コード例 #1
0
    def test_isub(self):

        row = np.array([0, 3, 1, 2, 3, 0])
        col = np.array([0, 0, 1, 2, 3, 3])
        data = np.array([2., 1, 3, 4, 5, 1])
        m = coo_matrix((data, (row, col)), shape=(4, 4))
        rank = comm.Get_rank()

        # create mpi matrix
        rank_ownership = [[0, -1], [-1, 1]]
        bm = MPIBlockMatrix(2, 2, rank_ownership, comm)
        if rank == 0:
            bm.set_block(0, 0, m.copy())
        if rank == 1:
            bm.set_block(1, 1, m.copy())
        bm.broadcast_block_sizes()

        serial_bm = BlockMatrix(2, 2)
        serial_bm.set_block(0, 0, m.copy())
        serial_bm.set_block(1, 1, m.copy())

        bm -= bm
        serial_bm -= serial_bm

        rows, columns = np.nonzero(bm.ownership_mask)
        for i, j in zip(rows, columns):
            if bm.get_block(i, j) is not None:
                self.assertTrue(
                    np.allclose(
                        bm.get_block(i, j).toarray(),
                        serial_bm.get_block(i, j).toarray()))

        with self.assertRaises(Exception) as context:
            bm -= serial_bm
コード例 #2
0
    def test_abs(self):

        row = np.array([0, 3, 1, 2, 3, 0])
        col = np.array([0, 0, 1, 2, 3, 3])
        data = np.array([2., 1, 3, 4, 5, 1])
        m = coo_matrix((data, (row, col)), shape=(4, 4))
        rank = comm.Get_rank()

        # create mpi matrix
        rank_ownership = [[0, -1], [-1, 1]]
        bm = MPIBlockMatrix(2, 2, rank_ownership, comm)
        if rank == 0:
            bm.set_block(0, 0, m)
        if rank == 1:
            bm.set_block(1, 1, m)
        bm.broadcast_block_sizes()

        serial_bm = BlockMatrix(2, 2)
        serial_bm.set_block(0, 0, m)
        serial_bm.set_block(1, 1, m)

        res = abs(bm)
        serial_res = abs(serial_bm)

        rows, columns = np.nonzero(bm.ownership_mask)
        for i, j in zip(rows, columns):
            if res.get_block(i, j) is not None:
                self.assertTrue(
                    np.allclose(
                        res.get_block(i, j).toarray(),
                        serial_res.get_block(i, j).toarray()))
コード例 #3
0
    def test_reset_bcol(self):

        row = np.array([0, 3, 1, 2, 3, 0])
        col = np.array([0, 0, 1, 2, 3, 3])
        data = np.array([2., 1, 3, 4, 5, 1])
        m = coo_matrix((data, (row, col)), shape=(4, 4))
        rank = comm.Get_rank()

        # create mpi matrix
        rank_ownership = [[0, -1], [-1, 1]]
        bm = MPIBlockMatrix(2, 2, rank_ownership, comm)
        if rank == 0:
            bm.set_block(0, 0, m)
        if rank == 1:
            bm.set_block(1, 1, m)
        bm.broadcast_block_sizes()

        serial_bm = BlockMatrix(2, 2)
        serial_bm.set_block(0, 0, m)
        serial_bm.set_block(1, 1, m)

        self.assertTrue(
            np.allclose(serial_bm.row_block_sizes(), bm.row_block_sizes()))
        bm.reset_bcol(0)
        serial_bm.reset_bcol(0)
        self.assertTrue(
            np.allclose(serial_bm.col_block_sizes(), bm.col_block_sizes()))

        bm.reset_bcol(1)
        serial_bm.reset_bcol(1)
        self.assertTrue(
            np.allclose(serial_bm.col_block_sizes(), bm.col_block_sizes()))
コード例 #4
0
    def test_matvec_1(self):
        rank = comm.Get_rank()

        rank_ownership = np.array([[0, -1, -1, 0],
                                   [-1, 1, -1, 1],
                                   [-1, -1, 2, 2],
                                   [0, 1, 2, -1]])
        m = MPIBlockMatrix(4, 4, rank_ownership, comm)
        sub_m = np.array([[1, 0],
                          [0, 1]])
        sub_m = coo_matrix(sub_m)
        m.set_block(rank, rank, sub_m.copy())
        m.set_block(rank, 3, sub_m.copy())
        m.set_block(3, rank, sub_m.copy())
        m.set_block(3, 3, sub_m.copy())
        m.broadcast_block_sizes()

        rank_ownership = np.array([0, 1, 2, -1])
        v = MPIBlockVector(4, rank_ownership, comm)
        sub_v = np.ones(2)
        v.set_block(rank, sub_v.copy())
        v.set_block(3, sub_v.copy())
        v.broadcast_block_sizes()

        res = m.dot(v)
        self.assertIsInstance(res, MPIBlockVector)
        self.assertTrue(np.array_equal(res.get_block(rank), sub_v*2))
        self.assertTrue(np.array_equal(res.get_block(3), sub_v*4))
        self.assertTrue(np.array_equal(res.rank_ownership, np.array([0, 1, 2, -1])))
        self.assertFalse(res.has_none)
コード例 #5
0
    def test_get_block_vector_for_dot_product_4(self):
        rank = comm.Get_rank()

        rank_ownership = np.array([[-1, 1, 2],
                                   [0, 1, 2],
                                   [0, 1, 2],
                                   [0, 1, 2]])
        m = MPIBlockMatrix(4, 3, rank_ownership, comm)
        sub_m = np.array([[1, 0],
                          [0, 1]])
        sub_m = coo_matrix(sub_m)
        m.set_block(0, 0, sub_m.copy())
        if rank == 0:
            m.set_block(3, rank, sub_m.copy())
        else:
            m.set_block(rank, rank, sub_m.copy())
            m.set_block(3, rank, sub_m.copy())
        m.broadcast_block_sizes()

        rank_ownership = np.array([0, 1, 2])
        v = MPIBlockVector(3, rank_ownership, comm)
        sub_v = np.ones(2)
        v.set_block(rank, sub_v.copy())
        v.broadcast_block_sizes()

        res = m._get_block_vector_for_dot_product(v)

        self.assertIs(res, v)
コード例 #6
0
    def test_get_block_vector_for_dot_product_5(self):
        rank = comm.Get_rank()

        rank_ownership = np.array([[1, 1, 2],
                                   [0, 1, 2],
                                   [0, 1, 2],
                                   [0, 1, 2]])
        m = MPIBlockMatrix(4, 3, rank_ownership, comm)
        sub_m = np.array([[1, 0],
                          [0, 1]])
        sub_m = coo_matrix(sub_m)
        if rank == 0:
            m.set_block(3, rank, sub_m.copy())
        elif rank == 1:
            m.set_block(0, 0, sub_m.copy())
            m.set_block(rank, rank, sub_m.copy())
            m.set_block(3, rank, sub_m.copy())
        else:
            m.set_block(rank, rank, sub_m.copy())
            m.set_block(3, rank, sub_m.copy())
        m.broadcast_block_sizes()

        v = BlockVector(3)
        sub_v = np.ones(2)
        for ndx in range(3):
            v.set_block(ndx, sub_v.copy())

        res = m._get_block_vector_for_dot_product(v)

        self.assertIs(res, v)

        v_flat = v.flatten()
        res = m._get_block_vector_for_dot_product(v_flat)
        self.assertIsInstance(res, BlockVector)
        for ndx in range(3):
            block = res.get_block(ndx)
            self.assertTrue(np.array_equal(block, sub_v))
コード例 #7
0
    def test_mpi_schur_complement(self):
        rank_by_index = list()
        for ndx in range(3):
            for _rank in range(size):
                if (ndx - _rank) % size == 0:
                    rank_by_index.append(_rank)
        rank_by_index.append(-1)

        A = MPIBlockMatrix(nbrows=4,
                           nbcols=4,
                           rank_ownership=[
                               rank_by_index, rank_by_index, rank_by_index,
                               rank_by_index
                           ],
                           mpi_comm=comm)
        if rank_by_index[0] == rank:
            A.set_block(
                0, 0, coo_matrix(np.array([[1, 1], [0, 1]], dtype=np.double)))
        if rank_by_index[1] == rank:
            A.set_block(
                1, 1, coo_matrix(np.array([[1, 0], [0, 1]], dtype=np.double)))
        if rank_by_index[2] == rank:
            A.set_block(
                2, 2, coo_matrix(np.array([[1, 0], [1, 1]], dtype=np.double)))
        A.set_block(3, 3,
                    coo_matrix(np.array([[0, 0], [0, 1]], dtype=np.double)))
        if rank_by_index[0] == rank:
            A.set_block(
                3, 0, coo_matrix(np.array([[0, -1], [0, 0]], dtype=np.double)))
        if rank_by_index[1] == rank:
            A.set_block(
                3, 1, coo_matrix(np.array([[-1, 0], [0, -1]],
                                          dtype=np.double)))
        if rank_by_index[2] == rank:
            A.set_block(
                3, 2, coo_matrix(np.array([[0, 0], [-1, 0]], dtype=np.double)))
        A.broadcast_block_sizes()

        local_A = BlockMatrix(4, 4)
        local_A.set_block(
            0, 0, coo_matrix(np.array([[1, 1], [0, 1]], dtype=np.double)))
        local_A.set_block(
            1, 1, coo_matrix(np.array([[1, 0], [0, 1]], dtype=np.double)))
        local_A.set_block(
            2, 2, coo_matrix(np.array([[1, 0], [1, 1]], dtype=np.double)))
        local_A.set_block(
            3, 3, coo_matrix(np.array([[0, 0], [0, 1]], dtype=np.double)))
        local_A.set_block(
            3, 0, coo_matrix(np.array([[0, -1], [0, 0]], dtype=np.double)))
        local_A.set_block(
            3, 1, coo_matrix(np.array([[-1, 0], [0, -1]], dtype=np.double)))
        local_A.set_block(
            3, 2, coo_matrix(np.array([[0, 0], [-1, 0]], dtype=np.double)))
        local_A.set_block(0, 3, local_A.get_block(3, 0).transpose(copy=True))
        local_A.set_block(1, 3, local_A.get_block(3, 1).transpose(copy=True))
        local_A.set_block(2, 3, local_A.get_block(3, 2).transpose(copy=True))

        rhs = MPIBlockVector(nblocks=4,
                             rank_owner=rank_by_index,
                             mpi_comm=comm)
        if rank_by_index[0] == rank:
            rhs.set_block(0, np.array([1, 0], dtype=np.double))
        if rank_by_index[1] == rank:
            rhs.set_block(1, np.array([0, 0], dtype=np.double))
        if rank_by_index[2] == rank:
            rhs.set_block(2, np.array([0, 1], dtype=np.double))
        rhs.set_block(3, np.array([1, 1], dtype=np.double))
        rhs.broadcast_block_sizes()

        local_rhs = BlockVector(4)
        local_rhs.set_block(0, np.array([1, 0], dtype=np.double))
        local_rhs.set_block(1, np.array([0, 0], dtype=np.double))
        local_rhs.set_block(2, np.array([0, 1], dtype=np.double))
        local_rhs.set_block(3, np.array([1, 1], dtype=np.double))

        x1 = np.linalg.solve(local_A.toarray(), local_rhs.flatten())

        solver_class = parapint.linalg.MPISchurComplementLinearSolver
        sc_solver = solver_class(
            subproblem_solvers={
                ndx: ScipyInterface(compute_inertia=True)
                for ndx in range(3)
            },
            schur_complement_solver=ScipyInterface(compute_inertia=True))
        sc_solver.do_symbolic_factorization(A)
        sc_solver.do_numeric_factorization(A)
        x2 = sc_solver.do_back_solve(rhs)

        self.assertTrue(np.allclose(x1, x2.make_local_copy().flatten()))

        inertia1 = sc_solver.get_inertia()
        eig = np.linalg.eigvals(local_A.toarray())
        pos = np.count_nonzero(eig > 0)
        neg = np.count_nonzero(eig < 0)
        zero = np.count_nonzero(eig == 0)
        inertia2 = (pos, neg, zero)
        self.assertEqual(inertia1, inertia2)

        sc_solver.do_numeric_factorization(A)
        x2 = sc_solver.do_back_solve(rhs)
        self.assertTrue(np.allclose(x1, x2.make_local_copy().flatten()))
コード例 #8
0
    def setUpClass(cls):
        # test problem 1

        row = np.array([0, 3, 1, 2, 3, 0])
        col = np.array([0, 0, 1, 2, 3, 3])
        data = np.array([2., 1, 3, 4, 5, 1])
        m = coo_matrix((data, (row, col)), shape=(4, 4))

        rank = comm.Get_rank()
        # create mpi matrix
        rank_ownership = [[0, -1], [-1, 1]]
        bm = MPIBlockMatrix(2, 2, rank_ownership, comm)
        if rank == 0:
            bm.set_block(0, 0, m)
        if rank == 1:
            bm.set_block(1, 1, m)

        # create serial matrix image
        serial_bm = BlockMatrix(2, 2)
        serial_bm.set_block(0, 0, m)
        serial_bm.set_block(1, 1, m)
        cls.square_serial_mat = serial_bm

        bm.broadcast_block_sizes()
        cls.square_mpi_mat = bm

        # create mpi matrix
        rank_ownership = [[0, -1], [-1, 1]]
        bm = MPIBlockMatrix(2, 2, rank_ownership, comm)
        if rank == 0:
            bm.set_block(0, 0, m)
        if rank == 1:
            bm.set_block(1, 1, m)

        cls.square_mpi_mat_no_broadcast = bm

        # create matrix with shared blocks
        rank_ownership = [[0, -1], [-1, 1]]
        bm = MPIBlockMatrix(2, 2, rank_ownership, comm)
        if rank == 0:
            bm.set_block(0, 0, m)
        if rank == 1:
            bm.set_block(1, 1, m)
        bm.set_block(0, 1, m)

        bm.broadcast_block_sizes()
        cls.square_mpi_mat2 = bm

        # create serial matrix image
        serial_bm = BlockMatrix(2, 2)
        serial_bm.set_block(0, 0, m)
        serial_bm.set_block(1, 1, m)
        serial_bm.set_block(0, 1, m)
        cls.square_serial_mat2 = serial_bm

        row = np.array([0, 1, 2, 3])
        col = np.array([0, 1, 0, 1])
        data = np.array([1., 1., 1., 1.])
        m2 = coo_matrix((data, (row, col)), shape=(4, 2))

        rank_ownership = [[0, -1, 0], [-1, 1, -1]]
        bm = MPIBlockMatrix(2, 3, rank_ownership, comm)
        if rank == 0:
            bm.set_block(0, 0, m)
            bm.set_block(0, 2, m2)
        if rank == 1:
            bm.set_block(1, 1, m)
        bm.broadcast_block_sizes()
        cls.rectangular_mpi_mat = bm

        bm = BlockMatrix(2, 3)
        bm.set_block(0, 0, m)
        bm.set_block(0, 2, m2)
        bm.set_block(1, 1, m)
        cls.rectangular_serial_mat = bm