コード例 #1
0
ファイル: wl.py プロジェクト: natalieisenberg/pyomo
def solve_parametric():
    m = create_warehouse_model(num_locations=50, num_customers=50)
    opt = pyo.SolverFactory('gurobi')
    p_values = list(range(1, 31))
    obj_values = list()
    for p in p_values:
        m.P.value = p
        res = opt.solve(m)
        assert_optimal_termination(res)
        obj_values.append(res.problem.lower_bound)
コード例 #2
0
ファイル: wl.py プロジェクト: natalieisenberg/pyomo
def solve_parametric_persistent():
    m = create_warehouse_model(num_locations=50, num_customers=50)
    opt = pyo.SolverFactory('gurobi_persistent')
    opt.set_instance(m)
    p_values = list(range(1, 31))
    obj_values = list()
    for p in p_values:
        m.P.value = p
        opt.remove_constraint(m.num_warehouses)
        opt.add_constraint(m.num_warehouses)
        res = opt.solve(save_results=False)
        assert_optimal_termination(res)
        obj_values.append(res.problem.lower_bound)
コード例 #3
0
    def _ip_helper(self, with_bounds, with_ineq, linear_solver):
        t0 = 0
        delta_t = 1
        num_finite_elements = 90
        constant_control_duration = 10
        time_scale = 0.1
        num_time_blocks = 3
        interface = Problem(t0=t0,
                            delta_t=delta_t,
                            num_finite_elements=num_finite_elements,
                            constant_control_duration=constant_control_duration,
                            time_scale=time_scale,
                            num_time_blocks=num_time_blocks,
                            with_bounds=with_bounds,
                            with_ineq=with_ineq)
        options = parapint.algorithms.IPOptions()
        options.linalg.solver = linear_solver
        status = parapint.algorithms.ip_solve(interface=interface, options=options)
        self.assertEqual(status, parapint.algorithms.InteriorPointStatus.optimal)
        interface.load_primals_into_pyomo_model()
        x = dict()
        p = dict()
        local_block_indices = _distribute_blocks(num_time_blocks, rank, size)
        for ndx in local_block_indices:
            m = interface.pyomo_model(ndx)
            for t in m.x_time_points:
                if t in x:
                    self.assertAlmostEqual(x[t], m.x[t].value)
                else:
                    x[t] = m.x[t].value
            for t in m.p_time_points:
                p[t] = m.p[t].value

        m = build_time_block(t0=t0,
                             delta_t=delta_t,
                             num_finite_elements=num_finite_elements,
                             constant_control_duration=constant_control_duration,
                             time_scale=time_scale,
                             with_bounds=with_bounds,
                             with_ineq=with_ineq)
        opt = pe.SolverFactory('ipopt')
        res = opt.solve(m, tee=True)
        assert_optimal_termination(res)
        for _t, _x in x.items():
            self.assertAlmostEqual(_x, m.x[_t].value)
        for _t, _p in p.items():
            self.assertAlmostEqual(_p, m.p[_t].value)
コード例 #4
0
    def test_kkt_system(self):
        t0 = 0
        delta_t = 1
        num_finite_elements = 90
        constant_control_duration = 10
        time_scale = 0.1
        num_time_blocks = 3
        interface = Problem(t0=t0,
                            delta_t=delta_t,
                            num_finite_elements=num_finite_elements,
                            constant_control_duration=constant_control_duration,
                            time_scale=time_scale,
                            num_time_blocks=num_time_blocks)
        interface.set_primals(interface.init_primals())
        interface.set_slacks(interface.init_slacks())
        interface.set_duals_eq(interface.init_duals_eq())
        interface.set_duals_ineq(interface.init_duals_ineq())
        interface.set_duals_primals_lb(interface.init_duals_primals_lb())
        interface.set_duals_primals_ub(interface.init_duals_primals_ub())
        interface.set_duals_slacks_lb(interface.init_duals_slacks_lb())
        interface.set_duals_slacks_ub(interface.init_duals_slacks_ub())
        interface.set_barrier_parameter(0)
        kkt = interface.evaluate_primal_dual_kkt_matrix()
        rhs = interface.evaluate_primal_dual_kkt_rhs()
        linear_solver = parapint.linalg.ScipyInterface()
        linear_solver.do_symbolic_factorization(kkt)
        linear_solver.do_numeric_factorization(kkt)
        sol = linear_solver.do_back_solve(rhs)
        interface.set_primal_dual_kkt_solution(sol)
        interface.set_primals(interface.get_primals() + interface.get_delta_primals())
        interface.set_slacks(interface.get_slacks() + interface.get_delta_slacks())
        interface.set_duals_eq(interface.get_duals_eq() + interface.get_delta_duals_eq())
        interface.set_duals_ineq(interface.get_duals_ineq() + interface.get_delta_duals_ineq())
        interface.set_duals_primals_lb(interface.get_duals_primals_lb() + interface.get_delta_duals_primals_lb())
        interface.set_duals_primals_ub(interface.get_duals_primals_ub() + interface.get_delta_duals_primals_ub())
        interface.set_duals_slacks_lb(interface.get_duals_slacks_lb() + interface.get_delta_duals_slacks_lb())
        interface.set_duals_slacks_ub(interface.get_duals_slacks_ub() + interface.get_delta_duals_slacks_ub())
        interface.load_primals_into_pyomo_model()
        x = dict()
        p = dict()
        for ndx in range(num_time_blocks):
            m = interface.pyomo_model(ndx)
            for t in m.x_time_points:
                if t in x:
                    self.assertAlmostEqual(x[t], m.x[t].value)
                else:
                    x[t] = m.x[t].value
            for t in m.p_time_points:
                p[t] = m.p[t].value

        m = build_time_block(t0=t0,
                             delta_t=delta_t,
                             num_finite_elements=num_finite_elements,
                             constant_control_duration=constant_control_duration,
                             time_scale=time_scale)
        opt = pe.SolverFactory('ipopt')
        res = opt.solve(m)
        assert_optimal_termination(res)
        for _t, _x in x.items():
            self.assertAlmostEqual(_x, m.x[_t].value)
        for _t, _p in p.items():
            self.assertAlmostEqual(_p, m.p[_t].value)
コード例 #5
0
ファイル: wl.py プロジェクト: natalieisenberg/pyomo
def solve_warehouse_location(m):
    opt = pyo.SolverFactory('gurobi')
    res = opt.solve(m)
    assert_optimal_termination(res)