def test_magic_multi_bins(): """Test multiple energy bins MAGIC case""" # create a basic meshtally coords = [[0, 1, 2], [-1, 3, 4], [10, 12]] flux_data = [[1.2, 3.3], [1.6, 1.7], [1.5, 1.4], [2.6, 1.0]] flux_error = [[0.11, 0.013], [0.14, 0.19], [0.02, 0.16], [0.04, 0.09]] tally = Mesh(structured=True, structured_coords=coords) tally.particle = "neutron" tally.e_bounds = [0.0, 0.5, 1.0] tally.n_flux = IMeshTag(2, float) tally.n_flux[:] = flux_data tally.n_rel_error = IMeshTag(2, float) tally.n_rel_error[:] = flux_error tolerance = 0.15 null_value = 0.001 magic(tally, "n_flux", "n_rel_error", tolerance=tolerance, null_value=null_value) expected_ww = [[0.2307692308, 0.5], [0.3076923077, 0.001], [0.2884615385, 0.001], [0.5, 0.15151515]] assert_array_almost_equal(tally.ww_x[:], expected_ww[:])
def test_magic_single_e(): """Test a single energy group MAGIC case""" # create mesh coords = [[0, 1, 2], [-1, 3, 4], [10, 12]] flux_data = [1.2, 3.3, 1.6, 1.7] flux_error = [0.11, 0.013, 0.14, 0.19] tally = Mesh(structured=True, structured_coords=coords) tally.particle = "neutron" tally.e_bounds = [0.0, 1.0] tally.n_flux = IMeshTag(1, float) tally.n_flux[:] = flux_data tally.n_rel_error = IMeshTag(1, float) tally.n_rel_error[:] = flux_error tolerance = 0.15 null_value = 0.001 magic(tally, "n_flux", "n_rel_error", tolerance=tolerance, null_value=null_value) expected_ww = [0.181818182, 0.5, 0.2424242, 0.001] assert_array_almost_equal(tally.ww_x[:], expected_ww[:])
def test_bias_spatial(): """This test tests a user-specified biasing scheme for which the only 1 bias group is supplied for a source distribution containing two energy groups. This bias group is applied to both energy groups. In this test, the user-supplied bias distribution that was choosen, correspondes to uniform sampling, so that results can be checked against Case 1 in the theory manual. """ seed(1953) m = Mesh(structured=True, structured_coords=[[0, 3, 3.5], [0, 1], [0, 1]], mats=None) m.src = IMeshTag(2, float) m.src[:] = [[2.0, 1.0], [9.0, 3.0]] m.bias = IMeshTag(1, float) m.bias[:] = [1, 1] e_bounds = np.array([0, 0.5, 1.0]) m.mesh.save("sampling_mesh.h5m") sampler = Sampler("sampling_mesh.h5m", "src", e_bounds, "bias") num_samples = 10000 score = 1.0 / num_samples num_divs = 2 num_e = 2 spatial_tally = np.zeros(shape=(num_divs, num_divs, num_divs)) e_tally = np.zeros(shape=(4)) # number of phase space groups for i in range(num_samples): s = sampler.particle_birth(np.array([uniform(0, 1) for x in range(6)])) if s[0] < 3.0: assert_almost_equal(s[4], 0.7) # hand calcs else: assert_almost_equal(s[4], 2.8) # hand calcs spatial_tally[int(s[0] * num_divs / 3.5), int(s[1] * num_divs / 1.0), int(s[2] * num_divs / 1.0)] += score if s[0] < 3 and s[3] < 0.5: e_tally[0] += score elif s[0] < 3 and s[3] > 0.5: e_tally[1] += score if s[0] > 3 and s[3] < 0.5: e_tally[2] += score if s[0] > 3 and s[3] > 0.5: e_tally[3] += score for i in range(0, 3): for j in range(0, 2): halfspace_sum = np.sum(np.rollaxis(spatial_tally, i)[j, :, :]) assert (abs(halfspace_sum - 0.5) / 0.5 < 0.1) expected_e_tally = [4. / 7, 2. / 7, 3. / 28, 1. / 28] # hand calcs for i in range(4): assert (abs(e_tally[i] - expected_e_tally[i]) / expected_e_tally[i] < 0.1)
def test_imeshtag_broadcasting(): m = gen_mesh() # tags of length 1 m.horse = IMeshTag(1, float) m.horse[:] = 2.0 assert_array_equal(m.horse[:], [2.0] * 4) # tags of length > 1 m.grape = IMeshTag(2, float) # test broadcasing m.grape[[2, 0]] = [7.0, 8.0] assert_array_equal(m.grape[:], [[7.0, 8.0], [0.0, 0.0], [7.0, 8.0], [0.0, 0.0]])
def test_analog_multiple_hex(): """This test tests that particle are sampled uniformly from a uniform source defined on eight mesh volume elements in two energy groups. This is done using the exact same method ass test_analog_multiple_hex. """ seed(1953) m = Mesh(structured=True, structured_coords=[[0, 0.5, 1], [0, 0.5, 1], [0, 0.5, 1]], mats=None) m.src = IMeshTag(2, float) m.src[:] = np.ones(shape=(8, 2)) m.mesh.save("sampling_mesh.h5m") sampler = Sampler("sampling_mesh.h5m", "src", np.array([0, 0.5, 1]), False) num_samples = 5000 score = 1.0 / num_samples num_divs = 2 tally = np.zeros(shape=(num_divs, num_divs, num_divs, num_divs)) for i in range(num_samples): s = sampler.particle_birth([uniform(0, 1) for x in range(6)]) assert_equal(s[4], 1.0) tally[int(s[0] * num_divs), int(s[1] * num_divs), int(s[2] * num_divs), int(s[3] * num_divs)] += score for i in range(0, 4): for j in range(0, 2): halfspace_sum = np.sum(np.rollaxis(tally, i)[j, :, :, :]) assert (abs(halfspace_sum - 0.5) / 0.5 < 0.1)
def test_analog_single_hex(): """This test tests that particles of sampled evenly within the phase-space of a single mesh volume element with one energy group in an analog sampling scheme. This done by dividing each dimension (x, y, z, E) in half, then sampling particles and tallying on the basis of which of the 2^4 = 8 regions of phase space the particle is born into. """ seed(1953) m = Mesh(structured=True, structured_coords=[[0, 1], [0, 1], [0, 1]], mats=None) m.src = IMeshTag(1, float) m.src[0] = 1.0 m.mesh.save("sampling_mesh.h5m") sampler = Sampler("sampling_mesh.h5m", "src", np.array([0, 1]), False) num_samples = 5000 score = 1.0 / num_samples num_divs = 2 tally = np.zeros(shape=(num_divs, num_divs, num_divs, num_divs)) for i in range(num_samples): s = sampler.particle_birth(np.array([uniform(0, 1) for x in range(6)])) assert_equal(s[4], 1.0) # analog: all weights must be one tally[int(s[0] * num_divs), int(s[1] * num_divs), int(s[2] * num_divs), int(s[3] * num_divs)] += score # Test that each half-space of phase space (e.g. x > 0.5) is sampled about # half the time. for i in range(0, 4): for j in range(0, 2): assert (abs(np.sum(np.rollaxis(tally, i)[j, :, :, :]) - 0.5) < 0.05)
def test_photon_sampling_setup_structured(): phtn_src = os.path.join(thisdir, "files_test_r2s", "phtn_src") coords = [[0, 1, 2], [0, 1, 2], [0, 1]] m = Mesh(structured=True, structured_coords=coords) tags = {(10010000, "1 h"): "tag1", ("TOTAL", "shutdown"): "tag2"} photon_sampling_setup(m, phtn_src, tags) exp_tag1 = [[1.1, 2.2], [3.3, 4.4], [5.5, 6.6], [7.7, 8.8]] exp_tag2 = [[11.1, 12.2], [13.3, 14.4], [15.5, 16.6], [17.7, 18.8]] m.tag1 = IMeshTag(2, float) m.tag2 = IMeshTag(2, float) for i, mat, ve in m: assert_array_equal(m.tag1[i], exp_tag1[i]) assert_array_equal(m.tag2[i], exp_tag2[i])
def test_lazytaginit(): m = gen_mesh() m.cactus = IMeshTag(3, 'i') m.cactus[:] = np.array([42, 43, 44]) assert_in('cactus', m.tags) assert_array_equal(m.cactus[0], [42, 43, 44]) x = np.arange(len(m))[:, np.newaxis] * np.array([42, 43, 44]) m.cactus[:] = x assert_array_equal(m.cactus[2], x[2])
def test_bias(): """This test tests that a user-specified biasing scheme: 1. Samples space uniformly according to the scheme. 2. Adjusts weights accordingly. Sample calculations are provided in Case 2 in the Theory Manual. """ seed(1953) m = Mesh(structured=True, structured_coords=[[0, 3, 3.5], [0, 1], [0, 1]], mats=None) m.src = IMeshTag(2, float) m.src[:] = [[2.0, 1.0], [9.0, 3.0]] e_bounds = np.array([0, 0.5, 1.0]) m.bias = IMeshTag(2, float) m.bias[:] = [[1.0, 2.0], [3.0, 3.0]] m.mesh.save("sampling_mesh.h5m") sampler = Sampler("sampling_mesh.h5m", "src", e_bounds, "bias") num_samples = 10000 score = 1.0 / num_samples num_divs = 2 tally = np.zeros(shape=(4)) for i in range(num_samples): s = sampler.particle_birth(np.array([uniform(0, 1) for x in range(6)])) if s[0] < 3: if s[3] < 0.5: assert_almost_equal(s[4], 1.6) # hand calcs tally[0] += score else: assert_almost_equal(s[4], 0.4) # hand calcs tally[1] += score else: if s[3] < 0.5: assert_almost_equal(s[4], 2.4) # hand calcs tally[2] += score else: assert_almost_equal(s[4], 0.8) # hand calcs tally[3] += score expected_tally = [0.25, 0.5, 0.125, 0.125] # hand calcs for a, b in zip(tally, expected_tally): assert (abs(a - b) / b < 0.25)
def test_cadis_multiple_e(): """Test multiple energy group CADIS case""" adj_flux_tag = "adj_flux" q_tag = "q" ww_tag = "ww" q_bias_tag= "q_bias" #create meshes coords = [[0, 1, 2], [-1, 3, 4], [10, 12]] adj_flux_mesh = Mesh(structured=True, structured_coords=coords) q_mesh = Mesh(structured=True, structured_coords=coords) ww_mesh = Mesh(structured=True, structured_coords=coords) q_bias_mesh = Mesh(structured=True, structured_coords=coords) #add tags to input meshes adj_flux_mesh.adj_flux = IMeshTag(2, float) q_mesh.q = IMeshTag(2, float) #create data for input meshes adj_flux_data = [[1.1, 1.2], [1.3, 1.4], [0.0, 1.6], [1.7, 1.9]] q_data = [[2.9, 2.8], [2.6, 2.5], [2.4, 2.2], [2.9, 0.0]] #data data to mesh adj_flux_mesh.adj_flux[:] = adj_flux_data q_mesh.q[:] = q_data #run cadis cadis(adj_flux_mesh, adj_flux_tag, q_mesh, q_tag, ww_mesh, ww_tag, q_bias_mesh, q_bias_tag, beta=5) #expected results expected_q_bias = [[0.0306200806, 0.0322518718], [0.0324438472, 0.0335956998], [0.0, 0.0337876752], [0.0473219428, 0.0]] expected_ww = [[0.3208302538, 0.2940943993], [0.2714717532, 0.2520809137], [0.0, 0.2205707995], [0.2075960465, 0.1857438311]] ww_mesh.ww = IMeshTag(2, float) q_bias_mesh.q_bias = IMeshTag(2, float) assert_array_almost_equal(ww_mesh.ww[:], expected_ww[:]) assert_array_almost_equal(q_bias_mesh.q_bias[:], expected_q_bias[:])
def test_uniform(): """This test tests that the uniform biasing scheme: 1. Samples space uniformly. This is checked using the same method described in test_analog_single_hex(). 2. Adjusts weights accordingly. Sample calculations are provided in Case 1 in the Theory Manual. """ seed(1953) m = Mesh(structured=True, structured_coords=[[0, 3, 3.5], [0, 1], [0, 1]], mats=None) m.src = IMeshTag(2, float) m.src[:] = [[2.0, 1.0], [9.0, 3.0]] e_bounds = np.array([0, 0.5, 1.0]) m.mesh.save("sampling_mesh.h5m") sampler = Sampler("sampling_mesh.h5m", "src", e_bounds, True) num_samples = 10000 score = 1.0 / num_samples num_divs = 2 num_e = 2 spatial_tally = np.zeros(shape=(num_divs, num_divs, num_divs)) e_tally = np.zeros(shape=(4)) # number of phase space groups for i in range(num_samples): s = sampler.particle_birth(np.array([uniform(0, 1) for x in range(6)])) if s[0] < 3.0: assert_almost_equal(s[4], 0.7) # hand calcs else: assert_almost_equal(s[4], 2.8) # hand calcs spatial_tally[int(s[0] * num_divs / 3.5), int(s[1] * num_divs / 1.0), int(s[2] * num_divs / 1.0)] += score if s[0] < 3 and s[3] < 0.5: e_tally[0] += score elif s[0] < 3 and s[3] > 0.5: e_tally[1] += score if s[0] > 3 and s[3] < 0.5: e_tally[2] += score if s[0] > 3 and s[3] > 0.5: e_tally[3] += score for i in range(0, 3): for j in range(0, 2): halfspace_sum = np.sum(np.rollaxis(spatial_tally, i)[j, :, :]) assert (abs(halfspace_sum - 0.5) / 0.5 < 0.1) expected_e_tally = [4. / 7, 2. / 7, 3. / 28, 1. / 28] # hand calcs for i in range(4): assert(abs(e_tally[i] - expected_e_tally[i]) \ /expected_e_tally[i] < 0.1)
def test_magic_below_tolerance(): """Test MAGIC case when all flux errors are below the default tolerance""" # create mesh coords = [[0, 1, 2], [-1, 3, 4], [10, 12]] flux_data = [1.2, 3.3, 1.6, 1.7] flux_error = [0.11, 0.013, 0.14, 0.19] tally = Mesh(structured=True, structured_coords=coords) tally.particle = "neutron" tally.e_bounds = [0.0, 0.5, 1.0] tally.n_total_flux = IMeshTag(1, float) tally.n_total_flux[:] = flux_data tally.n_rel_error = IMeshTag(1, float) tally.n_rel_error[:] = flux_error magic(tally, "n_total_flux", "n_rel_error") expected_ww = [0.181818182, 0.5, 0.2424242, 0.2575757576] assert_array_almost_equal(tally.ww_x[:], expected_ww[:])
def _create_mesh(self, part_data, error_data): """This will create the mesh object with the name of the tally specified by the user. One mesh object contains both the part_data and the error_data. """ super(UsrbinTally, self).__init__( structured_coords=[self.x_bounds, self.y_bounds, self.z_bounds], structured=True, structured_ordering='zyx', mats=None) self.part_data_tag = IMeshTag(size=1, dtype=float, mesh=self, name="part_data_{0}".format( self.particle)) self.error_data_tag = IMeshTag(size=1, dtype=float, mesh=self, name="error_data_{0}".format( self.particle)) self.part_data_tag[:] = part_data self.error_data_tag[:] = error_data
def test_cadis_single_e(): """Test single energy group cadis case""" adj_flux_tag = "adj_flux" q_tag = "q" ww_tag = "ww" q_bias_tag= "q_bias" #create meshes coords = [[0, 1, 2], [-1, 3, 4], [10, 12]] adj_flux_mesh = Mesh(structured=True, structured_coords=coords) q_mesh = Mesh(structured=True, structured_coords=coords) ww_mesh = Mesh(structured=True, structured_coords=coords) q_bias_mesh = Mesh(structured=True, structured_coords=coords) #add tags to meshes adj_flux_mesh.adj_flux = IMeshTag(1, float) q_mesh.q = IMeshTag(1, float) #create data for input meshes adj_flux_data = [1.1, 1.3, 1.5, 1.7] q_data = [2.9, 2.6, 2.4, 2.2] #data data to mesh adj_flux_mesh.adj_flux[:] = adj_flux_data q_mesh.q[:] = q_data #run CADIS cadis(adj_flux_mesh, adj_flux_tag, q_mesh, q_tag, ww_mesh, ww_tag, q_bias_mesh, q_bias_tag, beta=5) #checkout output meshes expected_ww = [0.3995338, 0.33806706, 0.29299145, 0.258521908] expected_q_bias = [0.04652859, 0.04929988, 0.052508751, 0.0545507858] ww_mesh.ww = IMeshTag(1, float) q_bias_mesh.q_bias = IMeshTag(1, float) assert_array_almost_equal(ww_mesh.ww[:], expected_ww[:]) assert_array_almost_equal(q_bias_mesh.q_bias[:], expected_q_bias[:])
def test_imeshtag_fancy_indexing(): m = gen_mesh() # tags of length 1 m.horse = IMeshTag(1, float) # test fancy indexing m.horse[[2, 0]] = [3.0, 1.0] assert_array_equal(m.horse[:], [1.0, 0.0, 3.0, 0.0]) m.horse[[2]] = [7.0] assert_array_equal(m.horse[:], [1.0, 0.0, 7.0, 0.0]) # tags of length > 1 m.grape = IMeshTag(2, float) # test fancy indexing m.grape[[2, 0]] = [[3.0, 4.0], [5.0, 6.0]] assert_array_equal(m.grape[:], [[5.0, 6.0], [0.0, 0.0], [3.0, 4.0], [0.0, 0.0]]) m.grape[[2]] = [[13.0, 14.0]] assert_array_equal(m.grape[:], [[5.0, 6.0], [0.0, 0.0], [13.0, 14.0], [0.0, 0.0]]) m.grape[1] = [23.0, 24.0] assert_array_equal(m.grape[:], [[5.0, 6.0], [23.0, 24.0], [13.0, 14.0], [0.0, 0.0]])
def test_imeshtag(): mats = { 0: Material({ 'H1': 1.0, 'K39': 1.0 }, density=42.0), 1: Material({ 'H1': 0.1, 'O16': 1.0 }, density=43.0), 2: Material({'He4': 42.0}, density=44.0), 3: Material({'Tm171': 171.0}, density=45.0), } m = gen_mesh(mats=mats) m.f = IMeshTag(mesh=m, name='f') m.f[:] = [1.0, 2.0, 3.0, 4.0] # Getting tags assert_equal(m.f[0], 1.0) assert_array_equal(m.f[::2], [1.0, 3.0]) mask = np.array([True, False, True, True], dtype=bool) assert_array_equal(m.f[mask], [1.0, 3.0, 4.0]) assert_array_equal(m.f[1, 0, 1, 3], [2.0, 1.0, 2.0, 4.0]) # setting tags m.f[0] = 65.0 assert_equal(m.f[0], 65.0) m.f[::2] = 18.0 m.f[1::2] = [36.0, 54.0] assert_array_equal(m.f[:], np.array([18.0, 36.0, 18.0, 54.0])) mask = np.array([True, False, True, True], dtype=bool) m.f[mask] = 9.0 mask = np.array([True, True, False, False], dtype=bool) m.f[mask] = (19.0, 29.0) assert_array_equal(m.f[:], np.array([19.0, 29.0, 9.0, 9.0])) m.f[[2]] = 28.0 m.f[3, 1] = 6.0, 4128.0 assert_array_equal(m.f[1:], np.array([4128.0, 28.0, 6.0])) # deleting tag del m.f[:]
def test_analog_single_tet(): """This test tests uniform sampling within a single tetrahedron. This is done by dividing the tetrahedron in 4 smaller tetrahedrons and ensuring that each sub-tet is sampled equally. """ seed(1953) mesh = iMesh.Mesh() v1 = [0, 0, 0] v2 = [1, 0, 0] v3 = [0, 1, 0] v4 = [0, 0, 1] verts = mesh.createVtx([v1, v2, v3, v4]) mesh.createEnt(iMesh.Topology.tetrahedron, verts) m = Mesh(structured=False, mesh=mesh) m.src = IMeshTag(1, float) m.src[:] = np.array([1]) m.mesh.save("tet.h5m") center = m.ve_center(list(m.iter_ve())[0]) subtets = [[center, v1, v2, v3], [center, v1, v2, v4], [center, v1, v3, v4], [center, v2, v3, v4]] sampler = Sampler("tet.h5m", "src", np.array([0, 1]), False) num_samples = 5000 score = 1.0 / num_samples tally = np.zeros(shape=(4)) for i in range(num_samples): s = sampler.particle_birth([uniform(0, 1) for x in range(6)]) assert_equal(s[4], 1.0) for i, tet in enumerate(subtets): if point_in_tet(tet, [s[0], s[1], s[2]]): tally[i] += score break for t in tally: assert (abs(t - 0.25) / 0.25 < 0.2)
def test_imeshtag_expand(): m = Mesh(structured=True, structured_coords=[[-1, 0, 1], [0, 1], [0, 1]]) m.clam = IMeshTag(2, float) m.clam[:] = [[1.1, 2.2], [3.3, 4.4]] m.clam.expand() m.clam_000 = IMeshTag(1, float) assert_array_equal(m.clam_000[:], [1.1, 3.3]) m.clam_001 = IMeshTag(1, float) assert_array_equal(m.clam_001[:], [2.2, 4.4]) # corner case: mesh with a single volume element m = Mesh(structured=True, structured_coords=[[0, 1], [0, 1], [0, 1]]) m.clam = IMeshTag(2, float) m.clam[:] = [[1.1, 2.2]] m.clam.expand() m.clam_000 = IMeshTag(1, float) assert_array_equal(m.clam_000[:], 1.1) m.clam_001 = IMeshTag(1, float) assert_array_equal(m.clam_001[:], 2.2)
def test_issue360(): a = Mesh(structured=True, structured_coords=[[0, 1, 2], [0, 1], [0, 1]]) a.cat = IMeshTag(3, float) a.cat[:] = [[0.11, 0.22, 0.33], [0.44, 0.55, 0.66]] a.cat[:] = np.array([[0.11, 0.22, 0.33], [0.44, 0.55, 0.66]])