd is not None:
        vol_data = vol_data[np.ix_(*extract_nd)]

    if force_binary:
        vol_data = (vol_data > 0).astype(float)

    # return with checks. this check should be right at the end before rturn
    if clip is not None:
        assert np.max(vol_data) <= clip[1], "clip failed"
        assert np.min(vol_data) >= clip[0], "clip failed"
    return vol_data
コード例 #2
0
ファイル: dataproc.py プロジェクト: jchin01/freesurfer
def vol_proc(
        vol_data,
        crop=None,
        resize_shape=None,  # None (to not resize), or vector. If vector, third entry can be None
        interp_order=None,
        rescale=None,
        rescale_prctle=None,
        resize_slices=None,
        resize_slices_dim=None,
        offset=None,
        clip=None,
        extract_nd=None,  # extracts a particular section
        force_binary=None,  # forces anything > 0 to be 1
        permute=None):
    ''' process a volume with a series of intensity rescale, resize and crop rescale'''

    if offset is not None:
        vol_data = vol_data + offset

    # intensity normalize data .* rescale
    if rescale is not None:
        vol_data = np.multiply(vol_data, rescale)

    if rescale_prctle is not None:
        # print("max:", np.max(vol_data.flat))
        # print("test")
        rescale = np.percentile(vol_data.flat, rescale_prctle)
        # print("rescaling by 1/%f" % (rescale))
        vol_data = np.multiply(vol_data.astype(float), 1 / rescale)

    if resize_slices is not None:
        resize_slices = [*resize_slices]
        assert resize_shape is None, "if resize_slices is given, resize_shape has to be None"
        resize_shape = resize_slices
        if resize_slices_dim is None:
            resize_slices_dim = np.where([f is None for f in resize_slices])[0]
            assert len(resize_slices_dim
                       ) == 1, "Could not find dimension or slice resize"
            resize_slices_dim = resize_slices_dim[0]
        resize_shape[resize_slices_dim] = vol_data.shape[resize_slices_dim]

    # resize (downsample) matrices
    if resize_shape is not None and resize_shape != vol_data.shape:
        resize_shape = [*resize_shape]
        # allow for the last entry to be None
        if resize_shape[-1] is None:
            resize_ratio = np.divide(resize_shape[0], vol_data.shape[0])
            resize_shape[-1] = np.round(resize_ratio *
                                        vol_data.shape[-1]).astype('int')
        resize_ratio = np.divide(resize_shape, vol_data.shape)
        vol_data = scipy.ndimage.interpolation.zoom(vol_data,
                                                    resize_ratio,
                                                    order=interp_order)

    # crop data if necessary
    if crop is not None:
        vol_data = nd.volcrop(vol_data, crop=crop)

    # needs to be last to guarantee clip limits.
    # For e.g., resize might screw this up due to bicubic interpolation if it was done after.
    if clip is not None:
        vol_data = np.clip(vol_data, clip[0], clip[1])

    if extract_nd is not None:
        vol_data = vol_data[np.ix_(*extract_nd)]

    if force_binary:
        vol_data = (vol_data > 0).astype(float)

    # return with checks. this check should be right at the end before rturn
    if clip is not None:
        assert np.max(vol_data) <= clip[1], "clip failed"
        assert np.min(vol_data) >= clip[0], "clip failed"
    return vol_data