コード例 #1
0
ファイル: plotting.py プロジェクト: kaczmarj/PyNets
def plot_all(conn_matrix, conn_model, atlas_select, dir_path, ID, network, label_names, mask, coords, edge_threshold, plot_switch):
    from nilearn import plotting as niplot
    pruning=True
    dpi_resolution=1000
    if plot_switch == True:
        import pkg_resources
        import networkx as nx
        from pynets import plotting
        import matplotlib.pyplot as plt
        from pynets.netstats import most_important
        G_pre=nx.from_numpy_matrix(conn_matrix)
        if pruning == True:
            [G, pruned_nodes, pruned_edges] = most_important(G_pre)
        else:
            G = G_pre
        conn_matrix = nx.to_numpy_array(G)
        
        pruned_nodes.sort(reverse = True)
        for j in pruned_nodes:
            del label_names[label_names.index(label_names[j])]
            del coords[coords.index(coords[j])]
        
        pruned_edges.sort(reverse = True)
        for j in pruned_edges:
            del label_names[label_names.index(label_names[j])]
            del coords[coords.index(coords[j])]
        
        ##Plot connectogram
        if len(conn_matrix) > 20:
            try:
                plotting.plot_connectogram(conn_matrix, conn_model, atlas_select, dir_path, ID, network, label_names)
            except RuntimeError:
                print('\n\n\nError: Connectogram plotting failed!')
        else:
            print('Error: Cannot plot connectogram for graphs smaller than 20 x 20!')
    
        ##Plot adj. matrix based on determined inputs
        plotting.plot_conn_mat(conn_matrix, conn_model, atlas_select, dir_path, ID, network, label_names, mask)
    
        ##Plot connectome
        if mask != None:
            if network != 'None':
                out_path_fig=dir_path + '/' + ID + '_' + atlas_select + '_' + str(conn_model) + '_' + str(os.path.basename(mask).split('.')[0]) + '_' + str(network) + '_connectome_viz.png'
            else:
                out_path_fig=dir_path + '/' + ID + '_' + atlas_select + '_' + str(conn_model) + '_' + str(os.path.basename(mask).split('.')[0]) + '_connectome_viz.png'
        else:
            if network != 'None':
                out_path_fig=dir_path + '/' + ID + '_' + atlas_select + '_' + str(conn_model) + '_' + str(network) + '_connectome_viz.png'
            else:
                out_path_fig=dir_path + '/' + ID + '_' + atlas_select + '_' + str(conn_model) + '_connectome_viz.png'
        #niplot.plot_connectome(conn_matrix, coords, edge_threshold=edge_threshold, node_size=20, colorbar=True, output_file=out_path_fig)
        ch2better_loc = pkg_resources.resource_filename("pynets", "templates/ch2better.nii.gz")
        connectome = niplot.plot_connectome(np.zeros(shape=(1,1)), [(0,0,0)], black_bg=True, node_size=0.0001)
        connectome.add_overlay(ch2better_loc, alpha=0.4, cmap=plt.cm.gray)
        [z_min, z_max] = -np.abs(conn_matrix).max(), np.abs(conn_matrix).max()
        connectome.add_graph(conn_matrix, coords, edge_threshold = edge_threshold, edge_cmap = 'Blues', edge_vmax=z_max, edge_vmin=z_min, node_size=4)
        connectome.savefig(out_path_fig, dpi=dpi_resolution)
    else:
        pass
    return
コード例 #2
0
def test_most_important():
    base_dir = str(Path(__file__).parent/"examples")
    in_mat = np.load(base_dir + '/997/997_Default_est_cov_0.1_4.npy')
    G = nx.from_numpy_array(in_mat)

    start_time = time.time()
    [Gt, pruned_nodes] = netstats.most_important(G)
    print("%s%s%s" % ('thresh_and_fit (Functional, proportional thresholding) --> finished: ', str(np.round(time.time() - start_time, 1)), 's'))
    assert Gt is not None
    assert pruned_nodes is not None
コード例 #3
0
ファイル: plotting.py プロジェクト: lqcheng2017/PyNets
def plot_all(conn_matrix, conn_model, atlas_select, dir_path, ID, network,
             label_names, mask, coords, thr, node_size, edge_threshold, smooth,
             prune, uatlas_select):
    import matplotlib
    matplotlib.use('agg')
    from matplotlib import pyplot as plt
    from nilearn import plotting as niplot
    import pkg_resources
    import networkx as nx
    from pynets import plotting, thresholding
    from pynets.netstats import most_important, prune_disconnected
    try:
        import cPickle as pickle
    except ImportError:
        import _pickle as pickle

    coords = list(coords)
    label_names = list(label_names)

    dpi_resolution = 500
    if '\'b' in atlas_select:
        atlas_select = atlas_select.decode('utf-8')
    if (prune == 1 or prune == 2) and len(coords) == conn_matrix.shape[0]:
        G_pre = nx.from_numpy_matrix(conn_matrix)
        if prune == 1:
            [G, pruned_nodes] = prune_disconnected(G_pre)
        elif prune == 2:
            [G, pruned_nodes] = most_important(G_pre)
        else:
            G = G_pre
            pruned_nodes = []
        pruned_nodes.sort(reverse=True)
        print('(Display)')
        coords_pre = list(coords)
        label_names_pre = list(label_names)
        if len(pruned_nodes) > 0:
            for j in pruned_nodes:
                label_names_pre.pop(j)
                coords_pre.pop(j)
            conn_matrix = nx.to_numpy_array(G)
            label_names = label_names_pre
            coords = coords_pre
        else:
            print('No nodes to prune for plot...')

    coords = list(tuple(x) for x in coords)
    # Plot connectogram
    if len(conn_matrix) > 20:
        try:
            plotting.plot_connectogram(conn_matrix, conn_model, atlas_select,
                                       dir_path, ID, network, label_names)
        except:
            print('\n\n\nWarning: Connectogram plotting failed!')
    else:
        print(
            'Warning: Cannot plot connectogram for graphs smaller than 20 x 20!'
        )

    # Plot adj. matrix based on determined inputs
    if not node_size or node_size == 'None':
        node_size = 'parc'
    plotting.plot_conn_mat_func(conn_matrix, conn_model, atlas_select,
                                dir_path, ID, network, label_names, mask, thr,
                                node_size, smooth)

    # Plot connectome
    if mask:
        out_path_fig = "%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s" % (
            dir_path, '/', ID, '_', str(atlas_select), '_', str(conn_model),
            '_', str(os.path.basename(mask).split('.')[0]), "%s" %
            ("%s%s%s" % ('_', network, '_') if network else "_"), str(thr),
            '_', str(node_size), '%s' %
            ("mm_" if node_size != 'parc' else "_"), "%s" %
            ("%s%s" % (smooth, 'fwhm_') if float(smooth) > 0 else 'nosm_'),
            'func_glass_viz.png')
        # Save coords to pickle
        coord_path = "%s%s%s%s" % (dir_path, '/coords_',
                                   os.path.basename(mask).split('.')[0],
                                   '_plotting.pkl')
        with open(coord_path, 'wb') as f:
            pickle.dump(coords, f, protocol=2)
        # Save labels to pickle
        labels_path = "%s%s%s%s" % (dir_path, '/labelnames_',
                                    os.path.basename(mask).split('.')[0],
                                    '_plotting.pkl')
        with open(labels_path, 'wb') as f:
            pickle.dump(label_names, f, protocol=2)
    else:
        out_path_fig = "%s%s%s%s%s%s%s%s%s%s%s%s%s%s" % (
            dir_path, '/', ID, '_', str(atlas_select), '_', str(conn_model),
            "%s" % ("%s%s%s" % ('_', network, '_') if network else "_"),
            str(thr), '_', str(node_size), '%s' %
            ("mm_" if node_size != 'parc' else "_"), "%s" %
            ("%s%s" % (smooth, 'fwhm_') if float(smooth) > 0 else 'nosm_'),
            'func_glass_viz.png')
        # Save coords to pickle
        coord_path = "%s%s" % (dir_path, '/coords_plotting.pkl')
        with open(coord_path, 'wb') as f:
            pickle.dump(coords, f, protocol=2)
        # Save labels to pickle
        labels_path = "%s%s" % (dir_path, '/labelnames_plotting.pkl')
        with open(labels_path, 'wb') as f:
            pickle.dump(label_names, f, protocol=2)

    ch2better_loc = pkg_resources.resource_filename(
        "pynets", "templates/ch2better.nii.gz")
    connectome = niplot.plot_connectome(np.zeros(shape=(1, 1)), [(0, 0, 0)],
                                        node_size=0.0001,
                                        black_bg=True)
    connectome.add_overlay(ch2better_loc, alpha=0.35, cmap=plt.cm.gray)
    conn_matrix = np.array(np.array(thresholding.autofix(conn_matrix)))
    [z_min, z_max] = -np.abs(conn_matrix).max(), np.abs(conn_matrix).max()
    if node_size == 'parc':
        node_size_plot = int(2)
        if uatlas_select:
            connectome.add_contours(uatlas_select,
                                    filled=False,
                                    alpha=0.3,
                                    colors='black')
    else:
        node_size_plot = int(node_size)
    if len(coords) != conn_matrix.shape[0]:
        raise RuntimeWarning(
            'WARNING: Number of coordinates does not match conn_matrix dimensions. If you are using disparity filtering, try relaxing the α threshold.'
        )
    else:
        connectome.add_graph(conn_matrix,
                             coords,
                             edge_threshold=edge_threshold,
                             edge_cmap='Blues',
                             edge_vmax=float(z_max),
                             edge_vmin=float(z_min),
                             node_size=node_size_plot,
                             node_color='auto')
        connectome.savefig(out_path_fig, dpi=dpi_resolution)
    return
コード例 #4
0
ファイル: plotting.py プロジェクト: lqcheng2017/PyNets
def plot_connectogram(conn_matrix, conn_model, atlas_select, dir_path, ID,
                      network, label_names):
    import json
    from pathlib import Path
    from networkx.readwrite import json_graph
    from pynets.thresholding import normalize
    from pynets.netstats import most_important
    from scipy.cluster.hierarchy import linkage, fcluster
    from nipype.utils.filemanip import save_json

    # Advanced Settings
    comm = 'nodes'
    pruned = False
    #color_scheme = 'interpolateCool'
    #color_scheme = 'interpolateGnBu'
    #color_scheme = 'interpolateOrRd'
    #color_scheme = 'interpolatePuRd'
    #color_scheme = 'interpolateYlOrRd'
    #color_scheme = 'interpolateReds'
    #color_scheme = 'interpolateGreens'
    color_scheme = 'interpolateBlues'
    # Advanced Settings

    conn_matrix = normalize(conn_matrix)
    G = nx.from_numpy_matrix(conn_matrix)
    if pruned is True:
        [G, pruned_nodes] = most_important(G)
        conn_matrix = nx.to_numpy_array(G)

        pruned_nodes.sort(reverse=True)
        for j in pruned_nodes:
            del label_names[label_names.index(label_names[j])]

    def doClust(X, clust_levels):
        # get the linkage diagram
        Z = linkage(X, 'ward')
        # choose # cluster levels
        cluster_levels = range(1, int(clust_levels))
        # init array to store labels for each level
        clust_levels_tmp = int(clust_levels) - 1
        label_arr = np.zeros((int(clust_levels_tmp), int(X.shape[0])))
        # iterate thru levels
        for c in cluster_levels:
            fl = fcluster(Z, c, criterion='maxclust')
            #print(fl)
            label_arr[c - 1, :] = fl
        return label_arr, clust_levels_tmp

    if comm == 'nodes' and len(conn_matrix) > 40:
        from pynets.netstats import modularity_louvain_und_sign

        gamma = nx.density(nx.from_numpy_array(conn_matrix))
        try:
            [node_comm_aff_mat,
             q] = modularity_louvain_und_sign(conn_matrix, gamma=float(gamma))
            print("%s%s%s%s%s" %
                  ('Found ', str(len(np.unique(node_comm_aff_mat))),
                   ' communities with γ=', str(gamma), '...'))
        except:
            print(
                'WARNING: Louvain community detection failed. Proceeding with single community affiliation vector...'
            )
            node_comm_aff_mat = np.ones(conn_matrix.shape[0]).astype('int')
        clust_levels = len(node_comm_aff_mat)
        clust_levels_tmp = int(clust_levels) - 1
        mask_mat = np.squeeze(np.array([node_comm_aff_mat == 0]).astype('int'))
        label_arr = node_comm_aff_mat * np.expand_dims(
            np.arange(1, clust_levels + 1), axis=1) + mask_mat
    elif comm == 'links' and len(conn_matrix) > 40:
        from pynets.netstats import link_communities
        # Plot link communities
        link_comm_aff_mat = link_communities(conn_matrix,
                                             type_clustering='single')
        print("%s%s%s" %
              ('Found ', str(len(link_comm_aff_mat)), ' communities...'))
        clust_levels = len(link_comm_aff_mat)
        clust_levels_tmp = int(clust_levels) - 1
        mask_mat = np.squeeze(np.array([link_comm_aff_mat == 0]).astype('int'))
        label_arr = link_comm_aff_mat * np.expand_dims(
            np.arange(1, clust_levels + 1), axis=1) + mask_mat
    elif len(conn_matrix) > 20:
        print(
            'Graph too small for reliable plotting of communities. Plotting by fcluster instead...'
        )
        if len(conn_matrix) >= 250:
            clust_levels = 7
        elif len(conn_matrix) >= 200:
            clust_levels = 6
        elif len(conn_matrix) >= 150:
            clust_levels = 5
        elif len(conn_matrix) >= 100:
            clust_levels = 4
        elif len(conn_matrix) >= 50:
            clust_levels = 3
        else:
            clust_levels = 2
        [label_arr, clust_levels_tmp] = doClust(conn_matrix, clust_levels)

    def get_node_label(node_idx, labels, clust_levels_tmp):
        from collections import OrderedDict

        def write_roman(num):
            roman = OrderedDict()
            roman[1000] = "M"
            roman[900] = "CM"
            roman[500] = "D"
            roman[400] = "CD"
            roman[100] = "C"
            roman[90] = "XC"
            roman[50] = "L"
            roman[40] = "XL"
            roman[10] = "X"
            roman[9] = "IX"
            roman[5] = "V"
            roman[4] = "IV"
            roman[1] = "I"

            def roman_num(num):
                for r in roman.keys():
                    x, y = divmod(num, r)
                    yield roman[r] * x
                    num -= (r * x)
                    if num > 0:
                        roman_num(num)
                    else:
                        break

            return "".join([a for a in roman_num(num)])

        rn_list = []
        node_idx = node_idx - 1
        node_labels = labels[:, node_idx]
        for k in [int(l) for i, l in enumerate(node_labels)]:
            rn_list.append(json.dumps(write_roman(k)))
        abet = rn_list
        node_lab_alph = ".".join([
            "{}{}".format(abet[i], int(l)) for i, l in enumerate(node_labels)
        ]) + ".{}".format(label_names[node_idx])
        return node_lab_alph

    output = []

    adj_dict = {}
    for i in list(G.adjacency()):
        source = list(i)[0]
        target = list(list(i)[1])
        adj_dict[source] = target

    for node_idx, connections in adj_dict.items():
        weight_vec = []
        for i in connections:
            wei = G.get_edge_data(node_idx, int(i))['weight']
            weight_vec.append(wei)
        entry = {}
        nodes_label = get_node_label(node_idx, label_arr, clust_levels_tmp)
        entry["name"] = nodes_label
        entry["size"] = len(connections)
        entry["imports"] = [
            get_node_label(int(d) - 1, label_arr, clust_levels_tmp)
            for d in connections
        ]
        entry["weights"] = weight_vec
        output.append(entry)

    if network:
        json_file_name = "%s%s%s%s%s%s" % (str(ID), '_', network,
                                           '_connectogram_', conn_model,
                                           '_network.json')
        json_fdg_file_name = "%s%s%s%s%s%s" % (str(ID), '_', network, '_fdg_',
                                               conn_model, '_network.json')
        connectogram_plot = "%s%s%s" % (dir_path, '/', json_file_name)
        fdg_js_sub = "%s%s%s%s%s%s%s%s" % (dir_path, '/', str(ID), '_',
                                           network, '_fdg_', conn_model,
                                           '_network.js')
        fdg_js_sub_name = "%s%s%s%s%s%s" % (str(ID), '_', network, '_fdg_',
                                            conn_model, '_network.js')
        connectogram_js_sub = "%s%s%s%s%s%s%s%s" % (dir_path, '/', str(
            ID), '_', network, '_connectogram_', conn_model, '_network.js')
        connectogram_js_name = "%s%s%s%s%s%s" % (
            str(ID), '_', network, '_connectogram_', conn_model, '_network.js')
    else:
        json_file_name = "%s%s%s%s" % (str(ID), '_connectogram_', conn_model,
                                       '.json')
        json_fdg_file_name = "%s%s%s%s" % (str(ID), '_fdg_', conn_model,
                                           '.json')
        connectogram_plot = "%s%s%s" % (dir_path, '/', json_file_name)
        connectogram_js_sub = "%s%s%s%s%s%s" % (
            dir_path, '/', str(ID), '_connectogram_', conn_model, '.js')
        fdg_js_sub = "%s%s%s%s%s%s" % (dir_path, '/', str(ID), '_fdg_',
                                       conn_model, '.js')
        fdg_js_sub_name = "%s%s%s%s" % (str(ID), '_fdg_', conn_model, '.js')
        connectogram_js_name = "%s%s%s%s" % (str(ID), '_connectogram_',
                                             conn_model, '.js')
    save_json(connectogram_plot, output)

    # Force-directed graphing
    G = nx.from_numpy_matrix(np.round(conn_matrix.astype('float64'), 6))
    data = json_graph.node_link_data(G)
    data.pop('directed', None)
    data.pop('graph', None)
    data.pop('multigraph', None)
    for k in range(len(data['links'])):
        data['links'][k]['value'] = data['links'][k].pop('weight')
    for k in range(len(data['nodes'])):
        data['nodes'][k]['id'] = str(data['nodes'][k]['id'])
    for k in range(len(data['links'])):
        data['links'][k]['source'] = str(data['links'][k]['source'])
        data['links'][k]['target'] = str(data['links'][k]['target'])

    # Add community structure
    for k in range(len(data['nodes'])):
        data['nodes'][k]['group'] = str(label_arr[0][k])

    # Add node labels
    for k in range(len(data['nodes'])):
        data['nodes'][k]['name'] = str(label_names[k])

    out_file = "%s%s%s" % (dir_path, '/', str(json_fdg_file_name))
    save_json(out_file, data)

    # Copy index.html and json to dir_path
    #conn_js_path = '/Users/PSYC-dap3463/Applications/PyNets/pynets/connectogram.js'
    #index_html_path = '/Users/PSYC-dap3463/Applications/PyNets/pynets/index.html'
    conn_js_path = str(Path(__file__).parent / "connectogram.js")
    index_html_path = str(Path(__file__).parent / "index.html")
    fdg_replacements_js = {"FD_graph.json": str(json_fdg_file_name)}
    replacements_html = {
        'connectogram.js': str(connectogram_js_name),
        'fdg.js': str(fdg_js_sub_name)
    }
    fdg_js_path = str(Path(__file__).parent / "fdg.js")
    with open(index_html_path) as infile, open(str(dir_path + '/index.html'),
                                               'w') as outfile:
        for line in infile:
            for src, target in replacements_html.items():
                line = line.replace(src, target)
            outfile.write(line)

    replacements_js = {
        'template.json': str(json_file_name),
        'interpolateCool': str(color_scheme)
    }
    with open(conn_js_path) as infile, open(connectogram_js_sub,
                                            'w') as outfile:
        for line in infile:
            for src, target in replacements_js.items():
                line = line.replace(src, target)
            outfile.write(line)

    with open(fdg_js_path) as infile, open(fdg_js_sub, 'w') as outfile:
        for line in infile:
            for src, target in fdg_replacements_js.items():
                line = line.replace(src, target)
            outfile.write(line)

    return
コード例 #5
0
def plot_all(conn_matrix, conn_model, atlas_select, dir_path, ID, network,
             label_names, mask, coords, thr, node_size, edge_threshold):
    import matplotlib
    matplotlib.use('Agg')
    from matplotlib import pyplot as plt
    from nilearn import plotting as niplot
    import pkg_resources
    import networkx as nx
    from pynets import plotting
    from pynets.netstats import most_important
    try:
        import cPickle as pickle
    except ImportError:
        import _pickle as pickle

    pruning = True
    dpi_resolution = 500
    G_pre = nx.from_numpy_matrix(conn_matrix)
    if pruning == True:
        [G, pruned_nodes, pruned_edges] = most_important(G_pre)
    else:
        G = G_pre
    conn_matrix = nx.to_numpy_array(G)

    pruned_nodes.sort(reverse=True)
    for j in pruned_nodes:
        del label_names[label_names.index(label_names[j])]
        del coords[coords.index(coords[j])]

    pruned_edges.sort(reverse=True)
    for j in pruned_edges:
        del label_names[label_names.index(label_names[j])]
        del coords[coords.index(coords[j])]

    # Plot connectogram
    if len(conn_matrix) > 20:
        try:
            plotting.plot_connectogram(conn_matrix, conn_model, atlas_select,
                                       dir_path, ID, network, label_names)
        except RuntimeError:
            print('\n\n\nError: Connectogram plotting failed!')
    else:
        print(
            'Error: Cannot plot connectogram for graphs smaller than 20 x 20!')

    # Plot adj. matrix based on determined inputs
    plotting.plot_conn_mat_func(conn_matrix, conn_model, atlas_select,
                                dir_path, ID, network, label_names, mask, thr,
                                node_size)

    # Plot connectome
    if mask:
        if network:
            out_path_fig = "%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s" % (
                dir_path, '/', ID, '_', str(atlas_select), '_',
                str(conn_model), '_', str(
                    os.path.basename(mask).split('.')[0]), '_', str(network),
                '_', str(thr), '_', str(node_size), '_func_glass_viz.png')
        else:
            out_path_fig = "%s%s%s%s%s%s%s%s%s%s%s%s%s%s" % (
                dir_path, '/', ID, '_', str(atlas_select), '_',
                str(conn_model), '_', str(
                    os.path.basename(mask).split('.')[0]), '_', str(thr), '_',
                str(node_size), '_func_glass_viz.png')
        # Save coords to pickle
        coord_path = "%s%s%s%s" % (dir_path, '/coords_',
                                   os.path.basename(mask).split('.')[0],
                                   '_plotting.pkl')
        with open(coord_path, 'wb') as f:
            pickle.dump(coords, f, protocol=2)
        net_parcels_map_nifti = None
        # Save labels to pickle
        labels_path = "%s%s%s%s" % (dir_path, '/labelnames_',
                                    os.path.basename(mask).split('.')[0],
                                    '_plotting.pkl')
        with open(labels_path, 'wb') as f:
            pickle.dump(label_names, f, protocol=2)
    else:
        if network:
            out_path_fig = "%s%s%s%s%s%s%s%s%s%s%s%s%s%s" % (
                dir_path, '/', ID, '_', str(atlas_select), '_',
                str(conn_model), '_', str(network), '_', str(thr), '_',
                str(node_size), '_func_glass_viz.png')
        else:
            out_path_fig = "%s%s%s%s%s%s%s%s%s%s%s%s" % (
                dir_path, '/', ID, '_',
                str(atlas_select), '_', str(conn_model), '_', str(thr), '_',
                str(node_size), '_func_glass_viz.png')
        # Save coords to pickle
        coord_path = "%s%s" % (dir_path, '/coords_plotting.pkl')
        with open(coord_path, 'wb') as f:
            pickle.dump(coords, f, protocol=2)
        # Save labels to pickle
        labels_path = "%s%s" % (dir_path, '/labelnames_plotting.pkl')
        with open(labels_path, 'wb') as f:
            pickle.dump(label_names, f, protocol=2)
    #niplot.plot_connectome(conn_matrix, coords, edge_threshold=edge_threshold, node_size=20, colorbar=True, output_file=out_path_fig)
    ch2better_loc = pkg_resources.resource_filename(
        "pynets", "templates/ch2better.nii.gz")
    connectome = niplot.plot_connectome(np.zeros(shape=(1, 1)), [(0, 0, 0)],
                                        node_size=0.0001)
    connectome.add_overlay(ch2better_loc, alpha=0.4, cmap=plt.cm.gray)
    [z_min, z_max] = -np.abs(conn_matrix).max(), np.abs(conn_matrix).max()
    connectome.add_graph(conn_matrix,
                         coords,
                         edge_threshold=edge_threshold,
                         edge_cmap='Greens',
                         edge_vmax=z_max,
                         edge_vmin=z_min,
                         node_size=4)
    connectome.savefig(out_path_fig, dpi=dpi_resolution)
    #connectome.savefig(out_path_fig, dpi=dpi_resolution, facecolor ='k', edgecolor ='k')
    return