def main(): """Set up and refine the recipe.""" # Make the data and the recipe cdsciffile = "data/CdS.cif" znsciffile = "data/ZnS.cif" data = "data/CdS_ZnS_nano.gr" # Make the recipe stru1 = CreateCrystalFromCIF(file(cdsciffile)) stru2 = CreateCrystalFromCIF(file(znsciffile)) recipe = makeRecipe(stru1, stru2, data) from diffpy.srfit.fitbase.fithook import PlotFitHook recipe.pushFitHook(PlotFitHook()) recipe.fithooks[0].verbose = 3 # Optimize - we do this in steps to help convergence recipe.fix("all") # Start with the lattice parameters. In makeRecipe, these were tagged with # "lat". Here is how we use that. recipe.free("lat") leastsq(recipe.residual, recipe.values, maxfev=50) # Now the scale and phase fraction. recipe.free("scale", "scale_CdS") leastsq(recipe.residual, recipe.values, maxfev=50) # The ADPs. recipe.free("adp") leastsq(recipe.residual, recipe.values, maxfev=100) # The delta2 parameters. recipe.free("delta2_cds", "delta2_zns") leastsq(recipe.residual, recipe.values, maxfev=50) # The shape parameters. recipe.free("radius", "thickness") leastsq(recipe.residual, recipe.values, maxfev=50) # The positional parameters. recipe.free("xyz") leastsq(recipe.residual, recipe.values) # Generate and print the FitResults res = FitResults(recipe) res.printResults() # Plot! plotResults(recipe) return
def loadStrufile(self, filename, stype='diffpy', periodic=None): ''' read and parse a structure file ''' self.filename = filename ext = os.path.splitext(filename)[1] if periodic != None: self.periodic = periodic else: # detect periodicity using file type if ext in ['.cif']: periodic = True else: periodic = False self.periodic = periodic # read the file if stype == 'diffpy': self.rawstru = loadStructure(filename) self.rawstype = stype self.parseDiffpyStru(self.rawstru) elif stype == 'objcryst': if ext == '.cif': self.rawstru = CreateCrystalFromCIF(file(filename)) self.rawstype = stype else: raise TypeError('Cannot read file!') else: raise TypeError('Cannot read file!') return
def loadCrystal(filename): """Load pyobjcryst Crystal object from a CIF file. filename -- CIF file to be loaded Return a new Crystal object. See pyobjcryst.crystal.CreateCrystalFromCIF for additional options for constructing Crystal object from CIF data. """ from pyobjcryst.crystal import CreateCrystalFromCIF with open(filename, 'rb') as fp: rv = CreateCrystalFromCIF(fp) return rv
def makeRecipe(ciffile, grdata): """Make a recipe to model a crystal-like nanoparticle PDF.""" # Set up a PDF fit as has been done in other examples. pdfprofile = Profile() pdfparser = PDFParser() pdfparser.parseFile(grdata) pdfprofile.loadParsedData(pdfparser) pdfprofile.setCalculationRange(xmin=0.1, xmax=20) pdfcontribution = FitContribution("pdf") pdfcontribution.setProfile(pdfprofile, xname="r") pdfgenerator = PDFGenerator("G") pdfgenerator.setQmax(30.0) stru = CreateCrystalFromCIF(file(ciffile)) pdfgenerator.setStructure(stru) pdfcontribution.addProfileGenerator(pdfgenerator) # Register the nanoparticle shape factor. from diffpy.srfit.pdf.characteristicfunctions import sphericalCF pdfcontribution.registerFunction(sphericalCF, name="f") # Now we set up the fitting equation. pdfcontribution.setEquation("f * G") # Now make the recipe. Make sure we fit the characteristic function shape # parameters, in this case 'psize', which is the diameter of the particle. recipe = FitRecipe() recipe.addContribution(pdfcontribution) phase = pdfgenerator.phase for par in phase.sgpars: recipe.addVar(par) recipe.addVar(pdfcontribution.psize, 20) recipe.addVar(pdfgenerator.scale, 1) recipe.addVar(pdfgenerator.delta2, 0) recipe.B11_0 = 0.1 return recipe
def expandSymmetry(crystal): """Expand a crystal to P1 symmetry. This requires diffpy.Structure to be installed. This uses file IO transfer data, so there is some inherent precision loss. This returns a new structure. """ # Create a string from a diffpy Structure, which is in P1 symmetry, and # load this as a Crystal. stru = crystalToDiffpyStructure(crystal) cifstr = stru.writeStr(format="cif") from cStringIO import StringIO buf = StringIO(cifstr) from pyobjcryst.crystal import CreateCrystalFromCIF p1 = CreateCrystalFromCIF(buf) return p1
def _testPutAtomsInMolecule(self): """Make sure this utility method is correct.""" from math import floor f = lambda v: v - floor(v) import glob from pyobjcryst.tests.pyobjcrysttestutils import datafile pat = os.path.join(datafile(''), '*.cif') for fname in glob.glob(pat): print fname c = CreateCrystalFromCIF(file(fname)) from diffpy.Structure import Structure s = Structure(filename=fname) # Get positions from unmodified structure pos1 = [] scl = c.GetScatteringComponentList() for s in scl: xyz = map(f, [s.X, s.Y, s.Z]) xyz = c.FractionalToOrthonormalCoords(*xyz) pos1.append(xyz) # Get positions from molecular structure putAtomsInMolecule(c) pos2 = [] scl = c.GetScatteringComponentList() for s in scl: xyz = map(f, [s.X, s.Y, s.Z]) xyz = c.FractionalToOrthonormalCoords(*xyz) pos2.append(xyz) # Now compare positions self.assertEqual(len(pos1), len(pos2)) for p1, p2 in zip(pos1, pos2): for i in range(3): self.assertAlmostEqual(p1[i], p2[i]) return
def makeRecipe(niciffile, siciffile, datname): """Create a fitting recipe for crystalline PDF data.""" # Load data and add it to the profile contribution = PDFContribution("nisi") contribution.loadData(datname) contribution.setCalculationRange(xmax=20) stru = CreateCrystalFromCIF(file(niciffile)) contribution.addStructure("ni", stru) stru = CreateCrystalFromCIF(file(siciffile)) contribution.addStructure("si", stru) # Make the FitRecipe and add the FitContribution. recipe = FitRecipe() recipe.addContribution(contribution) ## Configure the fit variables # Start by configuring the scale factor and resolution factors. # We want the sum of the phase scale factors to be 1. recipe.newVar("scale_ni", 0.1) recipe.constrain(contribution.ni.scale, "scale_ni") recipe.constrain(contribution.si.scale, "1 - scale_ni") # We also want the resolution factor to be the same on each. This is done # for free by the PDFContribution. We simply need to add it to the recipe. recipe.addVar(contribution.qdamp, 0.03) # Vary the gloabal scale as well. recipe.addVar(contribution.scale, 1) # Now we can configure the structural parameters. Since we're using # ObjCrystCrystalParSets, the space group constraints are automatically # applied to each phase. We must selectively vary the free parameters. # # First the nickel parameters. # Note that ni is the name of the PDFGenerator that was automatically # created by the PDFContribution. We selected this name in addStructure # above. phase_ni = contribution.ni.phase for par in phase_ni.sgpars: recipe.addVar(par, name=par.name + "_ni") recipe.addVar(contribution.ni.delta2, name="delta2_ni") # Next the silicon parameters phase_si = contribution.si.phase for par in phase_si.sgpars: recipe.addVar(par, name=par.name + "_si") recipe.addVar(contribution.si.delta2, name="delta2_si") # We have prior information from the earlier examples so we'll use it here # in the form of restraints. # # The nickel lattice parameter was measured to be 3.527. The uncertainty # values are invalid for that measurement, since the data from which it is # derived has no uncertainty. Thus, we will tell the recipe to scale the # residual, which means that it will be weighted as much as the average # data point during the fit. recipe.restrain("a_ni", lb=3.527, ub=3.527, scaled=True) # Now we do the same with the delta2 and Biso parameters (remember that # Biso = 8*pi**2*Uiso) recipe.restrain("delta2_ni", lb=2.22, ub=2.22, scaled=True) recipe.restrain("Biso_0_ni", lb=0.454, ub=0.454, scaled=True) # # We can do the same with the silicon values. We haven't done a thorough # job of measuring the uncertainties in the results, so we'll scale these # as well. recipe.restrain("a_si", lb=5.430, ub=5.430, scaled=True) recipe.restrain("delta2_si", lb=3.54, ub=3.54, scaled=True) recipe.restrain("Biso_0_si", lb=0.645, ub=0.645, scaled=True) # Give the recipe away so it can be used! return recipe
def makeRecipe(ciffile, datname): """Create a fitting recipe for crystalline PDF data.""" ## The Profile # This will be used to store the observed and calculated PDF profile. profile = Profile() # Load data and add it to the Profile. As before we use a PDFParser. The # metadata is still passed to the PDFGenerator later on. The interaction # between the PDFGenerator and the metadata does not depend on type of # structure being refined. parser = PDFParser() parser.parseFile(datname) profile.loadParsedData(parser) profile.setCalculationRange(xmax=20) ## The ProfileGenerator # This time we use the CreateCrystalFromCIF method of pyobjcryst.crystal to # create a Crystal object. That object is passed to the PDFGenerator as in # the previous example. generator = PDFGenerator("G") stru = CreateCrystalFromCIF(file(ciffile)) generator.setStructure(stru) generator.setQmax(40.0) ## The FitContribution contribution = FitContribution("nickel") contribution.addProfileGenerator(generator) contribution.setProfile(profile, xname="r") # Make the FitRecipe and add the FitContribution. recipe = FitRecipe() recipe.addContribution(contribution) ## Configure the fit variables # As before, we get a handle to the structure parameter set. In this case, # it is a ObjCrystCrystalParSet instance that was created when we called # 'setStructure' above. The ObjCrystCrystalParSet has different Parameters # and options than the DiffpyStructureParSet used in the last example. See # its documentation in diffpy.srfit.structure.objcrystparset. phase = generator.phase # Here is where we created space group constraints in the previous example. # The difference in this example is that the ObjCrystCrystalParSet is aware # of space groups, and the DiffpyStructureParSet is not. Constraints are # created internally when "sgpars" attribute is called for. These # constraints get enforced within the ObjCrystCrystalParSet. Free # Parameters are stored within the 'sgpars' member of the # ObjCrystCrystalParSet, which is the same as the object returned from # 'constrainAsSpaceGroup'. # # As before, we have one free lattice parameter ('a'). We can simplify # things by iterating through all the sgpars. for par in phase.sgpars: recipe.addVar(par) # set the initial thermal factor to a non-zero value assert hasattr(recipe, 'B11_0') recipe.B11_0 = 0.1 # We now select non-structural parameters to refine. # This controls the scaling of the PDF. recipe.addVar(generator.scale, 1) # This is a peak-damping resolution term. recipe.addVar(generator.qdamp, 0.01) # This is a vibrational correlation term that sharpens peaks at low-r. recipe.addVar(generator.delta2, 5) # Give the recipe away so it can be used! return recipe
def get_pyobjcryst_sphalerite(): from pyobjcryst.crystal import CreateCrystalFromCIF crst = CreateCrystalFromCIF(open('datafiles/sphalerite.cif')) return crst
def loadObjCrystCrystal(filename): from pyobjcryst.crystal import CreateCrystalFromCIF fullpath = datafile(filename) crst = CreateCrystalFromCIF(open(fullpath)) return crst
def makeRecipe(ciffile, xdatname, ndatname): """Create a fitting recipe for crystalline PDF data.""" ## The Profiles # We need a profile for each data set. This means that we will need two # FitContributions as well. xprofile = Profile() nprofile = Profile() # Load data and add it to the proper Profile. parser = PDFParser() parser.parseFile(xdatname) xprofile.loadParsedData(parser) xprofile.setCalculationRange(xmax = 20) parser = PDFParser() parser.parseFile(ndatname) nprofile.loadParsedData(parser) nprofile.setCalculationRange(xmax = 20) ## The ProfileGenerators # We need one of these for the x-ray data. xgenerator = PDFGenerator("G") stru = CreateCrystalFromCIF(file(ciffile)) xgenerator.setStructure(stru) # And we need one for the neutron data. We want to refine the same # structure object in each PDFGenerator. This would suggest that we add the # same Crystal to each. However, if we do that then we will have two # Parameters for each Crystal data member (two Parameters for the "a" # lattice parameter, etc.), held in different ObjCrystCrystalParSets, each # managed by its own PDFGenerator. Thus, changes made to the Crystal # through one PDFGenerator will not be known to the other PDFGenerator # since their ObjCrystCrystalParSets don't know about each other. The # solution is to share ObjCrystCrystalParSets rather than Crystals. This # way there is only one Parameter for each Crystal data member. (An # alternative to this is to constrain each structure Parameter to be varied # to the same variable. The present approach is easier and less error # prone.) # # Tell the neutron PDFGenerator to use the phase from the x-ray # PDFGenerator. ngenerator = PDFGenerator("G") ngenerator.setPhase(xgenerator.phase) ## The FitContributions # We associate the x-ray PDFGenerator and Profile in one FitContribution... xcontribution = FitContribution("xnickel") xcontribution.addProfileGenerator(xgenerator) xcontribution.setProfile(xprofile, xname = "r") # and the neutron objects in another. ncontribution = FitContribution("nnickel") ncontribution.addProfileGenerator(ngenerator) ncontribution.setProfile(nprofile, xname = "r") # This example is different than the previous ones in that we are composing # a residual function from other residuals (one for the x-ray contribution # and one for the neutron contribution). The relative magnitude of these # residuals effectively determines the influence of each contribution over # the fit. This is a problem in this case because the x-ray data has # uncertainty values associated with it (on the order of 1e-4), and the # chi^2 residual is proportional to 1 / uncertainty**2. The neutron has no # uncertainty, so it's chi^2 is proportional to 1. Thus, my optimizing # chi^2 we would give the neutron data practically no weight in the fit. To # get around this, we will optimize a different metric. # # The contribution's residual can be either chi^2, Rw^2, or custom crafted. # In this case, we should minimize Rw^2 of each contribution so that each # one can contribute roughly equally to the fit. xcontribution.setResidualEquation("resv") ncontribution.setResidualEquation("resv") # Make the FitRecipe and add the FitContributions. recipe = FitRecipe() recipe.addContribution(xcontribution) recipe.addContribution(ncontribution) # Now we vary and constrain Parameters as before. recipe.addVar(xgenerator.scale, 1, "xscale") recipe.addVar(ngenerator.scale, 1, "nscale") recipe.addVar(xgenerator.qdamp, 0.01, "xqdamp") recipe.addVar(ngenerator.qdamp, 0.01, "nqdamp") # delta2 is a non-structual material propery. Thus, we constrain together # delta2 Parameter from each PDFGenerator. delta2 = recipe.newVar("delta2", 2) recipe.constrain(xgenerator.delta2, delta2) recipe.constrain(ngenerator.delta2, delta2) # We only need to constrain phase properties once since there is a single # ObjCrystCrystalParSet for the Crystal. phase = xgenerator.phase for par in phase.sgpars: recipe.addVar(par) recipe.B11_0 = 0.1 # Give the recipe away so it can be used! return recipe
def makeRecipe(niciffile, siciffile, datname): """Create a fitting recipe for crystalline PDF data.""" ## The Profile profile = Profile() # Load data and add it to the profile parser = PDFParser() parser.parseFile(datname) profile.loadParsedData(parser) profile.setCalculationRange(xmax=20) ## The ProfileGenerator # In order to fit two phases simultaneously, we must use two PDFGenerators. # PDFGenerator is designed to take care of as little information as it # must. (Don't do too much, and do it well.) A PDFGenerator can generate # the signal from only a single phase at a time. So, we will create one # PDFGenerator for each phase and compose them within the same # FitContribution. Note that both generators will be associated with the # same Profile within the FitContribution, so they will both be # automatically configured according to the metadata. # # The generator for the nickel phase. We call it "G_ni" and will use this # name later when we set the fitting equation in the FitContribution. generator_ni = PDFGenerator("G_ni") stru = CreateCrystalFromCIF(file(niciffile)) generator_ni.setStructure(stru) # The generator for the silicon phase. We call it "G_si". generator_si = PDFGenerator("G_si") stru = CreateCrystalFromCIF(file(siciffile)) generator_si.setStructure(stru) ## The FitContribution # Add both generators to the FitContribution. Add the Profile. This will # send the metadata to the generators. contribution = FitContribution("nisi") contribution.addProfileGenerator(generator_ni) contribution.addProfileGenerator(generator_si) contribution.setProfile(profile, xname="r") # Write the fitting equation. We want to sum the PDFs from each phase and # multiply it by a scaling factor. We also want a certain phase scaling # relationship between the PDFs which we will enforce with constraints in # the FitRecipe. contribution.setEquation("scale * (G_ni + G_si)") # Make the FitRecipe and add the FitContribution. recipe = FitRecipe() recipe.addContribution(contribution) ## Configure the fit variables # Start by configuring the scale factor and resolution factors. # We want the sum of the phase scale factors to be 1. recipe.newVar("scale_ni", 0.1) recipe.constrain(generator_ni.scale, "scale_ni") recipe.constrain(generator_si.scale, "1 - scale_ni") # We also want the resolution factor to be the same on each. recipe.newVar("qdamp", 0.03) recipe.constrain(generator_ni.qdamp, "qdamp") recipe.constrain(generator_si.qdamp, "qdamp") # Vary the gloabal scale as well. recipe.addVar(contribution.scale, 1) # Now we can configure the structural parameters. Since we're using # ObjCrystCrystalParSets, the space group constraints are automatically # applied to each phase. We must selectively vary the free parameters. # # First the nickel parameters phase_ni = generator_ni.phase for par in phase_ni.sgpars: recipe.addVar(par, name=par.name + "_ni") recipe.addVar(generator_ni.delta2, name="delta2_ni") # Next the silicon parameters phase_si = generator_si.phase for par in phase_si.sgpars: recipe.addVar(par, name=par.name + "_si") recipe.addVar(generator_si.delta2, name="delta2_si") # We have prior information from the earlier examples so we'll use it here # in the form of restraints. # # The nickel lattice parameter was measured to be 3.527. The uncertainty # values are invalid for that measurement, since the data from which it is # derived has no uncertainty. Thus, we will tell the recipe to scale the # residual, which means that it will be weighted as much as the average # data point during the fit. recipe.restrain("a_ni", lb=3.527, ub=3.527, scaled=True) # Now we do the same with the delta2 and Biso parameters (remember that # Biso = 8*pi**2*Uiso) recipe.restrain("delta2_ni", lb=2.22, ub=2.22, scaled=True) recipe.restrain("Biso_0_ni", lb=0.454, ub=0.454, scaled=True) # # We can do the same with the silicon values. We haven't done a thorough # job of measuring the uncertainties in the results, so we'll scale these # as well. recipe.restrain("a_si", lb=5.430, ub=5.430, scaled=True) recipe.restrain("delta2_si", lb=3.54, ub=3.54, scaled=True) recipe.restrain("Biso_0_si", lb=0.645, ub=0.645, scaled=True) # Give the recipe away so it can be used! return recipe
Uisodefault = 0.005 # configure options parsing parser = optparse.OptionParser("%prog [options]\n" + __doc__) parser.add_option("--pyobjcryst", action="store_true", help="Use pyobjcryst to load the CIF file.") parser.allow_interspersed_args = True opts, args = parser.parse_args(sys.argv[1:]) # load menthol structure and make sure Uiso values are non-zero if opts.pyobjcryst: # use pyobjcryst if requested by the user from pyobjcryst.crystal import CreateCrystalFromCIF from numpy import pi menthol = CreateCrystalFromCIF(open(mentholcif)) for sc in menthol.GetScatteringComponentList(): sp = sc.mpScattPow sp.Biso = sp.Biso or 8 * pi**2 * Uisodefault else: # or use diffpy.Structure by default menthol = Structure(filename=mentholcif) for a in menthol: a.Uisoequiv = a.Uisoequiv or Uisodefault # configuration of a PDF calculator cfg = { 'qmax': 25, 'rmin': 0, 'rmax': 30, }
def makeRecipe(ciffile, grdata, iqdata): """Make complex-modeling recipe where I(q) and G(r) are fit simultaneously. The fit I(q) is fed into the calculation of G(r), which provides feedback for the fit parameters of both. """ # Create a PDF contribution as before pdfprofile = Profile() pdfparser = PDFParser() pdfparser.parseFile(grdata) pdfprofile.loadParsedData(pdfparser) pdfprofile.setCalculationRange(xmin = 0.1, xmax = 20) pdfcontribution = FitContribution("pdf") pdfcontribution.setProfile(pdfprofile, xname = "r") pdfgenerator = PDFGenerator("G") pdfgenerator.setQmax(30.0) stru = CreateCrystalFromCIF(file(ciffile)) pdfgenerator.setStructure(stru) pdfcontribution.addProfileGenerator(pdfgenerator) pdfcontribution.setResidualEquation("resv") # Create a SAS contribution as well. We assume the nanoparticle is roughly # elliptical. sasprofile = Profile() sasparser = SASParser() sasparser.parseFile(iqdata) sasprofile.loadParsedData(sasparser) sascontribution = FitContribution("sas") sascontribution.setProfile(sasprofile) from sas.models.EllipsoidModel import EllipsoidModel model = EllipsoidModel() sasgenerator = SASGenerator("generator", model) sascontribution.addProfileGenerator(sasgenerator) sascontribution.setResidualEquation("resv") # Now we set up a characteristic function calculator that depends on the # sas model. cfcalculator = SASCF("f", model) # Register the calculator with the pdf contribution and define the fitting # equation. pdfcontribution.registerCalculator(cfcalculator) # The PDF for a nanoscale crystalline is approximated by # Gnano = f * Gcryst pdfcontribution.setEquation("f * G") # Moving on recipe = FitRecipe() recipe.addContribution(pdfcontribution) recipe.addContribution(sascontribution) # PDF phase = pdfgenerator.phase for par in phase.sgpars: recipe.addVar(par) recipe.addVar(pdfgenerator.scale, 1) recipe.addVar(pdfgenerator.delta2, 0) # SAS recipe.addVar(sasgenerator.scale, 1, name = "iqscale") recipe.addVar(sasgenerator.radius_a, 10) recipe.addVar(sasgenerator.radius_b, 10) # Even though the cfcalculator and sasgenerator depend on the same sas # model, we must still constrain the cfcalculator Parameters so that it is # informed of changes in the refined parameters. recipe.constrain(cfcalculator.radius_a, "radius_a") recipe.constrain(cfcalculator.radius_b, "radius_b") return recipe
class StructureExt(object): _params = None _extparams = None def __init__(self, name='stru', filename=None, loadstype=None, periodic=None, optimizied=False, **kwargs): self.name = name self.rawstru = None self.rawstype = None self.stru = None self.periodic = periodic self.optimized = optimizied self.n = None self.element = None self.occ = None self.xyz = None self.xyz_c = None self.uij_c = None self._uiso = None self.anisotropy = None self.lat = None self._params = {} self._extparams = {} for k, v in kwargs.iteritems(): setattr(self, k, v) if filename != None: self.loadStrufile(filename, loadstype, periodic) return def _getUiso(self): if self._uiso != None: rv = self._uiso else: rv = np.sum(self.uij_c, axis=(1, 2)) / 3 return rv def _setUiso(self, value): self.anisotropy = np.ones(self.n, dtype=bool) self.uij_c = value.reshape(value.shape[0], 1, 1) * np.identity(3).reshape(1, 3, 3) self._uiso = value return uiso = property(_getUiso, _setUiso, "Uiso") def convertStru(self, stype='diffpy', mode='xyz', periodic=None): ''' convert stru to stype ''' if stype == 'diffpy': if self.rawstype == 'diffpy': rv = self.addProp(self.rawstru) else: rv = self.convertDiffpyStru(mode) elif stype == 'periodic': rv = self.convertPeriodicStru(mode) elif stype == 'objcryst': if self.rawstype == 'objcryst': rv = self.addProp(self.rawstru) else: rv = self.convertObjcrystStru(mode) elif stype == 'struext': rv = self else: raise TypeError('stype error') return rv def loadStrufile(self, filename, stype='diffpy', periodic=None): ''' read and parse a structure file ''' self.filename = filename ext = os.path.splitext(filename)[1] if periodic != None: self.periodic = periodic else: # detect periodicity using file type if ext in ['.cif']: periodic = True else: periodic = False self.periodic = periodic # read the file if stype == 'diffpy': self.rawstru = loadStructure(filename) self.rawstype = stype self.parseDiffpyStru(self.rawstru) elif stype == 'objcryst': if ext == '.cif': self.rawstru = CreateCrystalFromCIF(file(filename)) self.rawstype = stype else: raise TypeError('Cannot read file!') else: raise TypeError('Cannot read file!') return def exportStru(self, filename, format='cif', stype='diffpy'): ''' Save structure to file in the specified format :param filename: str, name of the file :param stype: str, the type of stru file to export :return: None Note: available structure formats can be obtained by: from Parsers import formats ''' from diffpy.Structure.Parsers import getParser p = getParser(format) p.filename = filename stru = self.convertStru(stype) s = p.tostring(stru) f = open(filename, 'wb') f.write(s) f.close() return ### Tools ### def addProp(self, stru): ''' add properties to the stru ''' for par in ['name', '_params', '_extparams', 'periodic', 'optimized']: setattr(stru, par, getattr(self, par)) stru.title = self.name stru.parent = self return stru ########################################################### # parse functions ########################################################### def parseDiffpyStru(self, stru=None): ''' parse stru and store the information to self.xxx ''' stru = self.rawstru if stru == None else stru n = len(stru) ulist = np.concatenate([0.001 * np.eye(3, 3) if (np.sum(u) == 0) else u for u in stru.U]).reshape(n, 3, 3) stru.U = ulist self.element = stru.element self.occ = stru.occupancy self.xyz = stru.xyz self.xyz_c = stru.xyz_cartn self.uij_c = stru.U self.anisotropy = stru.anisotropy self.n = len(self.anisotropy) self.lat = stru.lattice.abcABG() return def parseObjcrystStru(self, stru=None): ''' parse stru and store the information to self.xxx FIXME: not complete ''' # raise TypeError('parse a objcryst object is not reliable') stru = self.rawstru if stru == None else stru n = stru.GetNbScatterer() self.n = n lat = stru.GetLatticePar() self.lat = [lat[0], lat[1], lat[2], np.degrees(lat[3]), np.degrees(lat[4]), np.degrees(lat[5])] self.element = [] self.occ = [] self.xyz = [] self.uij_c = [] self.anisotropy = [] for i in range(n): atom = stru.GetScatterer(i) st = atom.GetScatteringPower() self.element.append(st.GetSymbol()) self.occ.append(atom.Occupancy) self.xyz.append([atom.X, atom.Y, atom.Z]) bij_c = np.array([[st.B11, st.B12, st.B13], [st.B12, st.B22, st.B12], [st.B13, st.B12, st.B33]]) biso = st.Biso if bij_c.sum() < 1.0e-10: self.anisotropy.append(False) self.uij_c.append(biso / np.pi ** 2 / 8 * np.identity(3)) else: self.anisotropy.append(True) self.uij_c.append(bij_c / np.pi ** 2 / 8) self.xyz = np.array(self.xyz) self.occ = np.array(self.occ) self.uij_c = np.array(self.uij_c) sstru = self.convertDiffpyStru('xyz') self.parseDiffpyStru(sstru) return ########################################################### # convert functions ########################################################### def convertPeriodicStru(self, mode='xyz'): ''' conver the self.xxx to PeriodicStructureAdapter :param mode: 'xyz' or 'xyz_c', 'xyz': pass fractional xyz and covert to Cartesian xyz 'xyz_c': pass Cartesian xyz directly ''' rv = PeriodicStructureAdapter() if mode == 'xyz': rv.setLatPar(*self.lat) del rv[:] rv.reserve(self.n) aa = AdapterAtom() for ele, occ, aniso in itertools.izip(self.element, self.occ, self.anisotropy): aa.atomtype = ele aa.occupancy = occ aa.anisotropy = bool(aniso) rv.append(aa) if mode == 'xyz': for a, xyz, uij_c in itertools.izip(rv, self.xyz, self.uij_c): a.xyz_cartn = xyz a.uij_cartn = uij_c rv.toCartesian(a) elif mode == 'xyz_c': for a, xyz_c, uij_c in itertools.izip(rv, self.xyz_c, self.uij_c): a.xyz_cartn = xyz_c a.uij_cartn = uij_c # if np.allclose(np.array(self.lat), np.array([1.0, 1.0, 1.0, 90.0, 90.0, 90.0])): # rv = nosymmetry(rv) return self.addProp(rv) def convertDiffpyStru(self, mode='xyz'): ''' convert self.xxx to diffpy :param mode: 'xyz' or 'xyz_c', 'xyz': pass fractional xyz 'xyz_c': pass Cartesian xyz directly ''' rv = Structure() if mode == 'xyz': rv.lattice.setLatPar(*self.lat) aa = Atom() for i in range(self.n): rv.append(aa, copy=True) rv.element = self.element rv.occupancy = self.occ rv.anisotropy = self.anisotropy rv.U = self.uij_c if mode == 'xyz': rv.xyz = self.xyz elif mode == 'xyz_c': rv.xyz_cartn = self.xyz_c rv.title = self.name return self.addProp(rv) def convertObjcrystStru(self, mode='xyz_c'): ''' convert self.xxx to objcryst object only applied to non-periodic structure ''' if self.periodic: # raise TypeError('Cannot convert to periodic structure') if self.rawstype == 'diffpy': cif = self.rawstru.write('temp.cif', 'cif') objcryst = CreateCrystalFromCIF(file('temp.cif')) rv = objcryst os.remove('temp.cif') else: c = Crystal(1, 1, 1, "P1") c.SetName(self.name) m = Molecule(c, self.name) c.AddScatterer(m) for i in range(self.n): ele = self.element[i] sp = ScatteringPowerAtom(self.element[i], ele) if self.anisotropy[i]: uij = self.uij_c[i] sp.B11 = uij[0, 0] sp.B22 = uij[1, 1] sp.B33 = uij[2, 2] sp.B12 = uij[0, 1] sp.B13 = uij[0, 2] sp.B23 = uij[1, 2] else: biso = np.sum(self.uij_c[i].diagonal()) / 3 * (8 * np.pi ** 2) sp.SetBiso(biso) if mode == 'xyz': x, y, z = map(float, self.xyz[i]) else: x, y, z = map(float, self.xyz_c[i]) a = m.AddAtom(x, y, z, sp, "%s%i" % (ele, i + 1)) a.Occupancy = self.occ[i] rv = m return self.addProp(rv) def superCell(self, mno, stru=None, replace=False): from diffpy.Structure.expansion import supercell if stru == None: stru = self.convertDiffpyStru('xyz') newstru = supercell(stru, mno) if replace: self.rawstru = newstru self.rawstype = 'diffpy' self.parseDiffpyStru(newstru) return self.addProp(newstru)
def makeRecipe(ciffile_ni, ciffile_si, xdata_ni, ndata_ni, xdata_si, xdata_sini): """Create a fitting recipe for crystalline PDF data.""" ## The Profiles # We need a profile for each data set. xprofile_ni = makeProfile(xdata_ni) xprofile_si = makeProfile(xdata_si) nprofile_ni = makeProfile(ndata_ni) xprofile_sini = makeProfile(xdata_sini) ## The ProfileGenerators # We create one for each phase and share the phases. xgenerator_ni = PDFGenerator("xG_ni") stru = CreateCrystalFromCIF(file(ciffile_ni)) xgenerator_ni.setStructure(stru) phase_ni = xgenerator_ni.phase xgenerator_si = PDFGenerator("xG_si") stru = CreateCrystalFromCIF(file(ciffile_si)) xgenerator_si.setStructure(stru) phase_si = xgenerator_si.phase ngenerator_ni = PDFGenerator("nG_ni") ngenerator_ni.setPhase(phase_ni) xgenerator_sini_ni = PDFGenerator("xG_sini_ni") xgenerator_sini_ni.setPhase(phase_ni) xgenerator_sini_si = PDFGenerator("xG_sini_si") xgenerator_sini_si.setPhase(phase_si) ## The FitContributions # We one of these for each data set. xcontribution_ni = makeContribution("xnickel", xgenerator_ni, xprofile_ni) xcontribution_si = makeContribution("xsilicon", xgenerator_si, xprofile_si) ncontribution_ni = makeContribution("nnickel", ngenerator_ni, nprofile_ni) xcontribution_sini = makeContribution("xsini", xgenerator_sini_ni, xprofile_sini) xcontribution_sini.addProfileGenerator(xgenerator_sini_si) xcontribution_sini.setEquation("scale * (xG_sini_ni + xG_sini_si)") # As explained in another example, we want to minimize using Rw^2. xcontribution_ni.setResidualEquation("resv") xcontribution_si.setResidualEquation("resv") ncontribution_ni.setResidualEquation("resv") xcontribution_sini.setResidualEquation("resv") # Make the FitRecipe and add the FitContributions. recipe = FitRecipe() recipe.addContribution(xcontribution_ni) recipe.addContribution(xcontribution_si) recipe.addContribution(ncontribution_ni) recipe.addContribution(xcontribution_sini) # Now we vary and constrain Parameters as before. for par in phase_ni.sgpars: recipe.addVar(par, name=par.name + "_ni") delta2_ni = recipe.newVar("delta2_ni", 2.5) recipe.constrain(xgenerator_ni.delta2, delta2_ni) recipe.constrain(ngenerator_ni.delta2, delta2_ni) recipe.constrain(xgenerator_sini_ni.delta2, delta2_ni) for par in phase_si.sgpars: recipe.addVar(par, name=par.name + "_si") delta2_si = recipe.newVar("delta2_si", 2.5) recipe.constrain(xgenerator_si.delta2, delta2_si) recipe.constrain(xgenerator_sini_si.delta2, delta2_si) # Now the experimental parameters recipe.addVar(xgenerator_ni.scale, name="xscale_ni") recipe.addVar(xgenerator_si.scale, name="xscale_si") recipe.addVar(ngenerator_ni.scale, name="nscale_ni") recipe.addVar(xcontribution_sini.scale, 1.0, "xscale_sini") recipe.newVar("pscale_sini_ni", 0.8) recipe.constrain(xgenerator_sini_ni.scale, "pscale_sini_ni") recipe.constrain(xgenerator_sini_si.scale, "1 - pscale_sini_ni") # The qdamp parameters are too correlated to vary so we fix them based on # previous measurments. xgenerator_ni.qdamp.value = 0.055 xgenerator_si.qdamp.value = 0.051 ngenerator_ni.qdamp.value = 0.030 xgenerator_sini_ni.qdamp.value = 0.052 xgenerator_sini_si.qdamp.value = 0.052 # Give the recipe away so it can be used! return recipe