コード例 #1
0
ファイル: interfaces.py プロジェクト: devhliu/PyNets
 def _run_interface(self, runtime):
     from pynets.core.utils import collect_pandas_df
     combination_complete = collect_pandas_df(self.inputs.network,
                                              self.inputs.ID,
                                              self.inputs.net_mets_csv_list,
                                              self.inputs.plot_switch,
                                              self.inputs.multi_nets,
                                              self.inputs.multimodal)
     setattr(self, '_combination_complete', combination_complete)
     return runtime
コード例 #2
0
def test_collect_pandas_df(multi_nets, multimodal):
    base_dir = str(Path(__file__).parent / "examples")
    network = 'Default'
    ID = '002'
    func_path = base_dir + '/002/fmri'
    dmri_path = base_dir + '/002/dmri'
    plot_switch = False

    # Rename to proper format.
    shutil.copy(
        str(dmri_path +
            '/DesikanKlein2012/0021001_net_mets_Default_csd_0.1_parc'),
        str(dmri_path +
            '/DesikanKlein2012/0021001_Default_net_mets_csd_0.1_parc'))
    if multi_nets is not None and multimodal is False:
        net_mets_csv_list = [
            str(func_path +
                '/whole_brain_cluster_labels_PCA200/002_Default_net_mets_sps_0.9'
                ),
            str(func_path +
                '/whole_brain_cluster_labels_PCA200/002_Default_net_mets_sps_0.9'
                )
        ]
    elif multi_nets is not None and multimodal is True:
        net_mets_csv_list = [
            str(func_path +
                '/whole_brain_cluster_labels_PCA200/002_Default_net_mets_sps_0.9'
                ),
            str(dmri_path +
                '/DesikanKlein2012/0021001_Default_net_mets_csd_0.1_parc')
        ]
    elif multi_nets is None and multimodal is False:
        net_mets_csv_list = [
            str(func_path +
                '/coords_dosenbach_2010/netmetrics/002_net_mets_partcorr_0.2_4mm'
                )
        ]
    elif multi_nets is None and multimodal is True:
        net_mets_csv_list = [
            str(func_path +
                '/coords_dosenbach_2010/netmetrics/002_net_mets_partcorr_0.2_4mm'
                ),
            str(dmri_path + '/DesikanKlein2012/0021001_net_mets_csd_0.05_parc')
        ]
    else:
        return

    combination_complete = utils.collect_pandas_df(network, ID,
                                                   net_mets_csv_list,
                                                   plot_switch, multi_nets,
                                                   multimodal)

    assert combination_complete is not None
コード例 #3
0
def test_collect_pandas_df(plot_switch, embed):
    """
    Test collect_pandas_df_make functionality
    """
    import glob
    base_dir = str(Path(__file__).parent/"examples")
    multi_nets = None
    multimodal = False
    network = None
    ID = '002'
    net_mets_csv_list = [i for i in glob.glob(f"{base_dir}/topology/*.csv")
                         if '_neat.csv' not in i]
    out = utils.collect_pandas_df(network, ID, net_mets_csv_list,
                                  plot_switch, multi_nets, multimodal, embed)
    assert out is True
    assert isinstance(net_mets_csv_list, list)
    assert len(net_mets_csv_list) == 9
コード例 #4
0
def test_collect_pandas_df(plot_switch, embed):
    """
    Test collect_pandas_df_make functionality
    """
    import glob
    base_dir = os.path.abspath(
        pkg_resources.resource_filename("pynets", "../data/examples"))
    multi_nets = None
    multimodal = False
    subnet = None
    ID = '002'
    net_mets_csv_list = [
        i for i in glob.glob(f"{base_dir}/topology/*.csv")
        if '_neat.csv' not in i
    ]
    out = utils.collect_pandas_df(subnet, ID, net_mets_csv_list, plot_switch,
                                  multi_nets, multimodal, embed)
    assert out is True
    assert isinstance(net_mets_csv_list, list)
    assert len(net_mets_csv_list) == 9
コード例 #5
0
ファイル: test_utils.py プロジェクト: ryanhammonds/PyNets
def test_collect_pandas_df():
    base_dir = str(Path(__file__).parent / "examples")
    network = None
    ID = '002'
    plot_switch = False
    multi_nets = None
    multimodal = False
    if multi_nets is not None and multimodal is False:
        net_mets_csv_list = [
            f"{base_dir}/miscellaneous/0021001_modality-dwi_nodetype-parc_est-csa_thrtype-PROP_thr-0.3_net_mets.csv",
            f"{base_dir}/miscellaneous/0021001_modality-dwi_nodetype-parc_est-csa_thrtype-PROP_thr-0.2_net_mets.csv"
        ]
    elif multi_nets is not None and multimodal is True:
        net_mets_csv_list = [
            f"{base_dir}/miscellaneous/0021001_modality-dwi_nodetype-parc_est-csa_thrtype-PROP_thr-0.3_net_mets.csv",
            f"{base_dir}/miscellaneous/0021001_modality-dwi_nodetype-parc_est-csa_thrtype-PROP_thr-0.2_net_mets.csv"
        ]
    elif multi_nets is None and multimodal is False:
        net_mets_csv_list = [
            f"{base_dir}/miscellaneous/0021001_modality-dwi_nodetype-parc_est-csa_thrtype-PROP_thr-0.3_net_mets.csv",
            f"{base_dir}/miscellaneous/0021001_modality-dwi_nodetype-parc_est-csa_thrtype-PROP_thr-0.2_net_mets.csv"
        ]
    elif multi_nets is None and multimodal is True:
        net_mets_csv_list = [
            f"{base_dir}/miscellaneous/0021001_modality-dwi_nodetype-parc_est-csa_thrtype-PROP_thr-0.3_net_mets.csv",
            f"{base_dir}/miscellaneous/0021001_modality-dwi_nodetype-parc_est-csa_thrtype-PROP_thr-0.2_net_mets.csv"
        ]
    else:
        return

    combination_complete = utils.collect_pandas_df(network, ID,
                                                   net_mets_csv_list,
                                                   plot_switch, multi_nets,
                                                   multimodal)

    assert combination_complete is not None