コード例 #1
0
def test_rt_transpose():
    rt = Rototrans.from_random_data()
    rt_t = Rototrans.from_transposed_rototrans(rt)

    rt_t_expected = np.zeros((4, 4, rt.time.size))
    rt_t_expected[3, 3, :] = 1
    for row in range(rt.row.size):
        for col in range(rt.col.size):
            for frame in range(rt.time.size):
                rt_t_expected[col, row, frame] = rt[row, col, frame]

    for frame in range(rt.time.size):
        rt_t_expected[:3, 3, frame] = -rt_t_expected[:3, :3, frame].dot(
            rt[:3, 3, frame])

    np.testing.assert_array_almost_equal(rt_t, rt_t_expected, decimal=10)
コード例 #2
0
def test_average_rt():
    # TODO: investigate why this does not work
    # angles = Angles.from_random_data(size=(3, 1, 100))
    # or
    # angles = Angles(np.arange(300).reshape((3, 1, 100)))
    angles = Angles(np.random.rand(3, 1, 100))
    seq = "xyz"

    rt = Rototrans.from_euler_angles(angles, seq)
    rt_mean = Rototrans.from_averaged_rototrans(rt)
    angles_mean = Angles.from_rototrans(rt_mean, seq).isel(time=0)

    angles_mean_ref = Angles.from_rototrans(rt, seq).mean(dim="time")

    np.testing.assert_array_almost_equal(angles_mean,
                                         angles_mean_ref,
                                         decimal=2)
コード例 #3
0
def test_rototrans_creation():
    dims = ("row", "col", "time")
    array = Rototrans()
    np.testing.assert_array_equal(x=array,
                                  y=xr.DataArray(np.eye(4)[..., np.newaxis]))
    assert array.dims == dims

    array = Rototrans(MARKERS_DATA.values, time=MARKERS_DATA.time)
    is_expected_array(array, **EXPECTED_VALUES[67])

    size = 4, 4, 100
    array = Rototrans.from_random_data(size=size)
    assert array.shape == size
    assert array.dims == dims

    with pytest.raises(ValueError):
        Angles(ANALOGS_DATA)
コード例 #4
0
def test_average_rt():
    seq = "xyz"
    angles_size = (3, 1, 100)
    ref_angles_from_rt_mean = [0.25265133, 0.57436872, 0.79133042]

    restart_seed()
    angles = Angles.from_random_data(size=angles_size)
    # min-max normalization to keep the angles low
    angles = angles.pipe(lambda x: (x - x.min()) / (x.max() - x.min()))

    rt = Rototrans.from_euler_angles(angles, seq)
    rt_mean = Rototrans.from_averaged_rototrans(rt)
    angles_from_rt_mean = Angles.from_rototrans(rt_mean, seq)

    np.testing.assert_almost_equal(angles_from_rt_mean.data.ravel(),
                                   ref_angles_from_rt_mean,
                                   decimal=4)
コード例 #5
0
def test_rt_transpose():
    n_frames = 10
    angles = Angles.from_random_data(size=(3, 1, n_frames))
    rt = Rototrans.from_euler_angles(angles, angle_sequence="xyz")

    rt_t = Rototrans.from_transposed_rototrans(rt)

    rt_t_expected = np.zeros((4, 4, n_frames))
    rt_t_expected[3, 3, :] = 1
    for row in range(rt.row.size):
        for col in range(rt.col.size):
            for frame in range(rt.time.size):
                rt_t_expected[col, row, frame] = rt[row, col, frame]

    for frame in range(rt.time.size):
        rt_t_expected[:3, 3, frame] = -rt_t_expected[:3, :3, frame].dot(
            rt[:3, 3, frame])

    np.testing.assert_array_almost_equal(rt_t, rt_t_expected, decimal=10)
コード例 #6
0
def test_euler2rot_rot2euleur(seq, angles=ANGLES, epsilon=EPSILON):
    if seq == "zyzz":
        angles_to_test = angles[:3, ...]
    else:
        angles_to_test = angles[:len(seq), ...]
    r = Rototrans.from_euler_angles(angles=angles_to_test, angle_sequence=seq)
    a = Angles.from_rototrans(rt=r, angle_sequence=seq)

    np.testing.assert_array_less((a - angles_to_test).meca.abs().sum(),
                                 epsilon)
コード例 #7
0
def test_rototrans_creation():
    dims = ("row", "col", "time")
    array = Rototrans()
    np.testing.assert_array_equal(x=array,
                                  y=xr.DataArray(np.eye(4)[..., np.newaxis]))
    assert array.dims == dims

    data = Markers(MARKERS_DATA.values)
    array = Rototrans.from_markers(
        origin=data.isel(channel=[0]),
        axis_1=data.isel(channel=[0, 1]),
        axis_2=data.isel(channel=[0, 2]),
        axes_name="xy",
        axis_to_recalculate="y",
    )
    is_expected_array(array, **EXPECTED_VALUES[67])

    size = 4, 4, 100
    array = Rototrans.from_random_data(size=size)
    assert array.shape == size
    assert array.dims == dims

    with pytest.raises(ValueError):
        Angles(ANALOGS_DATA)
コード例 #8
0
def test_rotate():
    n_frames = 100
    n_markers = 10

    angles = Angles.from_random_data(size=(3, 1, n_frames))
    rt = Rototrans.from_euler_angles(angles, "xyz")
    markers = Markers.from_random_data(size=(3, n_markers, n_frames))

    rotated_markers = Markers.from_rototrans(markers, rt)

    expected_rotated_marker = np.ndarray((4, n_markers, n_frames))
    for marker in range(n_markers):
        for frame in range(n_frames):
            expected_rotated_marker[:, marker, frame] = np.dot(
                rt.isel(time=frame),
                markers.isel(channel=marker, time=frame),
            )

    np.testing.assert_array_almost_equal(rotated_markers,
                                         expected_rotated_marker,
                                         decimal=10)

    rotated_markers = Markers.from_rototrans(markers.isel(time=0),
                                             rt.isel(time=0))
    expected_rotated_marker = np.ndarray(rotated_markers.shape)
    for marker in range(n_markers):
        expected_rotated_marker[:, marker] = np.dot(
            rt.isel(time=0), markers.isel(channel=marker, time=0))

    np.testing.assert_array_almost_equal(rotated_markers,
                                         expected_rotated_marker,
                                         decimal=10)

    rotated_markers = Markers.from_rototrans(markers, rt.isel(time=0))
    expected_rotated_marker = np.ndarray(rotated_markers.shape)
    for marker in range(n_markers):
        expected_rotated_marker[:,
                                marker] = np.dot(rt.isel(time=0),
                                                 markers.isel(channel=marker))

    np.testing.assert_array_almost_equal(rotated_markers,
                                         expected_rotated_marker,
                                         decimal=10)

    with pytest.raises(ValueError):
        Markers.from_rototrans(markers.isel(time=0), rt)
コード例 #9
0
w = vertcat(transX, transY, transZ, angleX, angleY, angleZ)
prob = {'f': J, 'x': w}
options = {
    'ipopt.hessian_approximation': "exact",
    # 'ipopt.tol':1e-10,'ipopt.dual_inf_tol':1e-15
}
solver = nlpsol('solver', 'ipopt', prob, options)
w0 = np.zeros((6, 1))
# w0[0]= marker_model[0,0,0] - marker_treat[0,0,0]
# w0[1]= marker_model[1,0,0] - marker_treat[1,0,0]
# w0[2]= marker_model[2,0,0] - marker_treat[2,0,0]

solve = solver(x0=w0, lbx=-1000, ubx=10000)
w_opt = solve['x']
print(w_opt)
rt = Rototrans((RT(w_opt[0], w_opt[1], w_opt[2], w_opt[3], w_opt[4],
                   w_opt[5])))
# rt = Rototrans((RT(0.841114, 0.103637, -0.596597, -0.458244, 0.145129, 3.21253)))
marker_rotate = Markers.from_rototrans(marker_treat, rt)
# Data for three-dimensional scattered points
ax = plt.axes(projection='3d')
zdata = marker_rotate[2, :, 0]
xdata = marker_rotate[0, :, 0]
ydata = marker_rotate[1, :, 0]
ax.scatter3D(xdata, ydata, zdata, cmap='Greens')
zdata = marker_model[2, :, 0]
xdata = marker_model[0, :, 0]
ydata = marker_model[1, :, 0]
ax.scatter3D(xdata, ydata, zdata, edgecolors="red")
ax.view_init(60, 35)
plt.show()
コード例 #10
0
def test_rt_from_markers():
    all_m = Markers.from_random_data()

    rt_xy = Rototrans.from_markers(
        origin=all_m.isel(channel=[0]),
        axis_1=all_m.isel(channel=[0, 1]),
        axis_2=all_m.isel(channel=[0, 2]),
        axes_name="xy",
        axis_to_recalculate="y",
    )

    rt_yx = Rototrans.from_markers(
        origin=all_m.isel(channel=[0]),
        axis_1=all_m.isel(channel=[0, 2]),
        axis_2=all_m.isel(channel=[0, 1]),
        axes_name="yx",
        axis_to_recalculate="y",
    )

    rt_xy_x_recalc = Rototrans.from_markers(
        origin=all_m.isel(channel=[0]),
        axis_1=all_m.isel(channel=[0, 1]),
        axis_2=all_m.isel(channel=[0, 2]),
        axes_name="yx",
        axis_to_recalculate="x",
    )
    rt_xy_x_recalc = rt_xy_x_recalc.isel(col=[1, 0, 2, 3])
    rt_xy_x_recalc[:, 2, :] = -rt_xy_x_recalc[:, 2, :]

    rt_yz = Rototrans.from_markers(
        origin=all_m.isel(channel=[0]),
        axis_1=all_m.isel(channel=[0, 1]),
        axis_2=all_m.isel(channel=[0, 2]),
        axes_name="yz",
        axis_to_recalculate="z",
    )

    rt_zy = Rototrans.from_markers(
        origin=all_m.isel(channel=[0]),
        axis_1=all_m.isel(channel=[0, 2]),
        axis_2=all_m.isel(channel=[0, 1]),
        axes_name="zy",
        axis_to_recalculate="z",
    )
    rt_xy_from_yz = rt_yz.isel(col=[1, 2, 0, 3])

    rt_xz = Rototrans.from_markers(
        origin=all_m.isel(channel=[0]),
        axis_1=all_m.isel(channel=[0, 1]),
        axis_2=all_m.isel(channel=[0, 2]),
        axes_name="xz",
        axis_to_recalculate="z",
    )

    rt_zx = Rototrans.from_markers(
        origin=all_m.isel(channel=[0]),
        axis_1=all_m.isel(channel=[0, 2]),
        axis_2=all_m.isel(channel=[0, 1]),
        axes_name="zx",
        axis_to_recalculate="z",
    )
    rt_xy_from_zx = rt_xz.isel(col=[0, 2, 1, 3])
    rt_xy_from_zx[:, 2, :] = -rt_xy_from_zx[:, 2, :]

    np.testing.assert_array_equal(rt_xy, rt_xy_x_recalc)
    np.testing.assert_array_equal(rt_xy, rt_yx)
    np.testing.assert_array_equal(rt_yz, rt_zy)
    np.testing.assert_array_equal(rt_xz, rt_zx)
    np.testing.assert_array_equal(rt_xy, rt_xy_from_yz)
    np.testing.assert_array_equal(rt_xy, rt_xy_from_zx)

    # Produce one that we know the solution
    ref_m = Markers(
        np.array(((1, 2, 3), (4, 5, 6), (6, 5, 4))).T[:, :, np.newaxis])
    rt_xy_from_known_m = Rototrans.from_markers(
        origin=ref_m.isel(channel=[0]),
        axis_1=ref_m.isel(channel=[0, 1]),
        axis_2=ref_m.isel(channel=[0, 2]),
        axes_name="xy",
        axis_to_recalculate="y",
    )

    rt_xy_expected = Rototrans(
        np.array([
            [0.5773502691896257, 0.7071067811865475, -0.408248290463863, 1.0],
            [0.5773502691896257, 0.0, 0.816496580927726, 2.0],
            [0.5773502691896257, -0.7071067811865475, -0.408248290463863, 3.0],
            [0, 0, 0, 1.0],
        ]))

    np.testing.assert_array_equal(rt_xy_from_known_m, rt_xy_expected)

    exception_default_params = dict(
        origin=all_m.isel(channel=[0]),
        axis_1=all_m.isel(channel=[0, 1]),
        axis_2=all_m.isel(channel=[0, 2]),
        axes_name="xy",
        axis_to_recalculate="y",
    )
    with pytest.raises(ValueError):
        Rototrans.from_markers(**{
            **exception_default_params,
            **dict(origin=all_m.isel(channel=[0, 1]))
        })

    with pytest.raises(ValueError):
        Rototrans.from_markers(**{
            **exception_default_params,
            **dict(axis_1=all_m.isel(channel=[0]))
        })

    with pytest.raises(ValueError):
        Rototrans.from_markers(**{
            **exception_default_params,
            **dict(axis_2=all_m.isel(channel=[0]))
        })

    with pytest.raises(ValueError):
        Rototrans.from_markers(
            **{
                **exception_default_params,
                **dict(axis_1=all_m.isel(channel=[0, 1], time=slice(None, 50))),
            })

    with pytest.raises(ValueError):
        Rototrans.from_markers(**{
            **exception_default_params,
            **dict(axes_name="yyz")
        })

    with pytest.raises(ValueError):
        Rototrans.from_markers(**{
            **exception_default_params,
            **dict(axes_name="xxz")
        })

    with pytest.raises(ValueError):
        Rototrans.from_markers(**{
            **exception_default_params,
            **dict(axes_name="zzz")
        })

    with pytest.raises(ValueError):
        Rototrans.from_markers(**{
            **exception_default_params,
            **dict(axis_to_recalculate="h")
        })
コード例 #11
0
def test_construct_rt():
    eye = Rototrans()
    np.testing.assert_equal(eye.time.size, 1)
    np.testing.assert_equal(eye.sel(time=0), np.eye(4))

    eye = Rototrans.from_euler_angles()
    np.testing.assert_equal(eye.time.size, 1)
    np.testing.assert_equal(eye.sel(time=0), np.eye(4))

    # Test the way to create a rt, but not when providing bot angles and sequence
    nb_frames = 10
    random_vector = Angles(np.random.rand(3, 1, nb_frames))

    # with angles
    rt_random_angles = Rototrans.from_euler_angles(angles=random_vector,
                                                   angle_sequence="xyz")
    np.testing.assert_equal(rt_random_angles.time.size, nb_frames)
    np.testing.assert_equal(rt_random_angles[:-1, -1:, :],
                            np.zeros((3, 1, nb_frames)))  # Translation is 0

    # with translation
    rt_random_translation = Rototrans.from_euler_angles(
        translations=random_vector)
    np.testing.assert_equal(rt_random_translation.time.size, nb_frames)
    np.testing.assert_equal(
        rt_random_translation[:3, :3, :],
        np.repeat(np.eye(3)[:, :, np.newaxis], nb_frames, axis=2),
    )  # rotation is eye3
    np.arange(0, rt_random_angles.time.size / 0.5, 1 / 0.5)

    rt_with_time = Rototrans(
        rt_random_angles,
        time=np.arange(0, rt_random_angles.time.size / 100, 1 / 100),
    )
    assert rt_with_time.time[-1] == 0.09

    with pytest.raises(IndexError):
        Rototrans(data=np.zeros(1))

    with pytest.raises(IndexError):
        Rototrans.from_euler_angles(
            angles=random_vector[..., :5],
            translations=random_vector,
            angle_sequence="x",
        )

    with pytest.raises(IndexError):
        Rototrans.from_euler_angles(angles=random_vector, angle_sequence="x")

    with pytest.raises(ValueError):
        Rototrans.from_euler_angles(angles=random_vector, angle_sequence="nop")
コード例 #12
0
ファイル: 3d_viz.py プロジェクト: aceglia/biorbd-viz
vtkModelMid = VtkModel(vtkWindow,
                       markers_color=(0, 0, 1),
                       markers_size=10.0,
                       markers_opacity=0.5,
                       rt_length=100)
vtkModelFromC3d = VtkModel(vtkWindow,
                           markers_color=(0, 1, 0),
                           markers_size=10.0,
                           markers_opacity=0.5,
                           rt_length=100)

# Create some RotoTrans attached to the first model
all_rt_real = []
all_rt_real.append(
    Rototrans.from_euler_angles(angles=Angles(np.zeros((3, 1, 1))),
                                angle_sequence="yxz",
                                translations=d[:, [0], [0]]))
all_rt_real.append(
    Rototrans.from_euler_angles(angles=Angles(np.zeros((3, 1, 1))),
                                angle_sequence="yxz",
                                translations=d[:, [0], [0]]))

# Create some Rototrans attached to the second model
one_rt = Rototrans.from_markers(
    origin=d[:, [3, 5], :].mean("channel", keepdims=True),
    axis_1=d[:, [4, 3], :],
    axis_2=d[:, [4, 5], :],
    axes_name="zx",
    axis_to_recalculate="z",
)