コード例 #1
0
    def get_delta_factors_(self, neuron, equations_block):
        r"""
        For every occurrence of a convolution of the form `x^(n) = a * convolve(kernel, inport) + ...` where `kernel` is a delta function, add the element `(x^(n), inport) --> a` to the set.
        """
        delta_factors = {}
        for ode_eq in equations_block.get_ode_equations():
            var = ode_eq.get_lhs()
            expr = ode_eq.get_rhs()
            conv_calls = OdeTransformer.get_convolve_function_calls(expr)
            for conv_call in conv_calls:
                assert len(
                    conv_call.args
                ) == 2, "convolve() function call should have precisely two arguments: kernel and spike buffer"
                kernel = conv_call.args[0]
                if is_delta_kernel(
                        neuron.get_kernel_by_name(
                            kernel.get_variable().get_name())):
                    inport = conv_call.args[1].get_variable()
                    expr_str = str(expr)
                    sympy_expr = sympy.parsing.sympy_parser.parse_expr(
                        expr_str)
                    sympy_expr = sympy.expand(sympy_expr)
                    sympy_conv_expr = sympy.parsing.sympy_parser.parse_expr(
                        str(conv_call))
                    factor_str = []
                    for term in sympy.Add.make_args(sympy_expr):
                        if term.find(sympy_conv_expr):
                            factor_str.append(
                                str(term.replace(sympy_conv_expr, 1)))
                    factor_str = " + ".join(factor_str)
                    delta_factors[(var, inport)] = factor_str

        return delta_factors
コード例 #2
0
        def replace_function_call_through_var(_expr=None):
            if _expr.is_function_call() and _expr.get_function_call().get_name(
            ) == "convolve":
                convolve = _expr.get_function_call()
                el = (convolve.get_args()[0], convolve.get_args()[1])
                sym = convolve.get_args()[0].get_scope().resolve_to_symbol(
                    convolve.get_args()[0].get_variable().name,
                    SymbolKind.VARIABLE)
                if sym.block_type == BlockType.INPUT_BUFFER_SPIKE:
                    el = (el[1], el[0])
                var = el[0].get_variable()
                spike_input_port = el[1].get_variable()
                kernel = neuron.get_kernel_by_name(var.get_name())

                _expr.set_function_call(None)
                buffer_var = construct_kernel_X_spike_buf_name(
                    var.get_name(), spike_input_port,
                    var.get_differential_order() - 1)
                if is_delta_kernel(kernel):
                    # delta kernel are treated separately, and should be kept out of the dynamics (computing derivates etc.) --> set to zero
                    _expr.set_variable(None)
                    _expr.set_numeric_literal(0)
                else:
                    ast_variable = ASTVariable(buffer_var)
                    ast_variable.set_source_position(
                        _expr.get_source_position())
                    _expr.set_variable(ast_variable)
コード例 #3
0
ファイル: nest_codegenerator.py プロジェクト: pnbabu/nestml
    def get_spike_update_expressions(self, neuron: ASTNeuron, kernel_buffers, solver_dicts, delta_factors) -> List[ASTAssignment]:
        """
        Generate the equations that update the dynamical variables when incoming spikes arrive. To be invoked after ode-toolbox.

        For example, a resulting `assignment_str` could be "I_kernel_in += (in_spikes/nS) * 1". The values are taken from the initial values for each corresponding dynamical variable, either from ode-toolbox or directly from user specification in the model.

        Note that for kernels, `initial_values` actually contains the increment upon spike arrival, rather than the initial value of the corresponding ODE dimension.
        """
        spike_updates = []
        initial_values = neuron.get_initial_values_blocks()

        for kernel, spike_input_port in kernel_buffers:
            if neuron.get_scope().resolve_to_symbol(str(spike_input_port), SymbolKind.VARIABLE) is None:
                continue

            buffer_type = neuron.get_scope().resolve_to_symbol(str(spike_input_port), SymbolKind.VARIABLE).get_type_symbol()

            if is_delta_kernel(kernel):
                continue

            for kernel_var in kernel.get_variables():
                for var_order in range(get_kernel_var_order_from_ode_toolbox_result(kernel_var.get_name(), solver_dicts)):
                    kernel_spike_buf_name = construct_kernel_X_spike_buf_name(
                        kernel_var.get_name(), spike_input_port, var_order)
                    expr = get_initial_value_from_ode_toolbox_result(kernel_spike_buf_name, solver_dicts)
                    assert expr is not None, "Initial value not found for kernel " + kernel_var
                    expr = str(expr)
                    if expr in ["0", "0.", "0.0"]:
                        continue    # skip adding the statement if we're only adding zero

                    assignment_str = kernel_spike_buf_name + " += "
                    assignment_str += "(" + str(spike_input_port) + ")"
                    if not expr in ["1.", "1.0", "1"]:
                        assignment_str += " * (" + \
                            self._printer.print_expression(ModelParser.parse_expression(expr)) + ")"

                    if not buffer_type.print_nestml_type() in ["1.", "1.0", "1"]:
                        assignment_str += " / (" + buffer_type.print_nestml_type() + ")"

                    ast_assignment = ModelParser.parse_assignment(assignment_str)
                    ast_assignment.update_scope(neuron.get_scope())
                    ast_assignment.accept(ASTSymbolTableVisitor())

                    spike_updates.append(ast_assignment)

        for k, factor in delta_factors.items():
            var = k[0]
            inport = k[1]
            assignment_str = var.get_name() + "'" * (var.get_differential_order() - 1) + " += "
            if not factor in ["1.", "1.0", "1"]:
                assignment_str += "(" + self._printer.print_expression(ModelParser.parse_expression(factor)) + ") * "
            assignment_str += str(inport)
            ast_assignment = ModelParser.parse_assignment(assignment_str)
            ast_assignment.update_scope(neuron.get_scope())
            ast_assignment.accept(ASTSymbolTableVisitor())

            spike_updates.append(ast_assignment)

        return spike_updates
コード例 #4
0
    def transform_ode_and_kernels_to_json(self, neuron: ASTNeuron,
                                          parameters_block, kernel_buffers):
        """
        Converts AST node to a JSON representation suitable for passing to ode-toolbox.

        Each kernel has to be generated for each spike buffer convolve in which it occurs, e.g. if the NESTML model code contains the statements

            convolve(G, ex_spikes)
            convolve(G, in_spikes)

        then `kernel_buffers` will contain the pairs `(G, ex_spikes)` and `(G, in_spikes)`, from which two ODEs will be generated, with dynamical state (variable) names `G__X__ex_spikes` and `G__X__in_spikes`.

        :param equations_block: ASTEquationsBlock
        :return: Dict
        """
        odetoolbox_indict = {}

        gsl_converter = ODEToolboxReferenceConverter()
        gsl_printer = UnitlessExpressionPrinter(gsl_converter)

        odetoolbox_indict["dynamics"] = []
        equations_block = neuron.get_equations_block()
        for equation in equations_block.get_ode_equations():
            # n.b. includes single quotation marks to indicate differential order
            lhs = to_ode_toolbox_name(equation.get_lhs().get_complete_name())
            rhs = gsl_printer.print_expression(equation.get_rhs())
            entry = {"expression": lhs + " = " + rhs}
            symbol_name = equation.get_lhs().get_name()
            symbol = equations_block.get_scope().resolve_to_symbol(
                symbol_name, SymbolKind.VARIABLE)

            entry["initial_values"] = {}
            symbol_order = equation.get_lhs().get_differential_order()
            for order in range(symbol_order):
                iv_symbol_name = symbol_name + "'" * order
                initial_value_expr = neuron.get_initial_value(iv_symbol_name)
                if initial_value_expr:
                    expr = gsl_printer.print_expression(initial_value_expr)
                    entry["initial_values"][to_ode_toolbox_name(
                        iv_symbol_name)] = expr
            odetoolbox_indict["dynamics"].append(entry)

        # write a copy for each (kernel, spike buffer) combination
        for kernel, spike_input_port in kernel_buffers:

            if is_delta_kernel(kernel):
                # delta function -- skip passing this to ode-toolbox
                continue

            for kernel_var in kernel.get_variables():
                expr = get_expr_from_kernel_var(kernel,
                                                kernel_var.get_complete_name())
                kernel_order = kernel_var.get_differential_order()
                kernel_X_spike_buf_name_ticks = construct_kernel_X_spike_buf_name(
                    kernel_var.get_name(),
                    spike_input_port,
                    kernel_order,
                    diff_order_symbol="'")

                replace_rhs_variables(expr, kernel_buffers)

                entry = {}
                entry[
                    "expression"] = kernel_X_spike_buf_name_ticks + " = " + str(
                        expr)

                # initial values need to be declared for order 1 up to kernel order (e.g. none for kernel function f(t) = ...; 1 for kernel ODE f'(t) = ...; 2 for f''(t) = ... and so on)
                entry["initial_values"] = {}
                for order in range(kernel_order):
                    iv_sym_name_ode_toolbox = construct_kernel_X_spike_buf_name(
                        kernel_var.get_name(),
                        spike_input_port,
                        order,
                        diff_order_symbol="'")
                    symbol_name_ = kernel_var.get_name() + "'" * order
                    symbol = equations_block.get_scope().resolve_to_symbol(
                        symbol_name_, SymbolKind.VARIABLE)
                    assert symbol is not None, "Could not find initial value for variable " + symbol_name_
                    initial_value_expr = symbol.get_declaring_expression()
                    assert initial_value_expr is not None, "No initial value found for variable name " + symbol_name_
                    entry["initial_values"][
                        iv_sym_name_ode_toolbox] = gsl_printer.print_expression(
                            initial_value_expr)

                odetoolbox_indict["dynamics"].append(entry)

        odetoolbox_indict["parameters"] = {}
        if parameters_block is not None:
            for decl in parameters_block.get_declarations():
                for var in decl.variables:
                    odetoolbox_indict["parameters"][var.get_complete_name(
                    )] = gsl_printer.print_expression(decl.get_expression())

        return odetoolbox_indict