コード例 #1
0
def process_celldir(inputs):
    """Process cell directory"""

    count, cell_dir, nml2_cell_dir, total_count = inputs
    local_nml2_cell_dir = os.path.join("..", nml2_cell_dir)

    print(
        '\n\n************************************************************\n\n'
        'Parsing %s (cell %i/%i)\n' % (cell_dir, count, total_count))

    if os.path.isdir(cell_dir):
        old_cwd = os.getcwd()
        os.chdir(cell_dir)
    else:
        old_cwd = os.getcwd()
        os.chdir('../' + cell_dir)

    if make_zips:
        nml2_cell_dir = '%s/%s' % (zips_dir, cell_dir)
        if not os.path.isdir(nml2_cell_dir):
            os.mkdir(nml2_cell_dir)

    print("Generating into %s" % nml2_cell_dir)

    bbp_ref = None

    template_file = open('template.hoc', 'r')
    for line in template_file:
        if line.startswith('begintemplate '):
            bbp_ref = line.split(' ')[1].strip()
            print(
                ' > Assuming cell in directory %s is in a template named %s' %
                (cell_dir, bbp_ref))

    load_cell_file = 'loadcell.hoc'

    variables = {}

    variables['cell'] = bbp_ref
    variables['groups_info_file'] = groups_info_file

    template = """
///////////////////////////////////////////////////////////////////////////////
//
//   NOTE: This file is not part of the original BBP cell model distribution
//   It has been generated by ../ParseAll.py to facilitate loading of the cell
//   into NEURON for exporting the model morphology to NeuroML2
//
//////////////////////////////////////////////////////////////////////////////

load_file("stdrun.hoc")

objref cvode
cvode = new CVode()
cvode.active(1)

//======================== settings ===================================

v_init = -80

hyp_amp = -0.062866
step_amp = 0.3112968
tstop = 3000

//=================== creating cell object ===========================
load_file("import3d.hoc")
objref cell

// Using 1 to force loading of the file, in case file with same name was loaded
// before...
load_file(1, "constants.hoc")
load_file(1, "morphology.hoc")
load_file(1, "biophysics.hoc")
print "Loaded morphology and biophysics..."

load_file(1, "synapses/synapses.hoc")
load_file(1, "template.hoc")
print "Loaded template..."

load_file(1, "createsimulation.hoc")


create_cell(0)
print "Created new cell using loadcell.hoc: {{ cell }}"

define_shape()

wopen("{{ groups_info_file }}")

fprint("//Saving information on groups in this cell...\\n")

fprint("- somatic\\n")
forsec {{ cell }}[0].somatic {
    fprint("%s\\n",secname())
}

fprint("- basal\\n")
forsec {{ cell }}[0].basal {
    fprint("%s\\n",secname())
}

fprint("- axonal\\n")
forsec {{ cell }}[0].axonal {
    fprint("%s\\n",secname())
}
fprint("- apical\\n")
forsec {{ cell }}[0].apical {
    fprint("%s\\n",secname())
}
wopen()
        """

    t = Template(template)

    contents = t.render(variables)

    load_cell = open(load_cell_file, 'w')
    load_cell.write(contents)
    load_cell.close()

    print(' > Written %s' % load_cell_file)

    if os.path.isfile(load_cell_file):

        cell_info = parse_cell_info_file(cell_dir)

        nml_file_name = "%s.net.nml" % bbp_ref
        nml_net_loc = "%s/%s" % (local_nml2_cell_dir, nml_file_name)
        nml_cell_file = "%s_0_0.cell.nml" % bbp_ref
        nml_cell_loc = "%s/%s" % (local_nml2_cell_dir, nml_cell_file)

        print(' > Loading %s and exporting to %s' %
              (load_cell_file, nml_net_loc))

        export_to_neuroml2(load_cell_file,
                           nml_net_loc,
                           separateCellFiles=True,
                           includeBiophysicalProperties=False)

        print(' > Exported to: %s and %s using %s' %
              (nml_net_loc, nml_cell_loc, load_cell_file))

        nml_doc = pynml.read_neuroml2_file(nml_cell_loc)

        cell = nml_doc.cells[0]

        print(' > Adding groups from: %s' % groups_info_file)
        groups = {}
        current_group = None
        for line in open(groups_info_file):
            if not line.startswith('//'):
                if line.startswith('- '):
                    current_group = line[2:-1]
                    print(' > Adding group: [%s]' % current_group)
                    groups[current_group] = []
                else:
                    section = line.split('.')[1].strip()
                    segment_group = section.replace('[', '_').replace(']', '')
                    groups[current_group].append(segment_group)

        for g in groups.keys():
            new_seg_group = neuroml.SegmentGroup(id=g)
            cell.morphology.segment_groups.append(new_seg_group)
            for sg in groups[g]:
                new_seg_group.includes.append(neuroml.Include(sg))
            if g in ['basal', 'apical']:
                new_seg_group.inhomogeneous_parameters.append(
                    neuroml.InhomogeneousParameter(
                        id="PathLengthOver_" + g,
                        variable="p",
                        metric="Path Length from root",
                        proximal=neuroml.ProximalDetails(
                            translation_start="0")))

        ignore_chans = [
            'Ih', 'Ca_HVA', 'Ca_LVAst', 'Ca', "SKv3_1", "SK_E2",
            "CaDynamics_E2", "Nap_Et2", "Im", "K_Tst", "NaTa_t", "K_Pst",
            "NaTs2_t"
        ]

        # ignore_chans=['StochKv','StochKv_deterministic']
        ignore_chans = []

        bp, incl_chans = get_biophysical_properties(
            cell_info['e-type'],
            ignore_chans=ignore_chans,
            templates_json="../templates.json")

        cell.biophysical_properties = bp

        print("Set biophysical properties")

        notes = ''
        notes += \
            "\n\nExport of a cell model obtained from the BBP Neocortical" \
            "Microcircuit Collaboration Portal into NeuroML2" \
            "\n\n******************************************************\n*" \
            "  This export to NeuroML2 has not yet been fully validated!!" \
            "\n*  Use with caution!!\n***********************************" \
            "*******************\n\n"

        if len(ignore_chans) > 0:
            notes += "Ignored channels = %s\n\n" % ignore_chans

        notes += "For more information on this cell model see: " \
            "https://bbp.epfl.ch/nmc-portal/microcircuit#/metype/%s/" \
            "details\n\n" % cell_info['me-type']

        cell.notes = notes
        for channel in incl_chans:

            nml_doc.includes.append(neuroml.IncludeType(href="%s" % channel))

            if make_zips:
                print("Copying %s to zip folder" % channel)
                shutil.copyfile('../../NeuroML2/%s' % channel,
                                '%s/%s' % (local_nml2_cell_dir, channel))

        pynml.write_neuroml2_file(nml_doc, nml_cell_loc)

        stim_ref = 'stepcurrent3'
        stim_ref_hyp = '%s_hyp' % stim_ref
        stim_sim_duration = 3000
        stim_hyp_amp, stim_amp = get_stimulus_amplitudes(bbp_ref)
        stim_del = '700ms'
        stim_dur = '2000ms'

        new_net_loc = "%s/%s.%s.net.nml" % (local_nml2_cell_dir, bbp_ref,
                                            stim_ref)
        new_net_doc = pynml.read_neuroml2_file(nml_net_loc)

        new_net_doc.notes = notes

        stim_hyp = neuroml.PulseGenerator(id=stim_ref_hyp,
                                          delay="0ms",
                                          duration="%sms" % stim_sim_duration,
                                          amplitude=stim_hyp_amp)
        new_net_doc.pulse_generators.append(stim_hyp)
        stim = neuroml.PulseGenerator(id=stim_ref,
                                      delay=stim_del,
                                      duration=stim_dur,
                                      amplitude=stim_amp)
        new_net_doc.pulse_generators.append(stim)

        new_net = new_net_doc.networks[0]

        pop_id = new_net.populations[0].id
        pop_comp = new_net.populations[0].component
        input_list = neuroml.InputList(id="%s_input" % stim_ref_hyp,
                                       component=stim_ref_hyp,
                                       populations=pop_id)

        syn_input = neuroml.Input(id=0,
                                  target="../%s/0/%s" % (pop_id, pop_comp),
                                  destination="synapses")

        input_list.input.append(syn_input)
        new_net.input_lists.append(input_list)

        input_list = neuroml.InputList(id="%s_input" % stim_ref,
                                       component=stim_ref,
                                       populations=pop_id)

        syn_input = neuroml.Input(id=0,
                                  target="../%s/0/%s" % (pop_id, pop_comp),
                                  destination="synapses")

        input_list.input.append(syn_input)
        new_net.input_lists.append(input_list)

        pynml.write_neuroml2_file(new_net_doc, new_net_loc)

        generate_lems_file_for_neuroml(cell_dir,
                                       new_net_loc,
                                       "network",
                                       stim_sim_duration,
                                       0.025,
                                       "LEMS_%s.xml" % cell_dir,
                                       local_nml2_cell_dir,
                                       copy_neuroml=False,
                                       seed=1234)

        pynml.nml2_to_svg(nml_net_loc)

        clear_neuron()

        pop = neuroml.Population(id="Pop_%s" % bbp_ref,
                                 component=bbp_ref + '_0_0',
                                 type="populationList")

        inst = neuroml.Instance(id="0")
        pop.instances.append(inst)

        width = 6
        X = count % width
        Z = (count - X) / width
        inst.location = neuroml.Location(x=300 * X, y=0, z=300 * Z)

        count += 1

        if make_zips:
            zip_file = "%s/%s.zip" % (zips_dir, cell_dir)
            print("Creating zip file: %s" % zip_file)
            with zipfile.ZipFile(zip_file, 'w') as myzip:

                for next_file in os.listdir(local_nml2_cell_dir):
                    next_file = '%s/%s' % (local_nml2_cell_dir, next_file)
                    arcname = next_file[len(zips_dir):]
                    print("Adding : %s as %s" % (next_file, arcname))
                    myzip.write(next_file, arcname)

        os.chdir(old_cwd)

        return nml_cell_file, pop
コード例 #2
0
def process_celldir(inputs):
    """Process cell directory"""

    count, cell_dir, nml2_cell_dir, total_count = inputs
    local_nml2_cell_dir = os.path.join("..", nml2_cell_dir)

    print(
        "\n\n************************************************************\n\n"
        "Parsing %s (cell %i/%i)\n" % (cell_dir, count, total_count)
    )

    if os.path.isdir(cell_dir):
        old_cwd = os.getcwd()
        os.chdir(cell_dir)
    else:
        old_cwd = os.getcwd()
        os.chdir("../" + cell_dir)

    if make_zips:
        nml2_cell_dir = "%s/%s" % (zips_dir, cell_dir)
        if not os.path.isdir(nml2_cell_dir):
            os.mkdir(nml2_cell_dir)

    print("Generating into %s" % nml2_cell_dir)

    bbp_ref = None

    template_file = open("template.hoc", "r")
    for line in template_file:
        if line.startswith("begintemplate "):
            bbp_ref = line.split(" ")[1].strip()
            print(" > Assuming cell in directory %s is in a template named %s" % (cell_dir, bbp_ref))

    load_cell_file = "loadcell.hoc"

    variables = {}

    variables["cell"] = bbp_ref
    variables["groups_info_file"] = groups_info_file

    template = """
///////////////////////////////////////////////////////////////////////////////
//
//   NOTE: This file is not part of the original BBP cell model distribution
//   It has been generated by ../ParseAll.py to facilitate loading of the cell
//   into NEURON for exporting the model morphology to NeuroML2
//
//////////////////////////////////////////////////////////////////////////////

load_file("stdrun.hoc")

objref cvode
cvode = new CVode()
cvode.active(1)

//======================== settings ===================================

v_init = -80

hyp_amp = -0.062866
step_amp = 0.3112968
tstop = 3000

//=================== creating cell object ===========================
load_file("import3d.hoc")
objref cell

// Using 1 to force loading of the file, in case file with same name was loaded
// before...
load_file(1, "constants.hoc")
load_file(1, "morphology.hoc")
load_file(1, "biophysics.hoc")
print "Loaded morphology and biophysics..."

load_file(1, "synapses/synapses.hoc")
load_file(1, "template.hoc")
print "Loaded template..."

load_file(1, "createsimulation.hoc")


create_cell(0)
print "Created new cell using loadcell.hoc: {{ cell }}"

define_shape()

wopen("{{ groups_info_file }}")

fprint("//Saving information on groups in this cell...\\n")

fprint("- somatic\\n")
forsec {{ cell }}[0].somatic {
    fprint("%s\\n",secname())
}

fprint("- basal\\n")
forsec {{ cell }}[0].basal {
    fprint("%s\\n",secname())
}

fprint("- axonal\\n")
forsec {{ cell }}[0].axonal {
    fprint("%s\\n",secname())
}
fprint("- apical\\n")
forsec {{ cell }}[0].apical {
    fprint("%s\\n",secname())
}
wopen()
        """

    t = Template(template)

    contents = t.render(variables)

    load_cell = open(load_cell_file, "w")
    load_cell.write(contents)
    load_cell.close()

    print(" > Written %s" % load_cell_file)

    if os.path.isfile(load_cell_file):

        cell_info = parse_cell_info_file(cell_dir)

        nml_file_name = "%s.net.nml" % bbp_ref
        nml_net_loc = "%s/%s" % (local_nml2_cell_dir, nml_file_name)
        nml_cell_file = "%s_0_0.cell.nml" % bbp_ref
        nml_cell_loc = "%s/%s" % (local_nml2_cell_dir, nml_cell_file)

        print(" > Loading %s and exporting to %s" % (load_cell_file, nml_net_loc))

        export_to_neuroml2(load_cell_file, nml_net_loc, separateCellFiles=True, includeBiophysicalProperties=False)

        print(" > Exported to: %s and %s using %s" % (nml_net_loc, nml_cell_loc, load_cell_file))

        nml_doc = pynml.read_neuroml2_file(nml_cell_loc)

        cell = nml_doc.cells[0]

        print(" > Adding groups from: %s" % groups_info_file)
        groups = {}
        current_group = None
        for line in open(groups_info_file):
            if not line.startswith("//"):
                if line.startswith("- "):
                    current_group = line[2:-1]
                    print(" > Adding group: [%s]" % current_group)
                    groups[current_group] = []
                else:
                    section = line.split(".")[1].strip()
                    segment_group = section.replace("[", "_").replace("]", "")
                    groups[current_group].append(segment_group)

        for g in groups.keys():
            new_seg_group = neuroml.SegmentGroup(id=g)
            cell.morphology.segment_groups.append(new_seg_group)
            for sg in groups[g]:
                new_seg_group.includes.append(neuroml.Include(sg))
            if g in ["basal", "apical"]:
                new_seg_group.inhomogeneous_parameters.append(
                    neuroml.InhomogeneousParameter(
                        id="PathLengthOver_" + g,
                        variable="p",
                        metric="Path Length from root",
                        proximal=neuroml.ProximalDetails(translation_start="0"),
                    )
                )

        ignore_chans = [
            "Ih",
            "Ca_HVA",
            "Ca_LVAst",
            "Ca",
            "SKv3_1",
            "SK_E2",
            "CaDynamics_E2",
            "Nap_Et2",
            "Im",
            "K_Tst",
            "NaTa_t",
            "K_Pst",
            "NaTs2_t",
        ]

        # ignore_chans=['StochKv','StochKv_deterministic']
        ignore_chans = []

        bp, incl_chans = get_biophysical_properties(
            cell_info["e-type"], ignore_chans=ignore_chans, templates_json="../templates.json"
        )

        cell.biophysical_properties = bp

        print("Set biophysical properties")

        notes = ""
        notes += (
            "\n\nExport of a cell model obtained from the BBP Neocortical"
            "Microcircuit Collaboration Portal into NeuroML2"
            "\n\n******************************************************\n*"
            "  This export to NeuroML2 has not yet been fully validated!!"
            "\n*  Use with caution!!\n***********************************"
            "*******************\n\n"
        )

        if len(ignore_chans) > 0:
            notes += "Ignored channels = %s\n\n" % ignore_chans

        notes += (
            "For more information on this cell model see: "
            "https://bbp.epfl.ch/nmc-portal/microcircuit#/metype/%s/"
            "details\n\n" % cell_info["me-type"]
        )

        cell.notes = notes
        for channel in incl_chans:

            nml_doc.includes.append(neuroml.IncludeType(href="%s" % channel))

            if make_zips:
                print("Copying %s to zip folder" % channel)
                shutil.copyfile("../../NeuroML2/%s" % channel, "%s/%s" % (local_nml2_cell_dir, channel))

        pynml.write_neuroml2_file(nml_doc, nml_cell_loc)

        stim_ref = "stepcurrent3"
        stim_ref_hyp = "%s_hyp" % stim_ref
        stim_sim_duration = 3000
        stim_hyp_amp, stim_amp = get_stimulus_amplitudes(bbp_ref)
        stim_del = "700ms"
        stim_dur = "2000ms"

        new_net_loc = "%s/%s.%s.net.nml" % (local_nml2_cell_dir, bbp_ref, stim_ref)
        new_net_doc = pynml.read_neuroml2_file(nml_net_loc)

        new_net_doc.notes = notes

        stim_hyp = neuroml.PulseGenerator(
            id=stim_ref_hyp, delay="0ms", duration="%sms" % stim_sim_duration, amplitude=stim_hyp_amp
        )
        new_net_doc.pulse_generators.append(stim_hyp)
        stim = neuroml.PulseGenerator(id=stim_ref, delay=stim_del, duration=stim_dur, amplitude=stim_amp)
        new_net_doc.pulse_generators.append(stim)

        new_net = new_net_doc.networks[0]

        pop_id = new_net.populations[0].id
        pop_comp = new_net.populations[0].component
        input_list = neuroml.InputList(id="%s_input" % stim_ref_hyp, component=stim_ref_hyp, populations=pop_id)

        syn_input = neuroml.Input(id=0, target="../%s/0/%s" % (pop_id, pop_comp), destination="synapses")

        input_list.input.append(syn_input)
        new_net.input_lists.append(input_list)

        input_list = neuroml.InputList(id="%s_input" % stim_ref, component=stim_ref, populations=pop_id)

        syn_input = neuroml.Input(id=0, target="../%s/0/%s" % (pop_id, pop_comp), destination="synapses")

        input_list.input.append(syn_input)
        new_net.input_lists.append(input_list)

        pynml.write_neuroml2_file(new_net_doc, new_net_loc)

        generate_lems_file_for_neuroml(
            cell_dir,
            new_net_loc,
            "network",
            stim_sim_duration,
            0.025,
            "LEMS_%s.xml" % cell_dir,
            local_nml2_cell_dir,
            copy_neuroml=False,
            seed=1234,
        )

        pynml.nml2_to_svg(nml_net_loc)

        clear_neuron()

        pop = neuroml.Population(id="Pop_%s" % bbp_ref, component=bbp_ref + "_0_0", type="populationList")

        inst = neuroml.Instance(id="0")
        pop.instances.append(inst)

        width = 6
        X = count % width
        Z = (count - X) / width
        inst.location = neuroml.Location(x=300 * X, y=0, z=300 * Z)

        count += 1

        if make_zips:
            zip_file = "%s/%s.zip" % (zips_dir, cell_dir)
            print("Creating zip file: %s" % zip_file)
            with zipfile.ZipFile(zip_file, "w") as myzip:

                for next_file in os.listdir(local_nml2_cell_dir):
                    next_file = "%s/%s" % (local_nml2_cell_dir, next_file)
                    arcname = next_file[len(zips_dir) :]
                    print("Adding : %s as %s" % (next_file, arcname))
                    myzip.write(next_file, arcname)

        os.chdir(old_cwd)

        return nml_cell_file, pop
コード例 #3
0
from pyneuroml.neuron import export_to_neuroml2

export_to_neuroml2("test.hoc", "test.morphonly.cell.nml", includeBiophysicalProperties=False)
export_to_neuroml2("test.hoc", "test.biophys.cell.nml", includeBiophysicalProperties=True)
コード例 #4
0
from pyneuroml.neuron import export_to_neuroml2
# from pyneuroml.neuron.nrn_export_utils import clear_neuron

export_to_neuroml2("../NEURON/tester.hoc", 
                   "test.cell.nml", 
                   includeBiophysicalProperties=True,
                   known_rev_potentials={'Ih':-32.9, 'cal':0, 'cat':0,
                                         'kca':-95, 'Ika':-95, 'IM':-95, 'Ikdrf':-95, 'Ikdrs':-95, 'passsd':-70,
                                         'Ikdrfaxon':-95, 'Ikdrsaxon':-95, 'passaxon':-70})

コード例 #5
0
ファイル: export_mitral.py プロジェクト: JustasB/Mig3DTest
def __main__():
    num_cells_to_export = 1

    cells = []
    for mgid in range(num_cells_to_export):
      print mgid
      cells.append(mkmitral(mgid))

    nml_net_file = "../NeuroML2/MitralCells/Exported/PartialBulb_%iMTCells.net.nml" % num_cells_to_export
    export_to_neuroml2(None, 
                       nml_net_file,
                       includeBiophysicalProperties=False,
                       separateCellFiles=True)

    for i in range(num_cells_to_export):

        print("Processing cell %i out of %i"%(i, num_cells_to_export))

        nml_cell_file = "../NeuroML2/MitralCells/Exported/Mitral_0_%i.cell.nml" % i

        nml_doc = pynml.read_neuroml2_file(nml_cell_file)

        cell = nml_doc.cells[0]

        import pydevd
        pydevd.settrace('10.211.55.3', port=4200, stdoutToServer=True, stderrToServer=True, suspend=True)
        
        # Set root to id=0 and increment others
        exportHelper.resetRoot(cell)

        somaSeg = [seg for seg in cell.morphology.segments if seg.name == "Seg0_soma"][0]
        initialSeg = [seg for seg in cell.morphology.segments if seg.name == "Seg0_initialseg"][0]
        hillockSeg = [seg for seg in cell.morphology.segments if seg.name == "Seg0_hillock"][0]

        # Fix initial and hillock segs by moving them to the soma
        hillockSeg.proximal = pointMovedByOffset(hillockSeg.proximal, somaSeg.distal)
        hillockSeg.distal = pointMovedByOffset(hillockSeg.distal, somaSeg.distal)
        initialSeg.proximal = pointMovedByOffset(initialSeg.proximal, somaSeg.distal)
        initialSeg.distal = pointMovedByOffset(initialSeg.distal, somaSeg.distal)

        # Move everything back to the origin
        originOffset = type("", (), dict(x = -somaSeg.proximal.x, y = -somaSeg.proximal.y, z = -somaSeg.proximal.z ))()

        for seg in cell.morphology.segments:
            seg.proximal = pointMovedByOffset(seg.proximal, originOffset)
            seg.distal =   pointMovedByOffset(seg.distal, originOffset)

        # Replace ModelViewParmSubset_N groups with all, axon, soma, dendrite groups
        buildStandardSegmentGroups(cell)

        # Add channel placeholders
        nml_doc.includes.append(neuroml.IncludeType(href="channelIncludesPLACEHOLDER"))
        cell.biophysical_properties = neuroml.BiophysicalProperties(id="biophysPLACEHOLDER")

        # Save the new NML
        pynml.write_neuroml2_file(nml_doc, nml_cell_file)

        # Replace placeholders with contents from MitralCell...xml files
        replaceChannelPlaceholders(nml_cell_file)

        print("COMPLETED: " + nml_cell_file)

    print("DONE")
コード例 #6
0
ファイル: export_neuroml2.py プロジェクト: travs/pyNeuroML
from pyneuroml.neuron import export_to_neuroml2

export_to_neuroml2("test.hoc", "test.morphonly.nml", includeBiophysicalProperties=False)

#export_to_neuroml2("test.hoc", "test.biophys.nml", includeBiophysicalProperties=True)



コード例 #7
0
from pyneuroml.neuron import export_to_neuroml2
# from pyneuroml.neuron.nrn_export_utils import clear_neuron

export_to_neuroml2("../NEURON/test/test_Poirazi2003.hoc", 
                   "poirazi.cell.nml", 
                   includeBiophysicalProperties=True,
                   known_rev_potentials={'cal':-1, 'calH':140, 'can':140, 'car':140, 'cat':-1})

コード例 #8
0
from pyneuroml.neuron import export_to_neuroml2

cells = ['axoaxonic', 'bistratified', 'cck', 'cutsuridis', 'ivy', 'ngf', 'olm', 'poolosyn', 'pvbasket', 'sca']


for cell in cells:

    export_to_neuroml2("%s.hoc"%cell, 
                       "cells/%s.cell.nml"%cell, 
                       includeBiophysicalProperties=True,
                       known_rev_potentials={'ch_CavL':-1, 'ch_CavN':-1, 'ch_HCNolm':-30})

    print "##### %s done #####"%cell



コード例 #9
0
from pyneuroml.neuron import export_to_neuroml2
# from pyneuroml.neuron.nrn_export_utils import clear_neuron

export_to_neuroml2("../NEURON/test/test_Poirazi2003.hoc",
                   "poirazi.cell.nml",
                   includeBiophysicalProperties=True,
                   known_rev_potentials={
                       'cal': -1,
                       'calH': 140,
                       'can': 140,
                       'car': 140,
                       'cat': -1
                   })
from pyneuroml.neuron import export_to_neuroml2
# from pyneuroml.neuron.nrn_export_utils import clear_neuron

export_to_neuroml2("../NEURON/test_granulecell.hoc", 
                   "granule.cell.nml", 
                   includeBiophysicalProperties=True,
                   known_rev_potentials={'ichan2':0})

コード例 #11
0
from pyneuroml.neuron import export_to_neuroml2
from pyneuroml.neuron.nrn_export_utils import clear_neuron

export_to_neuroml2("../NEURON/tester_Case2.hoc", 
                   "SaragaOLM_Case2.cell.nml", 
                   includeBiophysicalProperties=True,
                   known_rev_potentials={'IA':-100, 'Ih':-32.9})

コード例 #12
0
ファイル: export_granule.py プロジェクト: JustasB/Mig3DTest
def exportToNML(cells):

    nml_net_file = "../NeuroML2/GranuleCells/Exported/GCnet%iG.net.nml" % len(cells)
    export_to_neuroml2(None,
                       nml_net_file,
                       includeBiophysicalProperties=False,
                       separateCellFiles=True)

    # Rename files so their cell GIDs are preserved
    for gcid in cells.keys():
        fileId = cells[gcid]['index']
        oldFile = '../NeuroML2/GranuleCells/Exported/Granule_0_%i.cell.nml' % fileId
        newFile = '../NeuroML2/GranuleCells/Exported/Granule_0_%i.cell.nml_TEMP' % gcid

        # Using TEMP files to avoid naming conflicts
        os.rename(oldFile, newFile)

    # Remove temp files after all have been renamed
    for gcid in cells.keys():
        oldFile = '../NeuroML2/GranuleCells/Exported/Granule_0_%i.cell.nml_TEMP' % gcid
        newFile = '../NeuroML2/GranuleCells/Exported/Granule_0_%i.cell.nml' % gcid
        os.rename(oldFile, newFile)


    for gcid in cells.keys():

        cell, nml_doc, nml_cell_file = readGCnml(gcid)
        
        print("Loaded GC cell %i with %i segments"%(gcid, len(cell.morphology.segments)))

        # Change cell ID to preserve GCID
        cell.id = "Granule_0_%i" % gcid

        # Change segment ids to start at 0 and increment
        exportHelper.resetRoot(cell)

        # Replace ModelViewParmSubset_N groups with all, axon, soma, dendrite groups
        buildStandardSegmentGroups(cell)

        # Add channel placeholders
        nml_doc.includes.append(neuroml.IncludeType(href="channelIncludesPLACEHOLDER"))
        cell.biophysical_properties = neuroml.BiophysicalProperties(id="biophysPLACEHOLDER")
        cell.morphology.segments.append(neuroml.Segment(id="spinePLACEHOLDER"))

        # Save the new NML
        pynml.write_neuroml2_file(nml_doc, nml_cell_file)


        # Replace placeholders with contents from GranuleCell...xml files
        replaceChannelPlaceholders(nml_cell_file)

        cell, nml_doc, nml_cell_file = readGCnml(gcid)

        # Fix the fractionAlong parent segment bug ( https://github.com/NeuroML/org.neuroml.export/issues/46 )
        exportHelper.splitSegmentAlongFraction(cell, "Seg0_priden", "priden", 0.8, "Seg0_priden2_0")

        # Orient cell along the versor
        versor = granules.granule_position_orientation(gcid)[1]

        for seg in cell.morphology.segments:
            segLength = seg.length

            if seg.parent is not None:
                parentDistal = [parent for parent in cell.morphology.segments if parent.id == seg.parent.segments][0].distal
                seg.proximal.x = parentDistal.x
                seg.proximal.y = parentDistal.y
                seg.proximal.z = parentDistal.z

            seg.distal = setAlongVersor(seg.distal, versor, seg.proximal, segLength)

        # Make sure spine is in the all group
        [group for group in cell.morphology.segment_groups if group.id == 'all'][0]\
            .includes\
            .append(neuroml.Include(segment_groups='spine_group'))\

        # and Dendrite group
        [group for group in cell.morphology.segment_groups if group.id == 'dendrite_group'][0]\
            .includes\
            .append(neuroml.Include(segment_groups='spine_group'))

        # Save orientation
        pynml.write_neuroml2_file(nml_doc, nml_cell_file)

        print(nml_cell_file)
コード例 #13
0
from pyneuroml.neuron import export_to_neuroml2



#export_to_neuroml2("load_bc6.hoc", "BC6.cell.nml", includeBiophysicalProperties=False)
export_to_neuroml2("load_bc2.hoc", "BC2.cell.nml", includeBiophysicalProperties=False)
コード例 #14
0
     
     
 if os.path.isfile(load_cell_file):
     
     cell_info = parse_cell_info_file(cell_dir)
     
     nml_file_name = "%s.net.nml"%bbp_ref
     nml_net_loc = "%s/%s"%(nml2_cell_dir,nml_file_name)
     nml_cell_file = "%s_0_0.cell.nml"%bbp_ref
     nml_cell_loc = "%s/%s"%(nml2_cell_dir,nml_cell_file)
     
 
     print(' > Loading %s and exporting to %s'%(load_cell_file,nml_net_loc))
 
     export_to_neuroml2(load_cell_file, 
                        nml_net_loc, 
                        separateCellFiles=True,
                        includeBiophysicalProperties=False)
     
     print(' > Exported to: %s and %s using %s'%(nml_net_loc, nml_cell_loc, load_cell_file))
     
     nml_doc = pynml.read_neuroml2_file(nml_cell_loc)
     
     cell = nml_doc.cells[0]
     
     print(' > Adding groups from: %s'%groups_info_file)
     groups = {}
     current_group = None
     for line in open(groups_info_file):
         if not line.startswith('//'):
             if line.startswith('- '):
                 current_group = line[2:-1]
コード例 #15
0
from pyneuroml.neuron import export_to_neuroml2

export_to_neuroml2("091008A2.hoc",
                   "../NeuroML2/dLGN.cell.nml",
                   includeBiophysicalProperties=False)

#export_to_neuroml2("test.hoc", "test.biophys.nml", includeBiophysicalProperties=True)
コード例 #16
0
    
    h.finitialize()
    h.psection()
    
    nml_file_name = "%s.net.nml"%model_id
    nml_net_loc = "%s/%s"%(nml2_cell_dir,nml_file_name)
    nml_cell_file0 = "Cell0.cell.nml"
    nml_cell_loc0 = "%s/%s"%(nml2_cell_dir,nml_cell_file0)
    nml_cell_file = "Cell_%s.cell.nml"%model_id
    nml_cell_loc = "%s/%s"%(nml2_cell_dir,nml_cell_file)


    print(' > Exporting to %s'%(nml_net_loc))

    export_to_neuroml2(None, 
                       nml_net_loc, 
                       separateCellFiles=True,
                       includeBiophysicalProperties=False)

    print(' > Exported to: %s and %s'%(nml_net_loc, nml_cell_loc))
    
    
    clear_neuron()

    nml_doc = pynml.read_neuroml2_file(nml_cell_loc0)
        
    cell = nml_doc.cells[0]
    
    cell.id = 'Cell_%s'%model_id
    
    notes = ''
    notes+="\n\nExport of a cell model (%s) obtained from the Allen Institute Cell Types Database into NeuroML2"%model_id + \
コード例 #17
0
def export(num_cells_to_export=5):
    cells = []

    for mgid in range(num_cells_to_export):
        print mgid
        cells.append(mkmitral(mgid))

    nml_net_file = "../NeuroML2/MitralCells/Exported/PartialBulb_%iMTCells.net.nml" % num_cells_to_export
    export_to_neuroml2(None,
                       nml_net_file,
                       includeBiophysicalProperties=False,
                       separateCellFiles=True)

    for i in range(num_cells_to_export):
        print("Processing cell %i out of %i" % (i, num_cells_to_export))
        nml_cell_file = "../NeuroML2/MitralCells/Exported/Mitral_0_%i.cell.nml" % i
        nml_doc = pynml.read_neuroml2_file(nml_cell_file)
        cell = nml_doc.cells[0]

        soma_seg = next(seg for seg in cell.morphology.segments
                        if seg.name == "Seg0_soma")
        initial_seg = next(seg for seg in cell.morphology.segments
                           if seg.name == "Seg0_initialseg")
        hillock_seg = next(seg for seg in cell.morphology.segments
                           if seg.name == "Seg0_hillock")

        # Ensure hillock parent is soma
        hillock_seg.parent.segments = soma_seg.id

        # Fix initial and hillock segs by moving them to the soma
        hillock_seg.proximal = pointMovedByOffset(hillock_seg.proximal,
                                                  soma_seg.distal)
        hillock_seg.distal = pointMovedByOffset(hillock_seg.distal,
                                                soma_seg.distal)
        initial_seg.proximal = pointMovedByOffset(initial_seg.proximal,
                                                  soma_seg.distal)
        initial_seg.distal = pointMovedByOffset(initial_seg.distal,
                                                soma_seg.distal)

        # Set root to id=0 and increment others
        exportHelper.resetRoot(cell)

        # TODO: cell.position(x,y,z) used for cell positioning in networks does not work as expected
        # See: https://github.com/NeuroML/jNeuroML/issues/55
        # Skipping the translation for now
        # # Move everything back to the origin
        # originOffset = type("", (), dict(x = -soma_seg.proximal.x, y = -soma_seg.proximal.y, z = -soma_seg.proximal.z ))()
        #
        # for seg in cell.morphology.segments:
        #     seg.proximal = pointMovedByOffset(seg.proximal, originOffset)
        #     seg.distal =   pointMovedByOffset(seg.distal, originOffset)

        # Replace ModelViewParmSubset_N groups with all, axon, soma, dendrite groups
        buildStandardSegmentGroups(cell)

        # Add channel placeholders
        nml_doc.includes.append(
            neuroml.IncludeType(href="channelIncludesPLACEHOLDER"))
        cell.biophysical_properties = neuroml.BiophysicalProperties(
            id="biophysPLACEHOLDER")

        # Save the new NML
        pynml.write_neuroml2_file(nml_doc, nml_cell_file)

        # Replace placeholders with contents from MitralCell...xml files
        replaceChannelPlaceholders(nml_cell_file)

        print("COMPLETED: " + nml_cell_file)

    print("DONE")
コード例 #18
0
from pyneuroml.neuron import export_to_neuroml2

import sys
import os

os.chdir("../NEURON/test")
sys.path.append(".")

export_to_neuroml2("load_model2.hoc",
                   "../../NeuroML2/L5_model2.cell.nml",
                   includeBiophysicalProperties=False,
                   known_rev_potentials={
                       "na": 60,
                       "k": -90,
                       "ca": 140
                   })
from pyneuroml.neuron import export_to_neuroml2
from pyneuroml.neuron.nrn_export_utils import clear_neuron

export_to_neuroml2("../NEURON/initFig9BCase2", "OLM_Fig9BCase2_morph.cell.nml", includeBiophysicalProperties=False)

'''
clear_neuron()
os.chdir('../NeuroML2')  

export_to_neuroml2("create_cell.hoc", "../NeuroML2/OLM_Fig9BCase2.cell.nml", includeBiophysicalProperties=True)
'''