def solve(self, model, **kwds): """Solve the model. Parameters ---------- model : Pyomo model The MINLP model to be solved. Returns ------- results : SolverResults Results from solving the MINLP problem by MindtPy. """ config = self.CONFIG(kwds.pop('options', { }), preserve_implicit=True) # TODO: do we need to set preserve_implicit=True? config.set_value(kwds) set_up_logger(config) check_config(config) solve_data = set_up_solve_data(model, config) if config.integer_to_binary: TransformationFactory('contrib.integer_to_binary'). \ apply_to(solve_data.working_model) new_logging_level = logging.INFO if config.tee else None with time_code(solve_data.timing, 'total', is_main_timer=True), \ lower_logger_level_to(config.logger, new_logging_level), \ create_utility_block(solve_data.working_model, 'MindtPy_utils', solve_data): config.logger.info( '---------------------------------------------------------------------------------------------\n' ' Mixed-Integer Nonlinear Decomposition Toolbox in Pyomo (MindtPy) \n' '---------------------------------------------------------------------------------------------\n' 'For more information, please visit https://pyomo.readthedocs.io/en/stable/contributed_packages/mindtpy.html') MindtPy = solve_data.working_model.MindtPy_utils setup_results_object(solve_data, config) # In the process_objective function, as long as the objective function is nonlinear, it will be reformulated and the variable/constraint/objective lists will be updated. # For OA/GOA/LP-NLP algorithm, if the objective funtion is linear, it will not be reformulated as epigraph constraint. # If the objective function is linear, it will be reformulated as epigraph constraint only if the Feasibility Pump or ROA/RLP-NLP algorithm is activated. (move_objective = True) # In some cases, the variable/constraint/objective lists will not be updated even if the objective is epigraph-reformulated. # In Feasibility Pump, since the distance calculation only includes discrete variables and the epigraph slack variables are continuous variables, the Feasibility Pump algorithm will not affected even if the variable list are updated. # In ROA and RLP/NLP, since the distance calculation does not include these epigraph slack variables, they should not be added to the variable list. (update_var_con_list = False) # In the process_objective function, once the objective function has been reformulated as epigraph constraint, the variable/constraint/objective lists will not be updated only if the MINLP has a linear objective function and regularization is activated at the same time. # This is because the epigraph constraint is very "flat" for branching rules. The original objective function will be used for the main problem and epigraph reformulation will be used for the projection problem. # TODO: The logic here is too complicated, can we simplify it? process_objective(solve_data, config, move_objective=(config.init_strategy == 'FP' or config.add_regularization is not None or config.move_objective), use_mcpp=config.use_mcpp, update_var_con_list=config.add_regularization is None, partition_nonlinear_terms=config.partition_obj_nonlinear_terms, obj_handleable_polynomial_degree=solve_data.mip_objective_polynomial_degree, constr_handleable_polynomial_degree=solve_data.mip_constraint_polynomial_degree ) # The epigraph constraint is very "flat" for branching rules. # If ROA/RLP-NLP is activated and the original objective function is linear, we will use the original objective for the main mip. if MindtPy.objective_list[0].expr.polynomial_degree() in solve_data.mip_objective_polynomial_degree and config.add_regularization is not None: MindtPy.objective_list[0].activate() MindtPy.objective_constr.deactivate() MindtPy.objective.deactivate() # Save model initial values. solve_data.initial_var_values = list( v.value for v in MindtPy.variable_list) # Store the initial model state as the best solution found. If we # find no better solution, then we will restore from this copy. solve_data.best_solution_found = None solve_data.best_solution_found_time = None # Record solver name solve_data.results.solver.name = 'MindtPy' + str(config.strategy) # Validate the model to ensure that MindtPy is able to solve it. if not model_is_valid(solve_data, config): return # Create a model block in which to store the generated feasibility # slack constraints. Do not leave the constraints on by default. feas = MindtPy.feas_opt = Block() feas.deactivate() feas.feas_constraints = ConstraintList( doc='Feasibility Problem Constraints') # Create a model block in which to store the generated linear # constraints. Do not leave the constraints on by default. lin = MindtPy.cuts = Block() lin.deactivate() # no-good cuts exclude particular discrete decisions lin.no_good_cuts = ConstraintList(doc='no-good cuts') # Feasible no-good cuts exclude discrete realizations that have # been explored via an NLP subproblem. Depending on model # characteristics, the user may wish to revisit NLP subproblems # (with a different initialization, for example). Therefore, these # cuts are not enabled by default. # # Note: these cuts will only exclude integer realizations that are # not already in the primary no_good_cuts ConstraintList. lin.feasible_no_good_cuts = ConstraintList( doc='explored no-good cuts') lin.feasible_no_good_cuts.deactivate() if config.feasibility_norm == 'L1' or config.feasibility_norm == 'L2': feas.nl_constraint_set = RangeSet(len(MindtPy.nonlinear_constraint_list), doc='Integer index set over the nonlinear constraints.') # Create slack variables for feasibility problem feas.slack_var = Var(feas.nl_constraint_set, domain=NonNegativeReals, initialize=1) else: feas.slack_var = Var(domain=NonNegativeReals, initialize=1) # Create slack variables for OA cuts if config.add_slack: lin.slack_vars = VarList( bounds=(0, config.max_slack), initialize=0, domain=NonNegativeReals) # Initialize the main problem with time_code(solve_data.timing, 'initialization'): MindtPy_initialize_main(solve_data, config) # Algorithm main loop with time_code(solve_data.timing, 'main loop'): MindtPy_iteration_loop(solve_data, config) if solve_data.best_solution_found is not None: # Update values in original model copy_var_list_values( from_list=solve_data.best_solution_found.MindtPy_utils.variable_list, to_list=MindtPy.variable_list, config=config) copy_var_list_values( MindtPy.variable_list, [i for i in solve_data.original_model.component_data_objects( Var) if not i.fixed], config) # exclude fixed variables here. This is consistent with the definition of variable_list in GDPopt.util if solve_data.objective_sense == minimize: solve_data.results.problem.lower_bound = solve_data.dual_bound solve_data.results.problem.upper_bound = solve_data.primal_bound else: solve_data.results.problem.lower_bound = solve_data.primal_bound solve_data.results.problem.upper_bound = solve_data.dual_bound solve_data.results.solver.timing = solve_data.timing solve_data.results.solver.user_time = solve_data.timing.total solve_data.results.solver.wallclock_time = solve_data.timing.total solve_data.results.solver.iterations = solve_data.mip_iter solve_data.results.solver.num_infeasible_nlp_subproblem = solve_data.nlp_infeasible_counter solve_data.results.solver.best_solution_found_time = solve_data.best_solution_found_time solve_data.results.solver.primal_integral = get_primal_integral(solve_data, config) solve_data.results.solver.dual_integral = get_dual_integral(solve_data, config) solve_data.results.solver.primal_dual_gap_integral = solve_data.results.solver.primal_integral + \ solve_data.results.solver.dual_integral config.logger.info(' {:<25}: {:>7.4f} '.format( 'Primal-dual gap integral', solve_data.results.solver.primal_dual_gap_integral)) if config.single_tree: solve_data.results.solver.num_nodes = solve_data.nlp_iter - \ (1 if config.init_strategy == 'rNLP' else 0) return solve_data.results
def solve(self, model, **kwds): """Solve the model. Warning: this solver is still in beta. Keyword arguments subject to change. Undocumented keyword arguments definitely subject to change. Args: model (Block): a Pyomo model or block to be solved. """ config = self.CONFIG(kwds.pop('options', {})) config.set_value(kwds) set_up_logger(config) check_config(config) solve_data = set_up_solve_data(model, config) if config.integer_to_binary: TransformationFactory('contrib.integer_to_binary'). \ apply_to(solve_data.working_model) new_logging_level = logging.INFO if config.tee else None with time_code(solve_data.timing, 'total', is_main_timer=True), \ lower_logger_level_to(config.logger, new_logging_level), \ create_utility_block(solve_data.working_model, 'MindtPy_utils', solve_data): config.logger.info( '---------------------------------------------------------------------------------------------\n' ' Mixed-Integer Nonlinear Decomposition Toolbox in Pyomo (MindtPy) \n' '---------------------------------------------------------------------------------------------\n' 'For more information, please visit https://pyomo.readthedocs.io/en/stable/contributed_packages/mindtpy.html') MindtPy = solve_data.working_model.MindtPy_utils setup_results_object(solve_data, config) process_objective(solve_data, config, move_linear_objective=(config.init_strategy == 'FP' or config.add_regularization is not None), use_mcpp=config.use_mcpp, updata_var_con_list=config.add_regularization is None ) # The epigraph constraint is very "flat" for branching rules, # we want to use to original model for the main mip. if MindtPy.objective_list[0].expr.polynomial_degree() in {1, 0} and config.add_regularization is not None: MindtPy.objective_list[0].activate() MindtPy.objective_constr.deactivate() MindtPy.objective.deactivate() # Save model initial values. solve_data.initial_var_values = list( v.value for v in MindtPy.variable_list) # Store the initial model state as the best solution found. If we # find no better solution, then we will restore from this copy. solve_data.best_solution_found = None solve_data.best_solution_found_time = None # Record solver name solve_data.results.solver.name = 'MindtPy' + str(config.strategy) # Validate the model to ensure that MindtPy is able to solve it. if not model_is_valid(solve_data, config): return # Create a model block in which to store the generated feasibility # slack constraints. Do not leave the constraints on by default. feas = MindtPy.feas_opt = Block() feas.deactivate() feas.feas_constraints = ConstraintList( doc='Feasibility Problem Constraints') # Create a model block in which to store the generated linear # constraints. Do not leave the constraints on by default. lin = MindtPy.cuts = Block() lin.deactivate() # no-good cuts exclude particular discrete decisions lin.no_good_cuts = ConstraintList(doc='no-good cuts') # Feasible no-good cuts exclude discrete realizations that have # been explored via an NLP subproblem. Depending on model # characteristics, the user may wish to revisit NLP subproblems # (with a different initialization, for example). Therefore, these # cuts are not enabled by default. # # Note: these cuts will only exclude integer realizations that are # not already in the primary no_good_cuts ConstraintList. lin.feasible_no_good_cuts = ConstraintList( doc='explored no-good cuts') lin.feasible_no_good_cuts.deactivate() if config.feasibility_norm == 'L1' or config.feasibility_norm == 'L2': feas.nl_constraint_set = RangeSet(len(MindtPy.nonlinear_constraint_list), doc='Integer index set over the nonlinear constraints.') # Create slack variables for feasibility problem feas.slack_var = Var(feas.nl_constraint_set, domain=NonNegativeReals, initialize=1) else: feas.slack_var = Var(domain=NonNegativeReals, initialize=1) # Create slack variables for OA cuts if config.add_slack: lin.slack_vars = VarList( bounds=(0, config.max_slack), initialize=0, domain=NonNegativeReals) # Initialize the main problem with time_code(solve_data.timing, 'initialization'): MindtPy_initialize_main(solve_data, config) # Algorithm main loop with time_code(solve_data.timing, 'main loop'): MindtPy_iteration_loop(solve_data, config) if solve_data.best_solution_found is not None: # Update values in original model copy_var_list_values( from_list=solve_data.best_solution_found.MindtPy_utils.variable_list, to_list=MindtPy.variable_list, config=config) copy_var_list_values( MindtPy.variable_list, [i for i in solve_data.original_model.component_data_objects( Var) if not i.fixed], config) # exclude fixed variables here. This is consistent with the definition of variable_list in GDPopt.util solve_data.results.problem.lower_bound = solve_data.LB solve_data.results.problem.upper_bound = solve_data.UB solve_data.results.solver.timing = solve_data.timing solve_data.results.solver.user_time = solve_data.timing.total solve_data.results.solver.wallclock_time = solve_data.timing.total solve_data.results.solver.iterations = solve_data.mip_iter solve_data.results.solver.num_infeasible_nlp_subproblem = solve_data.nlp_infeasible_counter solve_data.results.solver.best_solution_found_time = solve_data.best_solution_found_time if config.single_tree: solve_data.results.solver.num_nodes = solve_data.nlp_iter - \ (1 if config.init_strategy == 'rNLP' else 0) return solve_data.results
def test_handle_termination_condition(self): """Test the outer approximation decomposition algorithm.""" model = SimpleMINLP() config = _get_MindtPy_config() solve_data = set_up_solve_data(model, config) with time_code(solve_data.timing, 'total', is_main_timer=True), \ create_utility_block(solve_data.working_model, 'MindtPy_utils', solve_data): MindtPy = solve_data.working_model.MindtPy_utils MindtPy = solve_data.working_model.MindtPy_utils setup_results_object(solve_data, config) process_objective(solve_data, config, move_objective=(config.init_strategy == 'FP' or config.add_regularization is not None), use_mcpp=config.use_mcpp, update_var_con_list=config.add_regularization is None ) feas = MindtPy.feas_opt = Block() feas.deactivate() feas.feas_constraints = ConstraintList( doc='Feasibility Problem Constraints') lin = MindtPy.cuts = Block() lin.deactivate() if config.feasibility_norm == 'L1' or config.feasibility_norm == 'L2': feas.nl_constraint_set = RangeSet(len(MindtPy.nonlinear_constraint_list), doc='Integer index set over the nonlinear constraints.') # Create slack variables for feasibility problem feas.slack_var = Var(feas.nl_constraint_set, domain=NonNegativeReals, initialize=1) else: feas.slack_var = Var(domain=NonNegativeReals, initialize=1) # no-good cuts exclude particular discrete decisions lin.no_good_cuts = ConstraintList(doc='no-good cuts') fixed_nlp = solve_data.working_model.clone() TransformationFactory('core.fix_integer_vars').apply_to(fixed_nlp) MindtPy_initialize_main(solve_data, config) # test handle_subproblem_other_termination termination_condition = tc.maxIterations config.add_no_good_cuts = True handle_subproblem_other_termination(fixed_nlp, termination_condition, solve_data, config) self.assertEqual( len(solve_data.mip.MindtPy_utils.cuts.no_good_cuts), 1) # test handle_main_other_conditions main_mip, main_mip_results = solve_main(solve_data, config) main_mip_results.solver.termination_condition = tc.infeasible handle_main_other_conditions( solve_data.mip, main_mip_results, solve_data, config) self.assertIs( solve_data.results.solver.termination_condition, tc.feasible) main_mip_results.solver.termination_condition = tc.unbounded handle_main_other_conditions( solve_data.mip, main_mip_results, solve_data, config) self.assertIn(main_mip.MindtPy_utils.objective_bound, main_mip.component_data_objects(ctype=Constraint)) main_mip.MindtPy_utils.del_component('objective_bound') main_mip_results.solver.termination_condition = tc.infeasibleOrUnbounded handle_main_other_conditions( solve_data.mip, main_mip_results, solve_data, config) self.assertIn(main_mip.MindtPy_utils.objective_bound, main_mip.component_data_objects(ctype=Constraint)) main_mip_results.solver.termination_condition = tc.maxTimeLimit handle_main_other_conditions( solve_data.mip, main_mip_results, solve_data, config) self.assertIs( solve_data.results.solver.termination_condition, tc.maxTimeLimit) main_mip_results.solver.termination_condition = tc.other main_mip_results.solution.status = SolutionStatus.feasible handle_main_other_conditions( solve_data.mip, main_mip_results, solve_data, config) for v1, v2 in zip(main_mip.MindtPy_utils.variable_list, solve_data.working_model.MindtPy_utils.variable_list): self.assertEqual(v1.value, v2.value) # test handle_feasibility_subproblem_tc feas_subproblem = solve_data.working_model.clone() add_feas_slacks(feas_subproblem, config) MindtPy = feas_subproblem.MindtPy_utils MindtPy.feas_opt.activate() if config.feasibility_norm == 'L1': MindtPy.feas_obj = Objective( expr=sum(s for s in MindtPy.feas_opt.slack_var[...]), sense=minimize) elif config.feasibility_norm == 'L2': MindtPy.feas_obj = Objective( expr=sum(s*s for s in MindtPy.feas_opt.slack_var[...]), sense=minimize) else: MindtPy.feas_obj = Objective( expr=MindtPy.feas_opt.slack_var, sense=minimize) handle_feasibility_subproblem_tc( tc.optimal, MindtPy, solve_data, config) handle_feasibility_subproblem_tc( tc.infeasible, MindtPy, solve_data, config) self.assertIs(solve_data.should_terminate, True) self.assertIs(solve_data.results.solver.status, SolverStatus.error) solve_data.should_terminate = False solve_data.results.solver.status = None handle_feasibility_subproblem_tc( tc.maxIterations, MindtPy, solve_data, config) self.assertIs(solve_data.should_terminate, True) self.assertIs(solve_data.results.solver.status, SolverStatus.error) solve_data.should_terminate = False solve_data.results.solver.status = None handle_feasibility_subproblem_tc( tc.solverFailure, MindtPy, solve_data, config) self.assertIs(solve_data.should_terminate, True) self.assertIs(solve_data.results.solver.status, SolverStatus.error) # test NLP subproblem infeasible solve_data.working_model.Y[1].value = 0 solve_data.working_model.Y[2].value = 0 solve_data.working_model.Y[3].value = 0 fixed_nlp, fixed_nlp_results = solve_subproblem(solve_data, config) solve_data.working_model.Y[1].value = None solve_data.working_model.Y[2].value = None solve_data.working_model.Y[3].value = None # test handle_nlp_subproblem_tc fixed_nlp_results.solver.termination_condition = tc.maxTimeLimit handle_nlp_subproblem_tc( fixed_nlp, fixed_nlp_results, solve_data, config) self.assertIs(solve_data.should_terminate, True) self.assertIs( solve_data.results.solver.termination_condition, tc.maxTimeLimit) fixed_nlp_results.solver.termination_condition = tc.maxEvaluations handle_nlp_subproblem_tc( fixed_nlp, fixed_nlp_results, solve_data, config) self.assertIs(solve_data.should_terminate, True) self.assertIs( solve_data.results.solver.termination_condition, tc.maxEvaluations) fixed_nlp_results.solver.termination_condition = tc.maxIterations handle_nlp_subproblem_tc( fixed_nlp, fixed_nlp_results, solve_data, config) self.assertIs(solve_data.should_terminate, True) self.assertIs( solve_data.results.solver.termination_condition, tc.maxEvaluations) # test handle_fp_main_tc config.init_strategy = 'FP' solve_data.fp_iter = 1 init_rNLP(solve_data, config) feas_main, feas_main_results = solve_main( solve_data, config, fp=True) feas_main_results.solver.termination_condition = tc.optimal fp_should_terminate = handle_fp_main_tc( feas_main_results, solve_data, config) self.assertIs(fp_should_terminate, False) feas_main_results.solver.termination_condition = tc.maxTimeLimit fp_should_terminate = handle_fp_main_tc( feas_main_results, solve_data, config) self.assertIs(fp_should_terminate, True) self.assertIs( solve_data.results.solver.termination_condition, tc.maxTimeLimit) feas_main_results.solver.termination_condition = tc.infeasible fp_should_terminate = handle_fp_main_tc( feas_main_results, solve_data, config) self.assertIs(fp_should_terminate, True) feas_main_results.solver.termination_condition = tc.unbounded fp_should_terminate = handle_fp_main_tc( feas_main_results, solve_data, config) self.assertIs(fp_should_terminate, True) feas_main_results.solver.termination_condition = tc.other feas_main_results.solution.status = SolutionStatus.feasible fp_should_terminate = handle_fp_main_tc( feas_main_results, solve_data, config) self.assertIs(fp_should_terminate, False) feas_main_results.solver.termination_condition = tc.solverFailure fp_should_terminate = handle_fp_main_tc( feas_main_results, solve_data, config) self.assertIs(fp_should_terminate, True) # test generate_norm_constraint fp_nlp = solve_data.working_model.clone() config.fp_main_norm = 'L1' generate_norm_constraint(fp_nlp, solve_data, config) self.assertIsNotNone(fp_nlp.MindtPy_utils.find_component( 'L1_norm_constraint')) config.fp_main_norm = 'L2' generate_norm_constraint(fp_nlp, solve_data, config) self.assertIsNotNone(fp_nlp.find_component('norm_constraint')) fp_nlp.del_component('norm_constraint') config.fp_main_norm = 'L_infinity' generate_norm_constraint(fp_nlp, solve_data, config) self.assertIsNotNone(fp_nlp.find_component('norm_constraint')) # test set_solver_options config.mip_solver = 'gams' config.threads = 1 opt = SolverFactory(config.mip_solver) set_solver_options(opt, solve_data, config, 'mip', regularization=False) config.mip_solver = 'gurobi' config.mip_regularization_solver = 'gurobi' config.regularization_mip_threads = 1 opt = SolverFactory(config.mip_solver) set_solver_options(opt, solve_data, config, 'mip', regularization=True) config.nlp_solver = 'gams' config.nlp_solver_args['solver'] = 'ipopt' set_solver_options(opt, solve_data, config, 'nlp', regularization=False) config.nlp_solver_args['solver'] = 'ipopth' set_solver_options(opt, solve_data, config, 'nlp', regularization=False) config.nlp_solver_args['solver'] = 'conopt' set_solver_options(opt, solve_data, config, 'nlp', regularization=False) config.nlp_solver_args['solver'] = 'msnlp' set_solver_options(opt, solve_data, config, 'nlp', regularization=False) config.nlp_solver_args['solver'] = 'baron' set_solver_options(opt, solve_data, config, 'nlp', regularization=False) # test algorithm_should_terminate solve_data.should_terminate = True solve_data.primal_bound = float('inf') self.assertIs(algorithm_should_terminate( solve_data, config, check_cycling=False), True) self.assertIs( solve_data.results.solver.termination_condition, tc.noSolution) solve_data.primal_bound = 100 self.assertIs(algorithm_should_terminate( solve_data, config, check_cycling=False), True) self.assertIs( solve_data.results.solver.termination_condition, tc.feasible) solve_data.primal_bound_progress = [float('inf'), 5, 4, 3, 2, 1] solve_data.primal_bound_progress_time = [1, 2, 3, 4, 5, 6] solve_data.primal_bound = 1 self.assertEqual(get_primal_integral(solve_data, config), 14.5) solve_data.dual_bound_progress = [float('-inf'), 1, 2, 3, 4, 5] solve_data.dual_bound_progress_time = [1, 2, 3, 4, 5, 6] solve_data.dual_bound = 5 self.assertEqual(get_dual_integral(solve_data, config), 14.1) # test check_config config.add_regularization = 'level_L1' config.regularization_mip_threads = 0 config.threads = 8 check_config(config) self.assertEqual(config.regularization_mip_threads, 8) config.mip_solver = 'cplex' config.single_tree = True check_config(config) self.assertEqual(config.mip_solver, 'cplex_persistent') self.assertEqual(config.threads, 1) config.add_slack = True config.max_slack == 0.0 check_config(config) self.assertEqual(config.add_slack, False) config.strategy = 'GOA' config.add_slack = True config.use_mcpp = False config.equality_relaxation = True config.use_fbbt = False config.add_no_good_cuts = False config.use_tabu_list = False check_config(config) self.assertTrue(config.use_mcpp) self.assertTrue(config.use_fbbt) self.assertFalse(config.add_slack) self.assertFalse(config.equality_relaxation) self.assertTrue(config.add_no_good_cuts) self.assertFalse(config.use_tabu_list) config.single_tree = False config.strategy = 'FP' config.init_strategy = 'rNLP' config.iteration_limit = 100 config.add_no_good_cuts = False config.use_tabu_list = True check_config(config) self.assertEqual(config.init_strategy, 'FP') self.assertEqual(config.iteration_limit, 0) self.assertEqual(config.add_no_good_cuts, True) self.assertEqual(config.use_tabu_list, False)
def solve(self, model, **kwds): """Solve the model. Warning: this solver is still in beta. Keyword arguments subject to change. Undocumented keyword arguments definitely subject to change. Args: model (Block): a Pyomo model or block to be solved """ config = self.CONFIG(kwds.pop('options', {})) config.set_value(kwds) solve_data = MindtPySolveData() solve_data.results = SolverResults() solve_data.timing = Bunch() solve_data.curr_int_sol = [] solve_data.should_terminate = False solve_data.integer_list = [] check_config(config) # if the objective function is a constant, dual bound constraint is not added. obj = next(model.component_data_objects(ctype=Objective, active=True)) if obj.expr.polynomial_degree() == 0: config.use_dual_bound = False if config.use_fbbt: fbbt(model) # TODO: logging_level is not logging.INFO here config.logger.info( 'Use the fbbt to tighten the bounds of variables') solve_data.original_model = model solve_data.working_model = model.clone() if config.integer_to_binary: TransformationFactory('contrib.integer_to_binary'). \ apply_to(solve_data.working_model) new_logging_level = logging.INFO if config.tee else None with time_code(solve_data.timing, 'total', is_main_timer=True), \ lower_logger_level_to(config.logger, new_logging_level), \ create_utility_block(solve_data.working_model, 'MindtPy_utils', solve_data): config.logger.info('---Starting MindtPy---') MindtPy = solve_data.working_model.MindtPy_utils setup_results_object(solve_data, config) process_objective( solve_data, config, move_linear_objective=(config.init_strategy == 'FP' or config.add_regularization is not None), use_mcpp=config.use_mcpp, updata_var_con_list=config.add_regularization is None) # The epigraph constraint is very "flat" for branching rules, # we want to use to original model for the main mip. if MindtPy.objective_list[0].expr.polynomial_degree() in { 1, 0 } and config.add_regularization is not None: MindtPy.objective_list[0].activate() MindtPy.objective_constr.deactivate() MindtPy.objective.deactivate() # Save model initial values. solve_data.initial_var_values = list( v.value for v in MindtPy.variable_list) # Store the initial model state as the best solution found. If we # find no better solution, then we will restore from this copy. solve_data.best_solution_found = None solve_data.best_solution_found_time = None # Record solver name solve_data.results.solver.name = 'MindtPy' + str(config.strategy) # Validate the model to ensure that MindtPy is able to solve it. if not model_is_valid(solve_data, config): return # Create a model block in which to store the generated feasibility # slack constraints. Do not leave the constraints on by default. feas = MindtPy.feas_opt = Block() feas.deactivate() feas.feas_constraints = ConstraintList( doc='Feasibility Problem Constraints') # Create a model block in which to store the generated linear # constraints. Do not leave the constraints on by default. lin = MindtPy.cuts = Block() lin.deactivate() # no-good cuts exclude particular discrete decisions lin.no_good_cuts = ConstraintList(doc='no-good cuts') # Feasible no-good cuts exclude discrete realizations that have # been explored via an NLP subproblem. Depending on model # characteristics, the user may wish to revisit NLP subproblems # (with a different initialization, for example). Therefore, these # cuts are not enabled by default. # # Note: these cuts will only exclude integer realizations that are # not already in the primary no_good_cuts ConstraintList. lin.feasible_no_good_cuts = ConstraintList( doc='explored no-good cuts') lin.feasible_no_good_cuts.deactivate() # Set up iteration counters solve_data.nlp_iter = 0 solve_data.mip_iter = 0 solve_data.mip_subiter = 0 solve_data.nlp_infeasible_counter = 0 if config.init_strategy == 'FP': solve_data.fp_iter = 1 # set up bounds solve_data.LB = float('-inf') solve_data.UB = float('inf') solve_data.LB_progress = [solve_data.LB] solve_data.UB_progress = [solve_data.UB] if config.single_tree and (config.add_no_good_cuts or config.use_tabu_list): solve_data.stored_bound = {} if config.strategy == 'GOA' and (config.add_no_good_cuts or config.use_tabu_list): solve_data.num_no_good_cuts_added = {} # Set of NLP iterations for which cuts were generated lin.nlp_iters = Set(dimen=1) # Set of MIP iterations for which cuts were generated in ECP lin.mip_iters = Set(dimen=1) if config.feasibility_norm == 'L1' or config.feasibility_norm == 'L2': feas.nl_constraint_set = RangeSet( len(MindtPy.nonlinear_constraint_list), doc='Integer index set over the nonlinear constraints.') # Create slack variables for feasibility problem feas.slack_var = Var(feas.nl_constraint_set, domain=NonNegativeReals, initialize=1) else: feas.slack_var = Var(domain=NonNegativeReals, initialize=1) # Create slack variables for OA cuts if config.add_slack: lin.slack_vars = VarList(bounds=(0, config.max_slack), initialize=0, domain=NonNegativeReals) # Flag indicating whether the solution improved in the past # iteration or not solve_data.solution_improved = False solve_data.bound_improved = False if config.nlp_solver == 'ipopt': if not hasattr(solve_data.working_model, 'ipopt_zL_out'): solve_data.working_model.ipopt_zL_out = Suffix( direction=Suffix.IMPORT) if not hasattr(solve_data.working_model, 'ipopt_zU_out'): solve_data.working_model.ipopt_zU_out = Suffix( direction=Suffix.IMPORT) # Initialize the main problem with time_code(solve_data.timing, 'initialization'): MindtPy_initialize_main(solve_data, config) # Algorithm main loop with time_code(solve_data.timing, 'main loop'): MindtPy_iteration_loop(solve_data, config) if solve_data.best_solution_found is not None: # Update values in original model copy_var_list_values(from_list=solve_data.best_solution_found. MindtPy_utils.variable_list, to_list=MindtPy.variable_list, config=config) copy_var_list_values(MindtPy.variable_list, [ i for i in solve_data.original_model.component_data_objects( Var) if not i.fixed ], config) # exclude fixed variables here. This is consistent with the definition of variable_list in GDPopt.util solve_data.results.problem.lower_bound = solve_data.LB solve_data.results.problem.upper_bound = solve_data.UB solve_data.results.solver.timing = solve_data.timing solve_data.results.solver.user_time = solve_data.timing.total solve_data.results.solver.wallclock_time = solve_data.timing.total solve_data.results.solver.iterations = solve_data.mip_iter solve_data.results.solver.num_infeasible_nlp_subproblem = solve_data.nlp_infeasible_counter solve_data.results.solver.best_solution_found_time = solve_data.best_solution_found_time if config.single_tree: solve_data.results.solver.num_nodes = solve_data.nlp_iter - \ (1 if config.init_strategy == 'rNLP' else 0) return solve_data.results