コード例 #1
0
ファイル: cplex_direct.py プロジェクト: juantorres91/pyomo
    def _get_expr_from_pyomo_repn(self, repn, max_degree=2):
        referenced_vars = ComponentSet()

        degree = canonical_degree(repn)
        if (degree is None) or (degree > max_degree):
            raise DegreeError(
                'CPLEXDirect does not support expressions of degree {0}.'.
                format(degree))

        if isinstance(repn, LinearCanonicalRepn):
            new_expr = _CplexExpr()

            if repn.constant is not None:
                new_expr.offset = repn.constant

            if (repn.linear is not None) and (len(repn.linear) > 0):
                list(map(referenced_vars.add, repn.variables))
                new_expr.variables.extend(self._pyomo_var_to_ndx_map[var]
                                          for var in repn.variables)
                new_expr.coefficients.extend(coeff for coeff in repn.linear)

        else:
            new_expr = _CplexExpr()
            if 0 in repn:
                new_expr.offset = repn[0][None]

            if 1 in repn:
                for ndx, coeff in repn[1].items():
                    new_expr.coefficients.append(coeff)
                    var = repn[-1][ndx]
                    new_expr.variables.append(self._pyomo_var_to_ndx_map[var])
                    referenced_vars.add(var)

            if 2 in repn:
                for key, coeff in repn[2].items():
                    new_expr.q_coefficients.append(coeff)
                    indices = list(key.keys())
                    if len(indices) == 1:
                        ndx = indices[0]
                        var = repn[-1][ndx]
                        referenced_vars.add(var)
                        cplex_var = self._pyomo_var_to_ndx_map[var]
                        new_expr.q_variables1.append(cplex_var)
                        new_expr.q_variables2.append(cplex_var)
                    else:
                        ndx = indices[0]
                        var = repn[-1][ndx]
                        referenced_vars.add(var)
                        cplex_var = self._pyomo_var_to_ndx_map[var]
                        new_expr.q_variables1.append(cplex_var)
                        ndx = indices[1]
                        var = repn[-1][ndx]
                        referenced_vars.add(var)
                        cplex_var = self._pyomo_var_to_ndx_map[var]
                        new_expr.q_variables2.append(cplex_var)

        return new_expr, referenced_vars
コード例 #2
0
ファイル: gurobi_direct.py プロジェクト: juantorres91/pyomo
    def _get_expr_from_pyomo_repn(self, repn, max_degree=2):
        referenced_vars = ComponentSet()

        degree = canonical_degree(repn)
        if (degree is None) or (degree > max_degree):
            raise DegreeError(
                'GurobiDirect does not support expressions of degree {0}.'.
                format(degree))

        if isinstance(repn, LinearCanonicalRepn):
            if (repn.linear is not None) and (len(repn.linear) > 0):
                list(map(referenced_vars.add, repn.variables))
                new_expr = self._gurobipy.LinExpr(repn.linear, [
                    self._pyomo_var_to_solver_var_map[i]
                    for i in repn.variables
                ])
            else:
                new_expr = 0

            if repn.constant is not None:
                new_expr += repn.constant

        else:
            new_expr = 0
            if 0 in repn:
                new_expr += repn[0][None]

            if 1 in repn:
                for ndx, coeff in repn[1].items():
                    new_expr += coeff * self._pyomo_var_to_solver_var_map[
                        repn[-1][ndx]]
                    referenced_vars.add(repn[-1][ndx])

            if 2 in repn:
                for key, coeff in repn[2].items():
                    tmp_expr = coeff
                    for ndx, power in key.items():
                        referenced_vars.add(repn[-1][ndx])
                        for i in range(power):
                            tmp_expr *= self._pyomo_var_to_solver_var_map[
                                repn[-1][ndx]]
                    new_expr += tmp_expr

        return new_expr, referenced_vars
コード例 #3
0
ファイル: CPLEXPersistent.py プロジェクト: sgjkkx/pyomo
    def compile_instance(self,
                         pyomo_instance,
                         symbolic_solver_labels=False,
                         output_fixed_variable_bounds=False,
                         skip_trivial_constraints=False):

        from pyomo.core.base import Var, Constraint, SOSConstraint
        from pyomo.repn import canonical_is_constant, LinearCanonicalRepn, canonical_degree

        self._symbolic_solver_labels = symbolic_solver_labels
        self._output_fixed_variable_bounds = output_fixed_variable_bounds
        self._skip_trivial_constraints = skip_trivial_constraints

        self._has_quadratic_constraints = False
        self._has_quadratic_objective = False

        self._active_cplex_instance = CPLEXDirect._cplex_module.Cplex()

        if self._symbolic_solver_labels:
            labeler = self._labeler = TextLabeler()
        else:
            labeler = self._labeler = NumericLabeler('x')

        self._symbol_map = SymbolMap()
        self._instance = pyomo_instance
        if isinstance(pyomo_instance, IBlockStorage):
            # BIG HACK
            if not hasattr(pyomo_instance, "._symbol_maps"):
                setattr(pyomo_instance, "._symbol_maps", {})
            getattr(pyomo_instance, "._symbol_maps")[id(self._symbol_map)] = \
                self._symbol_map
        else:
            pyomo_instance.solutions.add_symbol_map(self._symbol_map)
        self._smap_id = id(self._symbol_map)

        # we use this when iterating over the constraints because it
        # will have a much smaller hash table, we also use this for
        # the warm start code after it is cleaned to only contain
        # variables referenced in the constraints
        self._variable_symbol_map = SymbolMap()

        # cplex wants the caller to set the problem type, which is (for
        # current purposes) strictly based on variable type counts.
        self._num_binary_variables = 0
        self._num_integer_variables = 0
        self._num_continuous_variables = 0
        self._used_sos_constraints = False

        #############################################
        # populate the variables in the cplex model #
        #############################################

        var_names = []
        var_lbs = []
        var_ubs = []
        var_types = []

        self._referenced_variable_ids.clear()

        # maps pyomo var data labels to the corresponding CPLEX variable id.
        self._cplex_variable_ids.clear()

        # cached in the loop below - used to update the symbol map
        # immediately following loop termination.
        var_label_pairs = []

        for var_data in pyomo_instance.component_data_objects(Var, active=True):

            if var_data.fixed and not self._output_fixed_variable_bounds:
                # if a variable is fixed, and we're preprocessing
                # fixed variables (as in not outputting them), there
                # is no need to add them to the compiled model.
                continue

            var_name = self._symbol_map.getSymbol(var_data, labeler)
            var_names.append(var_name)
            var_label_pairs.append((var_data, var_name))

            self._cplex_variable_ids[var_name] = len(self._cplex_variable_ids)

            if not var_data.has_lb():
                var_lbs.append(-CPLEXDirect._cplex_module.infinity)
            else:
                var_lbs.append(value(var_data.lb))

            if not var_data.has_ub():
                var_ubs.append(CPLEXDirect._cplex_module.infinity)
            else:
                var_ubs.append(value(var_data.ub))

            if var_data.is_integer():
                var_types.append(self._active_cplex_instance.variables.type.integer)
                self._num_integer_variables += 1
            elif var_data.is_binary():
                var_types.append(self._active_cplex_instance.variables.type.binary)
                self._num_binary_variables += 1
            elif var_data.is_continuous():
                var_types.append(self._active_cplex_instance.variables.type.continuous)
                self._num_continuous_variables += 1
            else:
                raise TypeError("Invalid domain type for variable with name '%s'. "
                                "Variable is not continuous, integer, or binary.")

        self._active_cplex_instance.variables.add(names=var_names,
                                                  lb=var_lbs,
                                                  ub=var_ubs,
                                                  types=var_types)

        self._active_cplex_instance.variables.add(lb=[1],
                                                  ub=[1],
                                                  names=["ONE_VAR_CONSTANT"])

        self._cplex_variable_ids["ONE_VAR_CONSTANT"] = len(self._cplex_variable_ids)

        self._variable_symbol_map.addSymbols(var_label_pairs)
        self._cplex_variable_names = self._active_cplex_instance.variables.get_names()

        ########################################################
        # populate the standard constraints in the cplex model #
        ########################################################

        expressions = []
        senses = []
        rhss = []
        range_values = []
        names = []

        qexpressions = []
        qlinears = []
        qsenses = []
        qrhss = []
        qnames = []

        for block in pyomo_instance.block_data_objects(active=True):

            gen_con_canonical_repn = \
                getattr(block, "_gen_con_canonical_repn", True)
            # Get/Create the ComponentMap for the repn
            if not hasattr(block,'_canonical_repn'):
                block._canonical_repn = ComponentMap()
            block_canonical_repn = block._canonical_repn

            for con in block.component_data_objects(Constraint,
                                                    active=True,
                                                    descend_into=False):

                if (not con.has_lb()) and \
                   (not con.has_ub()):
                    assert not con.equality
                    continue  # not binding at all, don't bother

                con_repn = None
                if con._linear_canonical_form:
                    con_repn = con.canonical_form()
                elif isinstance(con, LinearCanonicalRepn):
                    con_repn = con
                else:
                    if gen_con_canonical_repn:
                        con_repn = generate_canonical_repn(con.body)
                        block_canonical_repn[con] = con_repn
                    else:
                        con_repn = block_canonical_repn[con]

                # There are conditions, e.g., when fixing variables, under which
                # a constraint block might be empty.  Ignore these, for both
                # practical reasons and the fact that the CPLEX LP format
                # requires a variable in the constraint body.  It is also
                # possible that the body of the constraint consists of only a
                # constant, in which case the "variable" of
                if isinstance(con_repn, LinearCanonicalRepn):
                    if self._skip_trivial_constraints and \
                       ((con_repn.linear is None) or \
                        (len(con_repn.linear) == 0)):
                       continue
                else:
                    # we shouldn't come across a constant canonical repn
                    # that is not LinearCanonicalRepn
                    assert not canonical_is_constant(con_repn)

                name = self._symbol_map.getSymbol(con, labeler)
                expr = None
                qexpr = None
                quadratic = False
                if isinstance(con_repn, LinearCanonicalRepn):
                    expr, offset = \
                        self._encode_constraint_body_linear_specialized(con_repn,
                                                                        labeler,
                                                                        use_variable_names=False,
                                                                        cplex_variable_name_index_map=self._cplex_variable_ids)
                else:
                    degree = canonical_degree(con_repn)
                    if degree == 2:
                        quadratic = True
                    elif (degree != 0) or (degree != 1):
                        raise ValueError(
                            "CPLEXPersistent plugin does not support general nonlinear "
                            "constraint expression (only linear or quadratic).\n"
                            "Constraint: %s" % (con.name))
                    expr, offset = self._encode_constraint_body_linear(con_repn,
                                                                       labeler)

                if quadratic:
                    if expr is None:
                        expr = CPLEXDirect._cplex_module.SparsePair(ind=[0],val=[0.0])
                    self._has_quadratic_constraints = True

                    qexpr = self._encode_constraint_body_quadratic(con_repn,labeler)
                    qnames.append(name)

                    if con.equality:
                        # equality constraint.
                        qsenses.append('E')
                        qrhss.append(self._get_bound(con.lower) - offset)

                    elif con.has_lb() and con.has_ub():

                        raise RuntimeError(
                            "The CPLEXDirect plugin can not translate range "
                            "constraints containing quadratic expressions.")

                    elif con.has_lb():
                        assert not con.has_ub()
                        qsenses.append('G')
                        qrhss.append(self._get_bound(con.lower) - offset)

                    else:
                        assert con.has_ub()
                        qsenses.append('L')
                        qrhss.append(self._get_bound(con.upper) - offset)

                    qlinears.append(expr)
                    qexpressions.append(qexpr)

                else:
                    names.append(name)
                    expressions.append(expr)

                    if con.equality:
                        # equality constraint.
                        senses.append('E')
                        rhss.append(self._get_bound(con.lower) - offset)
                        range_values.append(0.0)

                    elif con.has_lb() and con.has_ub():
                        # ranged constraint.
                        senses.append('R')
                        lower_bound = self._get_bound(con.lower) - offset
                        upper_bound = self._get_bound(con.upper) - offset
                        rhss.append(lower_bound)
                        range_values.append(upper_bound - lower_bound)

                    elif con.has_lb():
                        senses.append('G')
                        rhss.append(self._get_bound(con.lower) - offset)
                        range_values.append(0.0)

                    else:
                        assert con.has_ub()
                        senses.append('L')
                        rhss.append(self._get_bound(con.upper) - offset)
                        range_values.append(0.0)

        ###################################################
        # populate the SOS constraints in the cplex model #
        ###################################################

        # SOS constraints - largely taken from cpxlp.py so updates there,
        # should be applied here
        # TODO: Allow users to specify the variables coefficients for custom
        # branching/set orders - refer to cpxlp.py
        sosn = self._capabilities.sosn
        sos1 = self._capabilities.sos1
        sos2 = self._capabilities.sos2
        modelSOS = ModelSOS()
        for soscondata in pyomo_instance.component_data_objects(SOSConstraint,
                                                                active=True):
            level = soscondata.level
            if (level == 1 and not sos1) or \
               (level == 2 and not sos2) or \
               (level > 2 and not sosn):
                raise Exception("Solver does not support SOS level %s constraints"
                                % (level,))
            modelSOS.count_constraint(self._symbol_map,
                                      labeler,
                                      self._variable_symbol_map,
                                      soscondata)

        if modelSOS.sosType:
            for key in modelSOS.sosType:
                self._active_cplex_instance.SOS.add(type = modelSOS.sosType[key],
                                       name = modelSOS.sosName[key],
                                       SOS = [modelSOS.varnames[key],
                                              modelSOS.weights[key]])
                self._referenced_variable_ids.update(modelSOS.varids[key])
            self._used_sos_constraints = True

        self._active_cplex_instance.linear_constraints.add(
            lin_expr=expressions,
            senses=senses,
            rhs=rhss,
            range_values=range_values,
            names=names)

        for index in xrange(len(qexpressions)):
            self._active_cplex_instance.quadratic_constraints.add(
                lin_expr=qlinears[index],
                quad_expr=qexpressions[index],
                sense=qsenses[index],
                rhs=qrhss[index],
                name=qnames[index])

        #############################################
        # populate the objective in the cplex model #
        #############################################

        self.compile_objective(pyomo_instance)
コード例 #4
0
ファイル: CPLEXPersistent.py プロジェクト: sgjkkx/pyomo
    def compile_objective(self, pyomo_instance):

        from pyomo.core.base import Objective
        from pyomo.repn import canonical_is_constant, LinearCanonicalRepn, canonical_degree

        if self._active_cplex_instance is None:
            raise RuntimeError("***The CPLEXPersistent solver plugin "
                               "cannot compile objective - no "
                               "instance is presently compiled")

        cplex_instance = self._active_cplex_instance

        self._has_quadratic_objective = False

        cntr = 0
        for block in pyomo_instance.block_data_objects(active=True):
            gen_obj_canonical_repn = \
                getattr(block, "_gen_obj_canonical_repn", True)
            # Get/Create the ComponentMap for the repn
            if not hasattr(block,'_canonical_repn'):
                block._canonical_repn = ComponentMap()
            block_canonical_repn = block._canonical_repn

            for obj_data in block.component_data_objects(Objective,
                                                         active=True,
                                                         descend_into=False):

                cntr += 1
                if cntr > 1:
                    raise ValueError(
                        "Multiple active objectives found on Pyomo instance '%s'. "
                        "Solver '%s' will only handle a single active objective" \
                        % (pyomo_instance.name, self.type))

                if obj_data.is_minimizing():
                    cplex_instance.objective.set_sense(
                        cplex_instance.objective.sense.minimize)
                else:
                    cplex_instance.objective.set_sense(
                        cplex_instance.objective.sense.maximize)

                cplex_instance.objective.set_name(
                    self._symbol_map.getSymbol(obj_data,
                                               self._labeler))

                if gen_obj_canonical_repn:
                    obj_repn = generate_canonical_repn(obj_data.expr)
                    block_canonical_repn[obj_data] = obj_repn
                else:
                    obj_repn = block_canonical_repn[obj_data]

                if (isinstance(obj_repn, LinearCanonicalRepn) and \
                    ((obj_repn.linear == None) or \
                     (len(obj_repn.linear) == 0))) or \
                    canonical_is_constant(obj_repn):
                    print("Warning: Constant objective detected, replacing "
                          "with a placeholder to prevent solver failure.")
                    offset = obj_repn.constant
                    if offset is None:
                        offset = 0.0
                    objective_expression = [("ONE_VAR_CONSTANT",offset)]
                    cplex_instance.objective.set_linear(objective_expression)

                else:

                    if isinstance(obj_repn, LinearCanonicalRepn):
                        objective_expression, offset = \
                            self._encode_constraint_body_linear_specialized(
                                    obj_repn,
                                    self._labeler,
                                    use_variable_names=False,
                                    cplex_variable_name_index_map=self._cplex_variable_ids,
                                    as_pairs=True)
                        if offset != 0.0:
                            objective_expression.append((self._cplex_variable_ids["ONE_VAR_CONSTANT"],offset))
                        cplex_instance.objective.set_linear(objective_expression)

                    else:
                        #Linear terms
                        if 1 in obj_repn:
                            objective_expression, offset = \
                                self._encode_constraint_body_linear(
                                    obj_repn,
                                    self._labeler,
                                    as_pairs=True)
                            if offset != 0.0:
                                objective_expression.append(("ONE_VAR_CONSTANT",offset))
                            cplex_instance.objective.set_linear(objective_expression)

                        #Quadratic terms
                        if 2 in obj_repn:
                            self._has_quadratic_objective = True
                            objective_expression = \
                                self._encode_constraint_body_quadratic(obj_repn,
                                                                       self._labeler,
                                                                       as_triples=True,
                                                                       is_obj=2.0)
                            cplex_instance.objective.\
                                set_quadratic_coefficients(objective_expression)

                        degree = canonical_degree(obj_repn)
                        if (degree is None) or (degree > 2):
                            raise ValueError(
                                "CPLEXPersistent plugin does not support general nonlinear "
                                "objective expressions (only linear or quadratic).\n"
                                "Objective: %s" % (obj_data.name))
コード例 #5
0
ファイル: cpxlp.py プロジェクト: jay1yun/pyomo
    def _print_model_LP(self,
                        model,
                        output_file,
                        solver_capability,
                        labeler,
                        output_fixed_variable_bounds=False,
                        file_determinism=1,
                        row_order=None,
                        column_order=None,
                        skip_trivial_constraints=False,
                        force_objective_constant=False,
                        include_all_variable_bounds=False):

        symbol_map = SymbolMap()
        variable_symbol_map = SymbolMap()
        # NOTE: we use createSymbol instead of getSymbol because we
        #       know whether or not the symbol exists, and don't want
        #       to the overhead of error/duplicate checking.
        # cache frequently called functions
        create_symbol_func = SymbolMap.createSymbol
        create_symbols_func = SymbolMap.createSymbols
        alias_symbol_func = SymbolMap.alias
        variable_label_pairs = []

        # populate the symbol map in a single pass.
        #objective_list, constraint_list, sosconstraint_list, variable_list \
        #    = self._populate_symbol_map(model,
        #                                symbol_map,
        #                                labeler,
        #                                variable_symbol_map,
        #                                file_determinism=file_determinism)
        sortOrder = SortComponents.unsorted
        if file_determinism >= 1:
            sortOrder = sortOrder | SortComponents.indices
            if file_determinism >= 2:
                sortOrder = sortOrder | SortComponents.alphabetical

        #
        # Create variable symbols (and cache the block list)
        #
        all_blocks = []
        variable_list = []
        for block in model.block_data_objects(active=True, sort=sortOrder):

            all_blocks.append(block)

            for vardata in block.component_data_objects(Var,
                                                        active=True,
                                                        sort=sortOrder,
                                                        descend_into=False):

                variable_list.append(vardata)
                variable_label_pairs.append(
                    (vardata, create_symbol_func(symbol_map, vardata,
                                                 labeler)))

        variable_symbol_map.addSymbols(variable_label_pairs)

        # and extract the information we'll need for rapid labeling.
        object_symbol_dictionary = symbol_map.byObject
        variable_symbol_dictionary = variable_symbol_map.byObject

        # cache - these are called all the time.
        print_expr_canonical = self._print_expr_canonical

        # print the model name and the source, so we know roughly where
        # it came from.
        #
        # NOTE: this *must* use the "\* ... *\" comment format: the GLPK
        # LP parser does not correctly handle other formats (notably, "%").
        output_file.write("\\* Source Pyomo model name=%s *\\\n\n" %
                          (model.name, ))

        #
        # Objective
        #

        supports_quadratic_objective = \
            solver_capability('quadratic_objective')

        numObj = 0
        onames = []
        for block in all_blocks:

            gen_obj_canonical_repn = \
                getattr(block, "_gen_obj_canonical_repn", True)

            # Get/Create the ComponentMap for the repn
            if not hasattr(block, '_canonical_repn'):
                block._canonical_repn = ComponentMap()
            block_canonical_repn = block._canonical_repn

            for objective_data in block.component_data_objects(
                    Objective, active=True, sort=sortOrder,
                    descend_into=False):

                numObj += 1
                onames.append(objective_data.name)
                if numObj > 1:
                    raise ValueError(
                        "More than one active objective defined for input "
                        "model '%s'; Cannot write legal LP file\n"
                        "Objectives: %s" % (model.name, ' '.join(onames)))

                create_symbol_func(symbol_map, objective_data, labeler)

                symbol_map.alias(objective_data, '__default_objective__')
                if objective_data.is_minimizing():
                    output_file.write("min \n")
                else:
                    output_file.write("max \n")

                if gen_obj_canonical_repn:
                    canonical_repn = \
                        generate_canonical_repn(objective_data.expr)
                    block_canonical_repn[objective_data] = canonical_repn
                else:
                    canonical_repn = block_canonical_repn[objective_data]

                degree = canonical_degree(canonical_repn)

                if degree == 0:
                    logger.warning(
                        "Constant objective detected, replacing "
                        "with a placeholder to prevent solver failure.")
                    force_objective_constant = True
                elif degree == 2:
                    if not supports_quadratic_objective:
                        raise RuntimeError(
                            "Selected solver is unable to handle "
                            "objective functions with quadratic terms. "
                            "Objective at issue: %s." % objective_data.name)
                elif degree != 1:
                    raise RuntimeError(
                        "Cannot write legal LP file.  Objective '%s' "
                        "has nonlinear terms that are not quadratic." %
                        objective_data.name)

                output_file.write(
                    object_symbol_dictionary[id(objective_data)] + ':\n')

                offset = print_expr_canonical(
                    canonical_repn,
                    output_file,
                    object_symbol_dictionary,
                    variable_symbol_dictionary,
                    True,
                    column_order,
                    force_objective_constant=force_objective_constant)

        if numObj == 0:
            raise ValueError(
                "ERROR: No objectives defined for input model '%s'; "
                " cannot write legal LP file" % str(model.name))

        # Constraints
        #
        # If there are no non-trivial constraints, you'll end up with an empty
        # constraint block. CPLEX is OK with this, but GLPK isn't. And
        # eliminating the constraint block (i.e., the "s.t." line) causes GLPK
        # to whine elsewhere. Output a warning if the constraint block is empty,
        # so users can quickly determine the cause of the solve failure.

        output_file.write("\n")
        output_file.write("s.t.\n")
        output_file.write("\n")

        have_nontrivial = False

        supports_quadratic_constraint = solver_capability(
            'quadratic_constraint')

        def constraint_generator():
            for block in all_blocks:

                gen_con_canonical_repn = \
                    getattr(block, "_gen_con_canonical_repn", True)

                # Get/Create the ComponentMap for the repn
                if not hasattr(block, '_canonical_repn'):
                    block._canonical_repn = ComponentMap()
                block_canonical_repn = block._canonical_repn

                for constraint_data in block.component_data_objects(
                        Constraint,
                        active=True,
                        sort=sortOrder,
                        descend_into=False):

                    if isinstance(constraint_data, LinearCanonicalRepn):
                        canonical_repn = constraint_data
                    else:
                        if gen_con_canonical_repn:
                            canonical_repn = generate_canonical_repn(
                                constraint_data.body)
                            block_canonical_repn[
                                constraint_data] = canonical_repn
                        else:
                            canonical_repn = block_canonical_repn[
                                constraint_data]

                    yield constraint_data, canonical_repn

        if row_order is not None:
            sorted_constraint_list = list(constraint_generator())
            sorted_constraint_list.sort(key=lambda x: row_order[x[0]])

            def yield_all_constraints():
                for constraint_data, canonical_repn in sorted_constraint_list:
                    yield constraint_data, canonical_repn
        else:
            yield_all_constraints = constraint_generator

        # FIXME: This is a hack to get nested blocks working...
        eq_string_template = "= %" + self._precision_string + '\n'
        geq_string_template = ">= %" + self._precision_string + '\n\n'
        leq_string_template = "<= %" + self._precision_string + '\n\n'
        for constraint_data, canonical_repn in yield_all_constraints():
            have_nontrivial = True

            degree = canonical_degree(canonical_repn)

            #
            # Write constraint
            #

            # There are conditions, e.g., when fixing variables, under which
            # a constraint block might be empty.  Ignore these, for both
            # practical reasons and the fact that the CPLEX LP format
            # requires a variable in the constraint body.  It is also
            # possible that the body of the constraint consists of only a
            # constant, in which case the "variable" of
            if degree == 0:
                if skip_trivial_constraints:
                    continue
            elif degree == 2:
                if not supports_quadratic_constraint:
                    raise ValueError(
                        "Solver unable to handle quadratic expressions. Constraint"
                        " at issue: '%s'" % (constraint_data.name))
            elif degree != 1:
                raise ValueError(
                    "Cannot write legal LP file.  Constraint '%s' has a body "
                    "with nonlinear terms." % (constraint_data.name))

            # Create symbol
            con_symbol = create_symbol_func(symbol_map, constraint_data,
                                            labeler)

            if constraint_data.equality:
                label = 'c_e_' + con_symbol + '_'
                alias_symbol_func(symbol_map, constraint_data, label)
                output_file.write(label + ':\n')
                offset = print_expr_canonical(canonical_repn, output_file,
                                              object_symbol_dictionary,
                                              variable_symbol_dictionary,
                                              False, column_order)
                bound = constraint_data.lower
                bound = self._get_bound(bound) - offset
                output_file.write(eq_string_template %
                                  (_no_negative_zero(bound)))
                output_file.write("\n")
            else:
                if constraint_data.lower is not None:
                    if constraint_data.upper is not None:
                        label = 'r_l_' + con_symbol + '_'
                    else:
                        label = 'c_l_' + con_symbol + '_'
                    alias_symbol_func(symbol_map, constraint_data, label)
                    output_file.write(label + ':\n')
                    offset = print_expr_canonical(canonical_repn, output_file,
                                                  object_symbol_dictionary,
                                                  variable_symbol_dictionary,
                                                  False, column_order)
                    bound = constraint_data.lower
                    bound = self._get_bound(bound) - offset
                    output_file.write(geq_string_template %
                                      (_no_negative_zero(bound)))
                if constraint_data.upper is not None:
                    if constraint_data.lower is not None:
                        label = 'r_u_' + con_symbol + '_'
                    else:
                        label = 'c_u_' + con_symbol + '_'
                    alias_symbol_func(symbol_map, constraint_data, label)
                    output_file.write(label + ':\n')
                    offset = print_expr_canonical(canonical_repn, output_file,
                                                  object_symbol_dictionary,
                                                  variable_symbol_dictionary,
                                                  False, column_order)
                    bound = constraint_data.upper
                    bound = self._get_bound(bound) - offset
                    output_file.write(leq_string_template %
                                      (_no_negative_zero(bound)))

        if not have_nontrivial:
            logger.warning('Empty constraint block written in LP format '  \
                  '- solver may error')

        # the CPLEX LP format doesn't allow constants in the objective (or
        # constraint body), which is a bit silly.  To avoid painful
        # book-keeping, we introduce the following "variable", constrained
        # to the value 1.  This is used when quadratic terms are present.
        # worst-case, if not used, is that CPLEX easily pre-processes it out.
        prefix = ""
        output_file.write('%sc_e_ONE_VAR_CONSTANT: \n' % prefix)
        output_file.write('%sONE_VAR_CONSTANT = 1.0\n' % prefix)
        output_file.write("\n")

        # SOS constraints
        #
        # For now, we write out SOS1 and SOS2 constraints in the cplex format
        #
        # All Component objects are stored in model._component, which is a
        # dictionary of {class: {objName: object}}.
        #
        # Consider the variable X,
        #
        #   model.X = Var(...)
        #
        # We print X to CPLEX format as X(i,j,k,...) where i, j, k, ... are the
        # indices of X.
        #
        SOSlines = StringIO()
        sos1 = solver_capability("sos1")
        sos2 = solver_capability("sos2")
        writtenSOS = False
        for block in all_blocks:

            for soscondata in block.component_data_objects(SOSConstraint,
                                                           active=True,
                                                           sort=sortOrder,
                                                           descend_into=False):

                create_symbol_func(symbol_map, soscondata, labeler)

                level = soscondata.level
                if (level == 1 and not sos1) or \
                   (level == 2 and not sos2) or \
                   (level > 2):
                    raise ValueError(
                        "Solver does not support SOS level %s constraints" %
                        (level))
                if writtenSOS == False:
                    SOSlines.write("SOS\n")
                    writtenSOS = True
                # This updates the referenced_variable_ids, just in case
                # there is a variable that only appears in an
                # SOSConstraint, in which case this needs to be known
                # before we write the "bounds" section (Cplex does not
                # handle this correctly, Gurobi does)
                self.printSOS(symbol_map, labeler, variable_symbol_map,
                              soscondata, SOSlines)

        #
        # Bounds
        #

        output_file.write("bounds\n")

        # Scan all variables even if we're only writing a subset of them.
        # required because we don't store maps by variable type currently.

        # FIXME: This is a hack to get nested blocks working...
        lb_string_template = "%" + self._precision_string + " <= "
        ub_string_template = " <= %" + self._precision_string + "\n"
        # Track the number of integer and binary variables, so you can
        # output their status later.
        integer_vars = []
        binary_vars = []
        for vardata in variable_list:

            # TODO: We could just loop over the set of items in
            #       self._referenced_variable_ids, except this is
            #       a dictionary that is hashed by id(vardata)
            #       which would make the bounds section
            #       nondeterministic (bad for unit testing)
            if (not include_all_variable_bounds) and \
               (id(vardata) not in self._referenced_variable_ids):
                continue

            if vardata.fixed:
                if not output_fixed_variable_bounds:
                    raise ValueError(
                        "Encountered a fixed variable (%s) inside an active "
                        "objective or constraint expression on model %s, which is "
                        "usually indicative of a preprocessing error. Use the "
                        "IO-option 'output_fixed_variable_bounds=True' to suppress "
                        "this error and fix the variable by overwriting its bounds "
                        "in the LP file." % (vardata.name, model.name))
                if vardata.value is None:
                    raise ValueError(
                        "Variable cannot be fixed to a value of None.")
                vardata_lb = value(vardata.value)
                vardata_ub = value(vardata.value)
            else:
                vardata_lb = self._get_bound(vardata.lb)
                vardata_ub = self._get_bound(vardata.ub)

            name_to_output = variable_symbol_dictionary[id(vardata)]

            # track the number of integer and binary variables, so we know whether
            # to output the general / binary sections below.
            if vardata.is_binary():
                binary_vars.append(name_to_output)
            elif vardata.is_integer():
                integer_vars.append(name_to_output)
            elif not vardata.is_continuous():
                raise TypeError(
                    "Invalid domain type for variable with name '%s'. "
                    "Variable is not continuous, integer, or binary." %
                    (vardata.name))

            # in the CPLEX LP file format, the default variable
            # bounds are 0 and +inf.  These bounds are in
            # conflict with Pyomo, which assumes -inf and +inf
            # (which we would argue is more rational).
            output_file.write("   ")
            if (vardata_lb is not None) and (vardata_lb != -infinity):
                output_file.write(lb_string_template %
                                  (_no_negative_zero(vardata_lb)))
            else:
                output_file.write(" -inf <= ")
            if name_to_output == "e":
                raise ValueError(
                    "Attempting to write variable with name 'e' in a CPLEX LP "
                    "formatted file will cause a parse failure due to confusion with "
                    "numeric values expressed in scientific notation")

            output_file.write(name_to_output)
            if (vardata_ub is not None) and (vardata_ub != infinity):
                output_file.write(ub_string_template %
                                  (_no_negative_zero(vardata_ub)))
            else:
                output_file.write(" <= +inf\n")

        if len(integer_vars) > 0:

            output_file.write("general\n")
            for var_name in integer_vars:
                output_file.write('  %s\n' % var_name)

        if len(binary_vars) > 0:

            output_file.write("binary\n")
            for var_name in binary_vars:
                output_file.write('  %s\n' % var_name)

        # Write the SOS section
        output_file.write(SOSlines.getvalue())

        #
        # wrap-up
        #
        output_file.write("end\n")

        # Clean up the symbol map to only contain variables referenced
        # in the active constraints **Note**: warm start method may
        # rely on this for choosing the set of potential warm start
        # variables
        vars_to_delete = set(variable_symbol_map.byObject.keys()) - \
                         set(self._referenced_variable_ids.keys())
        sm_byObject = symbol_map.byObject
        sm_bySymbol = symbol_map.bySymbol
        var_sm_byObject = variable_symbol_map.byObject
        for varid in vars_to_delete:
            symbol = var_sm_byObject[varid]
            del sm_byObject[varid]
            del sm_bySymbol[symbol]
        del variable_symbol_map

        return symbol_map
コード例 #6
0
ファイル: gurobi_direct.py プロジェクト: Juanlu001/pyomo
    def _populate_gurobi_instance (self, pyomo_instance):

        from pyomo.core.base import Var, Objective, Constraint, SOSConstraint
        from pyomo.repn import LinearCanonicalRepn, canonical_degree

        try:
            grbmodel = Model(name=pyomo_instance.name)
        except Exception:
            e = sys.exc_info()[1]
            msg = 'Unable to create Gurobi model.  Have you installed the Python'\
            '\n       bindings for Gurobi?\n\n\tError message: %s'
            raise Exception(msg % e)

        if self._symbolic_solver_labels:
            labeler = TextLabeler()
        else:
            labeler = NumericLabeler('x')
        # cache to avoid dictionary getitem calls in the loops below.
        self_symbol_map = self._symbol_map = SymbolMap()
        pyomo_instance.solutions.add_symbol_map(self_symbol_map)
        self._smap_id = id(self_symbol_map)

        # we use this when iterating over the constraints because it
        # will have a much smaller hash table, we also use this for
        # the warm start code after it is cleaned to only contain
        # variables referenced in the constraints
        self_variable_symbol_map = self._variable_symbol_map = SymbolMap()
        var_symbol_pairs = []

        # maps _VarData labels to the corresponding Gurobi variable object
        pyomo_gurobi_variable_map = {}

        self._referenced_variable_ids.clear()

        # cache to avoid dictionary getitem calls in the loop below.
        grb_infinity = GRB.INFINITY

        for var_value in pyomo_instance.component_data_objects(Var, active=True):

            lb = -grb_infinity
            ub = grb_infinity

            if (var_value.lb is not None) and (var_value.lb != -infinity):
                lb = value(var_value.lb)
            if (var_value.ub is not None) and (var_value.ub != infinity):
                ub = value(var_value.ub)

            # _VarValue objects will not be in the symbol map yet, so
            # avoid some checks.
            var_value_label = self_symbol_map.createSymbol(var_value, labeler)
            var_symbol_pairs.append((var_value, var_value_label))

            # be sure to impart the integer and binary nature of any variables
            if var_value.is_integer():
                var_type = GRB.INTEGER
            elif var_value.is_binary():
                var_type = GRB.BINARY
            elif var_value.is_continuous():
                var_type = GRB.CONTINUOUS
            else:
                raise TypeError("Invalid domain type for variable with name '%s'. "
                                "Variable is not continuous, integer, or binary.")

            pyomo_gurobi_variable_map[var_value_label] = \
                grbmodel.addVar(lb=lb, \
                                ub=ub, \
                                vtype=var_type, \
                                name=var_value_label)

        self_variable_symbol_map.addSymbols(var_symbol_pairs)

        grbmodel.update()

        # The next loop collects the following component types from the model:
        #  - SOSConstraint
        #  - Objective
        #  - Constraint
        sos1 = self._capabilities.sos1
        sos2 = self._capabilities.sos2
        modelSOS = ModelSOS()
        objective_cntr = 0
        # Track the range constraints and their associated variables added by gurobi
        self._last_native_var_idx = grbmodel.NumVars-1
        range_var_idx = grbmodel.NumVars
        _self_range_con_var_pairs = self._range_con_var_pairs = []
        for block in pyomo_instance.block_data_objects(active=True):

            gen_obj_canonical_repn = \
                getattr(block, "_gen_obj_canonical_repn", True)
            gen_con_canonical_repn = \
                getattr(block, "_gen_con_canonical_repn", True)
            # Get/Create the ComponentMap for the repn
            if not hasattr(block,'_canonical_repn'):
                block._canonical_repn = ComponentMap()
            block_canonical_repn = block._canonical_repn

            # SOSConstraints
            for soscondata in block.component_data_objects(SOSConstraint,
                                                           active=True,
                                                           descend_into=False):
                level = soscondata.level
                if (level == 1 and not sos1) or \
                   (level == 2 and not sos2) or \
                   (level > 2):
                    raise RuntimeError(
                        "Solver does not support SOS level %s constraints" % (level,))
                modelSOS.count_constraint(self_symbol_map,
                                          labeler,
                                          self_variable_symbol_map,
                                          pyomo_gurobi_variable_map,
                                          soscondata)

            # Objective
            for obj_data in block.component_data_objects(Objective,
                                                         active=True,
                                                         descend_into=False):

                if objective_cntr > 1:
                    raise ValueError(
                        "Multiple active objectives found on Pyomo instance '%s'. "
                        "Solver '%s' will only handle a single active objective" \
                        % (pyomo_instance.cname(True), self.type))

                sense = GRB_MIN if (obj_data.is_minimizing()) else GRB_MAX
                grbmodel.ModelSense = sense
                obj_expr = LinExpr()

                if gen_obj_canonical_repn:
                    obj_repn = generate_canonical_repn(obj_data.expr)
                    block_canonical_repn[obj_data] = obj_repn
                else:
                    obj_repn = block_canonical_repn[obj_data]

                if isinstance(obj_repn, LinearCanonicalRepn):

                    if obj_repn.constant != None:
                        obj_expr.addConstant(obj_repn.constant)

                    if obj_repn.linear != None:

                        for i in xrange(len(obj_repn.linear)):
                            var_coefficient = obj_repn.linear[i]
                            var_value = obj_repn.variables[i]
                            self._referenced_variable_ids.add(id(var_value))
                            label = self_variable_symbol_map.getSymbol(var_value)
                            obj_expr.addTerms(var_coefficient,
                                              pyomo_gurobi_variable_map[label])
                else:

                    if 0 in obj_repn: # constant term
                        obj_expr.addConstant(obj_repn[0][None])

                    if 1 in obj_repn: # first-order terms
                        hash_to_variable_map = obj_repn[-1]
                        for var_hash, var_coefficient in iteritems(obj_repn[1]):
                            vardata = hash_to_variable_map[var_hash]
                            self._referenced_variable_ids.add(id(vardata))
                            label = self_variable_symbol_map.getSymbol(vardata)
                            obj_expr.addTerms(var_coefficient,
                                              pyomo_gurobi_variable_map[label])

                    if 2 in obj_repn:
                        obj_expr = QuadExpr(obj_expr)
                        hash_to_variable_map = obj_repn[-1]
                        for quad_repn, coef in iteritems(obj_repn[2]):
                            gurobi_expr = QuadExpr(coef)
                            for var_hash, exponent in iteritems(quad_repn):
                                vardata = hash_to_variable_map[var_hash]
                                self._referenced_variable_ids.add(id(vardata))
                                gurobi_var = pyomo_gurobi_variable_map\
                                             [self_variable_symbol_map.\
                                              getSymbol(vardata)]
                                gurobi_expr *= gurobi_var
                                if exponent == 2:
                                    gurobi_expr *= gurobi_var
                            obj_expr += gurobi_expr

                    degree = canonical_degree(obj_repn)
                    if (degree is None) or (degree > 2):
                        raise ValueError(
                            "gurobi_direct plugin does not support general nonlinear "
                            "objective expressions (only linear or quadratic).\n"
                            "Objective: %s" % (obj_data.cname(True)))

                # need to cache the objective label, because the
                # GUROBI python interface doesn't track this.
                # _ObjectiveData objects will not be in the symbol map
                # yet, so avoid some checks.
                self._objective_label = \
                    self_symbol_map.createSymbol(obj_data, labeler)

                grbmodel.setObjective(obj_expr, sense=sense)

            # Constraint
            for constraint_data in block.component_data_objects(Constraint,
                                                                active=True,
                                                                descend_into=False):

                if (constraint_data.lower is None) and \
                   (constraint_data.upper is None):
                    continue  # not binding at all, don't bother

                con_repn = None
                if isinstance(constraint_data, LinearCanonicalRepn):
                    con_repn = constraint_data
                else:
                    if gen_con_canonical_repn:
                        con_repn = generate_canonical_repn(constraint_data.body)
                        block_canonical_repn[constraint_data] = con_repn
                    else:
                        con_repn = block_canonical_repn[constraint_data]

                offset = 0.0
                # _ConstraintData objects will not be in the symbol
                # map yet, so avoid some checks.
                constraint_label = \
                    self_symbol_map.createSymbol(constraint_data, labeler)

                trivial = False
                if isinstance(con_repn, LinearCanonicalRepn):

                    #
                    # optimization (these might be generated on the fly)
                    #
                    constant = con_repn.constant
                    coefficients = con_repn.linear
                    variables = con_repn.variables

                    if constant is not None:
                        offset = constant
                    expr = LinExpr() + offset

                    if coefficients is not None:

                        linear_coefs = list()
                        linear_vars = list()

                        for i in xrange(len(coefficients)):

                            var_coefficient = coefficients[i]
                            var_value = variables[i]
                            self._referenced_variable_ids.add(id(var_value))
                            label = self_variable_symbol_map.getSymbol(var_value)
                            linear_coefs.append(var_coefficient)
                            linear_vars.append(pyomo_gurobi_variable_map[label])

                        expr += LinExpr(linear_coefs, linear_vars)

                    else:

                        trivial = True

                else:

                    if 0 in con_repn:
                        offset = con_repn[0][None]
                    expr = LinExpr() + offset

                    if 1 in con_repn: # first-order terms

                        linear_coefs = list()
                        linear_vars = list()

                        hash_to_variable_map = con_repn[-1]
                        for var_hash, var_coefficient in iteritems(con_repn[1]):
                            var = hash_to_variable_map[var_hash]
                            self._referenced_variable_ids.add(id(var))
                            label = self_variable_symbol_map.getSymbol(var)
                            linear_coefs.append( var_coefficient )
                            linear_vars.append( pyomo_gurobi_variable_map[label] )

                        expr += LinExpr(linear_coefs, linear_vars)

                    if 2 in con_repn: # quadratic constraint
                        if _GUROBI_VERSION_MAJOR < 5:
                            raise ValueError(
                                "The gurobi_direct plugin does not handle quadratic "
                                "constraint expressions for Gurobi major versions "
                                "< 5. Current version: Gurobi %s.%s%s"
                                % (gurobi.version()))

                        expr = QuadExpr(expr)
                        hash_to_variable_map = con_repn[-1]
                        for quad_repn, coef in iteritems(con_repn[2]):
                            gurobi_expr = QuadExpr(coef)
                            for var_hash, exponent in iteritems(quad_repn):
                                vardata = hash_to_variable_map[var_hash]
                                self._referenced_variable_ids.add(id(vardata))
                                gurobi_var = pyomo_gurobi_variable_map\
                                             [self_variable_symbol_map.\
                                              getSymbol(vardata)]
                                gurobi_expr *= gurobi_var
                                if exponent == 2:
                                    gurobi_expr *= gurobi_var
                            expr += gurobi_expr

                    degree = canonical_degree(con_repn)
                    if (degree is None) or (degree > 2):
                        raise ValueError(
                            "gurobi_direct plugin does not support general nonlinear "
                            "constraint expressions (only linear or quadratic).\n"
                            "Constraint: %s" % (constraint_data.cname(True)))

                if (not trivial) or (not self._skip_trivial_constraints):

                    if constraint_data.equality:
                        sense = GRB.EQUAL
                        bound = self._get_bound(constraint_data.lower)
                        grbmodel.addConstr(lhs=expr,
                                           sense=sense,
                                           rhs=bound,
                                           name=constraint_label)
                    else:
                        # L <= body <= U
                        if (constraint_data.upper is not None) and \
                           (constraint_data.lower is not None):
                            grb_con = grbmodel.addRange(
                                expr,
                                self._get_bound(constraint_data.lower),
                                self._get_bound(constraint_data.upper),
                                constraint_label)
                            _self_range_con_var_pairs.append((grb_con,range_var_idx))
                            range_var_idx += 1
                        # body <= U
                        elif constraint_data.upper is not None:
                            bound = self._get_bound(constraint_data.upper)
                            if bound < float('inf'):
                                grbmodel.addConstr(
                                    lhs=expr,
                                    sense=GRB.LESS_EQUAL,
                                    rhs=bound,
                                    name=constraint_label
                                    )
                        # L <= body
                        else:
                            bound = self._get_bound(constraint_data.lower)
                            if bound > -float('inf'):
                                grbmodel.addConstr(
                                    lhs=expr,
                                    sense=GRB.GREATER_EQUAL,
                                    rhs=bound,
                                    name=constraint_label
                                    )

        if modelSOS.sosType:
            for key in modelSOS.sosType:
                grbmodel.addSOS(modelSOS.sosType[key], \
                                modelSOS.varnames[key], \
                                modelSOS.weights[key] )
                self._referenced_variable_ids.update(modelSOS.varids[key])

        for var_id in self._referenced_variable_ids:
            varname = self._variable_symbol_map.byObject[var_id]
            vardata = self._variable_symbol_map.bySymbol[varname]()
            if vardata.fixed:
                if not self._output_fixed_variable_bounds:
                    raise ValueError("Encountered a fixed variable (%s) inside an active objective "
                                     "or constraint expression on model %s, which is usually indicative of "
                                     "a preprocessing error. Use the IO-option 'output_fixed_variable_bounds=True' "
                                     "to suppress this error and fix the variable by overwriting its bounds in "
                                     "the Gurobi instance."
                                     % (vardata.cname(True),pyomo_instance.cname(True),))

                grbvar = pyomo_gurobi_variable_map[varname]
                grbvar.setAttr(GRB.Attr.UB, vardata.value)
                grbvar.setAttr(GRB.Attr.LB, vardata.value)

        grbmodel.update()

        self._gurobi_instance = grbmodel
        self._pyomo_gurobi_variable_map = pyomo_gurobi_variable_map
コード例 #7
0
ファイル: mps.py プロジェクト: coopercenter/temoatools
    def _print_model_MPS(self,
                         model,
                         output_file,
                         solver_capability,
                         labeler,
                         output_fixed_variable_bounds=False,
                         file_determinism=1,
                         row_order=None,
                         column_order=None,
                         skip_trivial_constraints=False,
                         force_objective_constant=False,
                         include_all_variable_bounds=False,
                         skip_objective_sense=False):

        symbol_map = SymbolMap()
        variable_symbol_map = SymbolMap()
        # NOTE: we use createSymbol instead of getSymbol because we
        #       know whether or not the symbol exists, and don't want
        #       to the overhead of error/duplicate checking.
        # cache frequently called functions
        extract_variable_coefficients = self._extract_variable_coefficients
        create_symbol_func = SymbolMap.createSymbol
        create_symbols_func = SymbolMap.createSymbols
        alias_symbol_func = SymbolMap.alias
        variable_label_pairs = []

        sortOrder = SortComponents.unsorted
        if file_determinism >= 1:
            sortOrder = sortOrder | SortComponents.indices
            if file_determinism >= 2:
                sortOrder = sortOrder | SortComponents.alphabetical

        #
        # Create variable symbols (and cache the block list)
        #
        all_blocks = []
        variable_list = []
        for block in model.block_data_objects(active=True,
                                              sort=sortOrder):

            all_blocks.append(block)

            for vardata in block.component_data_objects(
                    Var,
                    active=True,
                    sort=sortOrder,
                    descend_into=False):

                variable_list.append(vardata)
                variable_label_pairs.append(
                    (vardata,create_symbol_func(symbol_map,
                                                vardata,
                                                labeler)))

        variable_symbol_map.addSymbols(variable_label_pairs)

        # and extract the information we'll need for rapid labeling.
        object_symbol_dictionary = symbol_map.byObject
        variable_symbol_dictionary = variable_symbol_map.byObject

        # sort the variable ordering by the user
        # column_order ComponentMap
        if column_order is not None:
            variable_list.sort(key=lambda _x: column_order[_x])

        # prepare to hold the sparse columns
        variable_to_column = ComponentMap(
            (vardata, i) for i, vardata in enumerate(variable_list))
        # add one position for ONE_VAR_CONSTANT
        column_data = [[] for i in xrange(len(variable_list)+1)]
        quadobj_data = []
        quadmatrix_data = []
        # constraint rhs
        rhs_data = []

        # print the model name and the source, so we know
        # roughly where
        output_file.write("* Source:     Pyomo MPS Writer\n")
        output_file.write("* Format:     Free MPS\n")
        output_file.write("*\n")
        output_file.write("NAME %s\n" % (model.name,))

        #
        # ROWS section
        #

        objective_label = None
        numObj = 0
        onames = []
        for block in all_blocks:

            gen_obj_canonical_repn = \
                getattr(block, "_gen_obj_canonical_repn", True)

            # Get/Create the ComponentMap for the repn
            if not hasattr(block,'_canonical_repn'):
                block._canonical_repn = ComponentMap()
            block_canonical_repn = block._canonical_repn
            for objective_data in block.component_data_objects(
                    Objective,
                    active=True,
                    sort=sortOrder,
                    descend_into=False):

                numObj += 1
                onames.append(objective_data.cname())
                if numObj > 1:
                    raise ValueError(
                        "More than one active objective defined for input "
                        "model '%s'; Cannot write legal MPS file\n"
                        "Objectives: %s" % (model.cname(True), ' '.join(onames)))

                objective_label = create_symbol_func(symbol_map,
                                                     objective_data,
                                                     labeler)

                symbol_map.alias(objective_data, '__default_objective__')
                if not skip_objective_sense:
                    output_file.write("OBJSENSE\n")
                    if objective_data.is_minimizing():
                        output_file.write(" MIN\n")
                    else:
                        output_file.write(" MAX\n")
                # This section is not recognized by the COIN-OR
                # MPS reader
                #output_file.write("OBJNAME\n")
                #output_file.write(" %s\n" % (objective_label))
                output_file.write("ROWS\n")
                output_file.write(" N  %s\n" % (objective_label))

                if gen_obj_canonical_repn:
                    canonical_repn = \
                        generate_canonical_repn(objective_data.expr)
                    block_canonical_repn[objective_data] = canonical_repn
                else:
                    canonical_repn = block_canonical_repn[objective_data]

                degree = canonical_degree(canonical_repn)
                if degree == 0:
                    print("Warning: Constant objective detected, replacing "
                          "with a placeholder to prevent solver failure.")
                    force_objective_constant = True
                elif (degree != 1) and (degree != 2):
                    raise RuntimeError(
                        "Cannot write legal MPS file. Objective '%s' "
                        "has nonlinear terms that are not quadratic."
                        % objective_data.cname(True))

                constant = extract_variable_coefficients(
                    objective_label,
                    canonical_repn,
                    column_data,
                    quadobj_data,
                    variable_to_column)
                if force_objective_constant or (constant != 0.0):
                    # ONE_VAR_CONSTANT
                    column_data[-1].append((objective_label, constant))

        if numObj == 0:
            raise ValueError(
                "Cannot write legal MPS file: No objective defined "
                "for input model '%s'." % str(model))
        assert objective_label is not None

        # Constraints
        def constraint_generator():
            for block in all_blocks:

                gen_con_canonical_repn = \
                    getattr(block, "_gen_con_canonical_repn", True)

                # Get/Create the ComponentMap for the repn
                if not hasattr(block,'_canonical_repn'):
                    block._canonical_repn = ComponentMap()
                block_canonical_repn = block._canonical_repn

                for constraint_data in block.component_data_objects(
                        Constraint,
                        active=True,
                        sort=sortOrder,
                        descend_into=False):

                    if isinstance(constraint_data, LinearCanonicalRepn):
                        canonical_repn = constraint_data
                    else:
                        if gen_con_canonical_repn:
                            canonical_repn = generate_canonical_repn(
                                constraint_data.body)
                            block_canonical_repn[constraint_data] = canonical_repn
                        else:
                            canonical_repn = block_canonical_repn[constraint_data]

                    yield constraint_data, canonical_repn

        if row_order is not None:
            sorted_constraint_list = list(constraint_generator())
            sorted_constraint_list.sort(key=lambda x: row_order[x[0]])
            def yield_all_constraints():
                for constraint_data, canonical_repn in sorted_constraint_list:
                    yield constraint_data, canonical_repn
        else:
            yield_all_constraints = constraint_generator

        for constraint_data, canonical_repn in yield_all_constraints():

            degree = canonical_degree(canonical_repn)

            # Write constraint
            if degree == 0:
                if skip_trivial_constraints:
                    continue
            elif (degree != 1) and (degree != 2):
                raise RuntimeError(
                    "Cannot write legal MPS file. Constraint '%s' "
                    "has nonlinear terms that are not quadratic."
                    % constraint_data.cname(True))

            # Create symbol
            con_symbol = create_symbol_func(symbol_map,
                                            constraint_data,
                                            labeler)

            if constraint_data.equality:
                label = 'c_e_' + con_symbol + '_'
                alias_symbol_func(symbol_map, constraint_data, label)
                output_file.write(" E  %s\n" % (label))
                offset = extract_variable_coefficients(
                    label,
                    canonical_repn,
                    column_data,
                    quadmatrix_data,
                    variable_to_column)
                bound = constraint_data.lower
                bound = self._get_bound(bound) - offset
                rhs_data.append((label, bound))
            else:
                if constraint_data.lower is not None:
                    if constraint_data.upper is not None:
                        label = 'r_l_' + con_symbol + '_'
                    else:
                        label = 'c_l_' + con_symbol + '_'
                    alias_symbol_func(symbol_map, constraint_data, label)
                    output_file.write(" G  %s\n" % (label))
                    offset = extract_variable_coefficients(
                        label,
                        canonical_repn,
                        column_data,
                        quadmatrix_data,
                        variable_to_column)
                    bound = constraint_data.lower
                    bound = self._get_bound(bound) - offset
                    rhs_data.append((label, bound))
                if constraint_data.upper is not None:
                    if constraint_data.lower is not None:
                        label = 'r_u_' + con_symbol + '_'
                    else:
                        label = 'c_u_' + con_symbol + '_'
                    alias_symbol_func(symbol_map, constraint_data, label)
                    output_file.write(" L  %s\n" % (label))
                    offset = extract_variable_coefficients(
                        label,
                        canonical_repn,
                        column_data,
                        quadmatrix_data,
                        variable_to_column)
                    bound = constraint_data.upper
                    bound = self._get_bound(bound) - offset
                    rhs_data.append((label, bound))

        if len(column_data[-1]) > 0:
            # ONE_VAR_CONSTANT = 1
            output_file.write(" E  c_e_ONE_VAR_CONSTANT\n")
            column_data[-1].append(("c_e_ONE_VAR_CONSTANT",1))
            rhs_data.append(("c_e_ONE_VAR_CONSTANT",1))

        #
        # COLUMNS section
        #
        column_template = "     %s %s %"+self._precision_string+"\n"
        output_file.write("COLUMNS\n")
        cnt = 0
        for vardata in variable_list:
            col_entries = column_data[variable_to_column[vardata]]
            cnt += 1
            if len(col_entries) > 0:
                var_label = variable_symbol_dictionary[id(vardata)]
                for i, (row_label, coef) in enumerate(col_entries):
                    output_file.write(column_template % (var_label,
                                                         row_label,
                                                         coef))
            elif include_all_variable_bounds:
                # the column is empty, so add a (0 * var)
                # term to the objective
                # * Note that some solvers (e.g., Gurobi)
                #   will accept an empty column as a line
                #   with just the column name. This doesn't
                #   seem to work for CPLEX 12.6, so I am
                #   doing it this way so that it will work for both
                var_label = variable_symbol_dictionary[id(vardata)]
                output_file.write(column_template % (var_label,
                                                     objective_label,
                                                     0))

        assert cnt == len(column_data)-1
        if len(column_data[-1]) > 0:
            col_entries = column_data[-1]
            var_label = "ONE_VAR_CONSTANT"
            for i, (row_label, coef) in enumerate(col_entries):
                output_file.write(column_template % (var_label,
                                                     row_label,
                                                     coef))

        #
        # RHS section
        #
        rhs_template = "     RHS %s %"+self._precision_string+"\n"
        output_file.write("RHS\n")
        for i, (row_label, rhs) in enumerate(rhs_data):
            output_file.write(rhs_template % (row_label, rhs))

        # SOS constraints
        SOSlines = StringIO()
        sos1 = solver_capability("sos1")
        sos2 = solver_capability("sos2")
        for block in all_blocks:

            for soscondata in block.component_data_objects(
                    SOSConstraint,
                    active=True,
                    sort=sortOrder,
                    descend_into=False):

                create_symbol_func(symbol_map, soscondata, labeler)

                level = soscondata.level
                if (level == 1 and not sos1) or \
                   (level == 2 and not sos2) or \
                   (level > 2):
                    raise ValueError(
                        "Solver does not support SOS level %s constraints" % (level))
                # This updates the referenced_variable_ids, just in case
                # there is a variable that only appears in an
                # SOSConstraint, in which case this needs to be known
                # before we write the "bounds" section (Cplex does not
                # handle this correctly, Gurobi does)
                self._printSOS(symbol_map,
                               labeler,
                               variable_symbol_map,
                               soscondata,
                               SOSlines)

        #
        # BOUNDS section
        #
        entry_template = "%s %"+self._precision_string+"\n"
        output_file.write("BOUNDS\n")
        for vardata in variable_list:
            if include_all_variable_bounds or \
               (id(vardata) in self._referenced_variable_ids):
                var_label = variable_symbol_dictionary[id(vardata)]
                if vardata.fixed:
                    if not output_fixed_variable_bounds:
                        raise ValueError(
                            "Encountered a fixed variable (%s) inside an active "
                            "objective or constraint expression on model %s, which is "
                            "usually indicative of a preprocessing error. Use the "
                            "IO-option 'output_fixed_variable_bounds=True' to suppress "
                            "this error and fix the variable by overwriting its bounds "
                            "in the MPS file." % (vardata.cname(True), model.cname(True)))
                    if vardata.value is None:
                        raise ValueError("Variable cannot be fixed to a value of None.")
                    output_file.write((" FX BOUND "+entry_template)
                                      % (var_label, value(vardata.value)))
                    continue

                vardata_lb = self._get_bound(vardata.lb)
                vardata_ub = self._get_bound(vardata.ub)
                # Make it harder for -0 to show up in
                # the output. This makes file diffing
                # for test baselines slightly less
                # annoying
                if vardata_lb == 0:
                    vardata_lb = 0
                if vardata_ub == 0:
                    vardata_ub = 0
                unbounded_lb = (vardata_lb is None) or (vardata_lb == -infinity)
                unbounded_ub = (vardata_ub is None) or (vardata_ub == infinity)
                treat_as_integer = False
                if vardata.is_binary():
                    if (vardata_lb == 0) and (vardata_ub == 1):
                        output_file.write(" BV BOUND %s\n" % (var_label))
                        continue
                    else:
                        # so we can add bounds
                        treat_as_integer = True
                if treat_as_integer or vardata.is_integer():
                    # Indicating unbounded integers is tricky because
                    # the only way to indicate a variable is integer
                    # is using the bounds section. Thus, we signify
                    # infinity with a large number (10E20)
                    # * Note: Gurobi allows values like inf and -inf
                    #         but CPLEX 12.6 does not, so I am just
                    #         using a large value
                    if not unbounded_lb:
                        output_file.write((" LI BOUND "+entry_template)
                                          % (var_label, vardata_lb))
                    else:
                        output_file.write(" LI BOUND %s -10E20\n" % (var_label))
                    if not unbounded_ub:
                        output_file.write((" UI BOUND "+entry_template)
                                          % (var_label, vardata_ub))
                    else:
                        output_file.write(" UI BOUND %s 10E20\n" % (var_label))
                else:
                    assert vardata.is_continuous()
                    if unbounded_lb and unbounded_ub:
                        output_file.write(" FR BOUND %s\n" % (var_label))
                    else:
                        if not unbounded_lb:
                            output_file.write((" LO BOUND "+entry_template)
                                              % (var_label, vardata_lb))
                        else:
                            output_file.write(" MI BOUND %s\n" % (var_label))

                        if not unbounded_ub:
                            output_file.write((" UP BOUND "+entry_template)
                                              % (var_label, vardata_ub))

        #
        # SOS section
        #
        output_file.write(SOSlines.getvalue())

        # Formatting of the next two sections comes from looking
        # at Gurobi and Cplex output

        #
        # QUADOBJ section
        #
        if len(quadobj_data) > 0:
            assert len(quadobj_data) == 1
            # it looks like the COIN-OR MPS Reader only
            # recognizes QUADOBJ (Gurobi and Cplex seem to
            # be okay with this)
            output_file.write("QUADOBJ\n")
            #output_file.write("QMATRIX\n")
            label, quad_terms = quadobj_data[0]
            assert label == objective_label
            for (var1, var2), coef in sorted(quad_terms,
                                             key=lambda _x: (variable_to_column[_x[0][0]],
                                                             variable_to_column[_x[0][1]])):
                var1_label = variable_symbol_dictionary[id(var1)]
                var2_label = variable_symbol_dictionary[id(var2)]
                # Don't forget that a quadratic objective is always
                # assumed to be divided by 2
                if var1_label == var2_label:
                    output_file.write(column_template % (var1_label,
                                                         var2_label,
                                                         coef * 2))
                else:
                    # the matrix needs to be symmetric so split
                    # the coefficient (but remember it is divided by 2)
                    output_file.write(column_template % (var1_label,
                                                         var2_label,
                                                         coef))
                    output_file.write(column_template % (var2_label,
                                                         var1_label,
                                                         coef))

        #
        # QCMATRIX section
        #
        if len(quadmatrix_data) > 0:
            for row_label, quad_terms in quadmatrix_data:
                output_file.write("QCMATRIX    %s\n" % (row_label))
                for (var1, var2), coef in sorted(quad_terms,
                                                 key=lambda _x: (variable_to_column[_x[0][0]],
                                                                 variable_to_column[_x[0][1]])):
                    var1_label = variable_symbol_dictionary[id(var1)]
                    var2_label = variable_symbol_dictionary[id(var2)]
                    if var1_label == var2_label:
                        output_file.write(column_template % (var1_label,
                                                             var2_label,
                                                             coef))
                    else:
                        # the matrix needs to be symmetric so split
                        # the coefficient
                        output_file.write(column_template % (var1_label,
                                                             var2_label,
                                                             coef * 0.5))
                        output_file.write(column_template % (var2_label,
                                                             var1_label,
                                                             coef * 0.5))

        output_file.write("ENDATA\n")

        # Clean up the symbol map to only contain variables referenced
        # in the active constraints **Note**: warm start method may
        # rely on this for choosing the set of potential warm start
        # variables
        vars_to_delete = set(variable_symbol_map.byObject.keys()) - \
                         set(self._referenced_variable_ids.keys())
        sm_byObject = symbol_map.byObject
        sm_bySymbol = symbol_map.bySymbol
        var_sm_byObject = variable_symbol_map.byObject
        for varid in vars_to_delete:
            symbol = var_sm_byObject[varid]
            del sm_byObject[varid]
            del sm_bySymbol[symbol]
        del variable_symbol_map

        return symbol_map
コード例 #8
0
ファイル: cpxlp.py プロジェクト: jay1yun/pyomo
    def _print_expr_canonical(self,
                              x,
                              output_file,
                              object_symbol_dictionary,
                              variable_symbol_dictionary,
                              is_objective,
                              column_order,
                              force_objective_constant=False):
        """
        Return a expression as a string in LP format.

        Note that this function does not handle any differences in LP format
        interpretation by the solvers (e.g. CPlex vs GLPK).  That decision is
        left up to the caller.

        required arguments:
          x: A Pyomo canonical expression to write in LP format
        """
        assert (not force_objective_constant) or (is_objective)

        # cache - this is referenced numerous times.
        if isinstance(x, LinearCanonicalRepn):
            var_hashes = None  # not needed
        else:
            var_hashes = x[-1]

        #
        # Linear
        #
        linear_coef_string_template = '%+' + self._precision_string + ' %s\n'
        if isinstance(x, LinearCanonicalRepn):

            #
            # optimization (these might be generated on the fly)
            #
            coefficients = x.linear
            if coefficients is not None:
                variables = x.variables

                # the 99% case is when the input instance is a linear
                # canonical expression, so the exception should be rare.
                for vardata in variables:
                    self._referenced_variable_ids[id(vardata)] = vardata

                if column_order is None:
                    sorted_names = [
                        (variable_symbol_dictionary[id(variables[i])],
                         coefficients[i])
                        for i in xrange(0, len(coefficients))
                    ]
                    sorted_names.sort()
                else:
                    sorted_names = [(variables[i], coefficients[i])
                                    for i in xrange(0, len(coefficients))]
                    sorted_names.sort(key=lambda _x: column_order[_x[0]])
                    sorted_names = [(variable_symbol_dictionary[id(var)], coef)
                                    for var, coef in sorted_names]

                for name, coef in sorted_names:
                    output_file.write(linear_coef_string_template %
                                      (coef, name))

            elif not is_objective:
                # If we made it to here we are outputing
                # trivial constraints place 0 *
                # ONE_VAR_CONSTANT on this side of the
                # constraint for the benefit of solvers like
                # Glpk that cannot parse an LP file without
                # a variable on the left hand side.
                output_file.write(linear_coef_string_template %
                                  (0, 'ONE_VAR_CONSTANT'))

        elif 1 in x:

            for var_hash in x[1]:
                vardata = var_hashes[var_hash]
                self._referenced_variable_ids[id(vardata)] = vardata

            if column_order is None:
                sorted_names = [
                    (variable_symbol_dictionary[id(var_hashes[var_hash])],
                     var_coefficient)
                    for var_hash, var_coefficient in iteritems(x[1])
                ]
                sorted_names.sort()
            else:
                sorted_names = [
                    (var_hashes[var_hash], var_coefficient)
                    for var_hash, var_coefficient in iteritems(x[1])
                ]
                sorted_names.sort(key=lambda _x: column_order[_x[0]])
                sorted_names = [(variable_symbol_dictionary[id(var)], coef)
                                for var, coef in sorted_names]

            for name, coef in sorted_names:
                output_file.write(linear_coef_string_template % (coef, name))

        #
        # Quadratic
        #
        quad_coef_string_template = '%+' + self._precision_string + ' '
        if canonical_degree(x) == 2:

            # first, make sure there is something to output
            # - it is possible for all terms to have
            # coefficients equal to 0.0, in which case you
            # don't want to get into the bracket notation at
            # all.
            # NOTE: if the coefficient is really 0.0, it
            #       should be preprocessed out by the
            #       canonial expression generator!
            found_nonzero_term = False  # until proven otherwise
            for var_hash, var_coefficient in iteritems(x[2]):
                for var in var_hash:
                    vardata = var_hashes[var]

                if math.fabs(var_coefficient) != 0.0:
                    found_nonzero_term = True
                    break

            if found_nonzero_term:

                output_file.write("+ [\n")

                num_output = 0

                var_hashes_order = list(iterkeys(x[2]))
                # sort by the sorted tuple of symbols (or column assignments)
                # for the variables appearing in the term
                if column_order is None:
                    var_hashes_order.sort(
                        key=lambda term: \
                          sorted(variable_symbol_dictionary[id(var_hashes[vh])]
                                 for vh in term))
                else:
                    var_hashes_order.sort(key=lambda term: sorted(
                        column_order[var_hashes[vh]] for vh in term))

                for var_hash in var_hashes_order:

                    coefficient = x[2][var_hash]

                    if is_objective:
                        coefficient *= 2

                    # times 2 because LP format requires /2 for all the quadratic
                    # terms /of the objective only/.  Discovered the last bit thru
                    # trial and error.  Obnoxious.
                    # Ref: ILog CPlex 8.0 User's Manual, p197.

                    output_file.write(quad_coef_string_template % coefficient)
                    term_variables = []

                    var_hash_order = list(iterkeys(var_hash))
                    # sort by symbols (or column assignments)
                    if column_order is None:
                        var_hash_order.sort(
                            key=lambda vh: \
                              variable_symbol_dictionary[id(var_hashes[vh])])
                    else:
                        var_hash_order.sort(
                            key=lambda vh: column_order[var_hashes[vh]])

                    # sort the term for consistent output
                    for var in var_hash_order:
                        vardata = var_hashes[var]
                        self._referenced_variable_ids[id(vardata)] = vardata
                        name = variable_symbol_dictionary[id(vardata)]
                        term_variables.append(name)

                    if len(term_variables) == 2:
                        output_file.write(
                            "%s * %s" % (term_variables[0], term_variables[1]))
                    else:
                        output_file.write("%s ^ 2" % (term_variables[0]))
                    output_file.write("\n")

                output_file.write("]")

                if is_objective:
                    output_file.write(' / 2\n')
                    # divide by 2 because LP format requires /2 for all the quadratic
                    # terms.  Weird.  Ref: ILog CPlex 8.0 User's Manual, p197
                else:
                    output_file.write("\n")

        #
        # Constant offset
        #
        if isinstance(x, LinearCanonicalRepn):
            constant = x.constant
        else:
            if 0 in x:
                constant = x[0][None]
            else:
                constant = None

        if constant is not None:
            offset = constant
        else:
            offset = 0.0

        # Currently, it appears that we only need to print
        # the constant offset term for objectives.
        obj_string_template = '%+' + self._precision_string + ' %s\n'
        if is_objective and (force_objective_constant or (offset != 0.0)):
            output_file.write(obj_string_template %
                              (offset, 'ONE_VAR_CONSTANT'))

        #
        # Return constant offset
        #
        return offset
コード例 #9
0
    def _populate_gurobi_instance(self, pyomo_instance):

        from pyomo.core.base import Var, Objective, Constraint, SOSConstraint
        from pyomo.repn import LinearCanonicalRepn, canonical_degree

        try:
            grbmodel = Model(name=pyomo_instance.name)
        except Exception:
            e = sys.exc_info()[1]
            msg = 'Unable to create Gurobi model.  Have you installed the Python'\
            '\n       bindings for Gurobi?\n\n\tError message: %s'
            raise Exception(msg % e)

        if self._symbolic_solver_labels:
            labeler = TextLabeler()
        else:
            labeler = NumericLabeler('x')
        # cache to avoid dictionary getitem calls in the loops below.
        self_symbol_map = self._symbol_map = SymbolMap()
        pyomo_instance.solutions.add_symbol_map(self_symbol_map)
        self._smap_id = id(self_symbol_map)

        # we use this when iterating over the constraints because it
        # will have a much smaller hash table, we also use this for
        # the warm start code after it is cleaned to only contain
        # variables referenced in the constraints
        self_variable_symbol_map = self._variable_symbol_map = SymbolMap()
        var_symbol_pairs = []

        # maps _VarData labels to the corresponding Gurobi variable object
        pyomo_gurobi_variable_map = {}

        self._referenced_variable_ids.clear()

        # cache to avoid dictionary getitem calls in the loop below.
        grb_infinity = GRB.INFINITY

        for var_value in pyomo_instance.component_data_objects(Var,
                                                               active=True):

            lb = -grb_infinity
            ub = grb_infinity

            if (var_value.lb is not None) and (var_value.lb != -infinity):
                lb = value(var_value.lb)
            if (var_value.ub is not None) and (var_value.ub != infinity):
                ub = value(var_value.ub)

            # _VarValue objects will not be in the symbol map yet, so
            # avoid some checks.
            var_value_label = self_symbol_map.createSymbol(var_value, labeler)
            var_symbol_pairs.append((var_value, var_value_label))

            # be sure to impart the integer and binary nature of any variables
            if var_value.is_integer():
                var_type = GRB.INTEGER
            elif var_value.is_binary():
                var_type = GRB.BINARY
            elif var_value.is_continuous():
                var_type = GRB.CONTINUOUS
            else:
                raise TypeError(
                    "Invalid domain type for variable with name '%s'. "
                    "Variable is not continuous, integer, or binary.")

            pyomo_gurobi_variable_map[var_value_label] = \
                grbmodel.addVar(lb=lb, \
                                ub=ub, \
                                vtype=var_type, \
                                name=var_value_label)

        self_variable_symbol_map.addSymbols(var_symbol_pairs)

        grbmodel.update()

        # The next loop collects the following component types from the model:
        #  - SOSConstraint
        #  - Objective
        #  - Constraint
        sos1 = self._capabilities.sos1
        sos2 = self._capabilities.sos2
        modelSOS = ModelSOS()
        objective_cntr = 0
        # Track the range constraints and their associated variables added by gurobi
        self._last_native_var_idx = grbmodel.NumVars - 1
        range_var_idx = grbmodel.NumVars
        _self_range_con_var_pairs = self._range_con_var_pairs = []
        for block in pyomo_instance.block_data_objects(active=True):

            gen_obj_canonical_repn = \
                getattr(block, "_gen_obj_canonical_repn", True)
            gen_con_canonical_repn = \
                getattr(block, "_gen_con_canonical_repn", True)
            # Get/Create the ComponentMap for the repn
            if not hasattr(block, '_canonical_repn'):
                block._canonical_repn = ComponentMap()
            block_canonical_repn = block._canonical_repn

            # SOSConstraints
            for soscondata in block.component_data_objects(SOSConstraint,
                                                           active=True,
                                                           descend_into=False):
                level = soscondata.level
                if (level == 1 and not sos1) or \
                   (level == 2 and not sos2) or \
                   (level > 2):
                    raise RuntimeError(
                        "Solver does not support SOS level %s constraints" %
                        (level, ))
                modelSOS.count_constraint(self_symbol_map, labeler,
                                          self_variable_symbol_map,
                                          pyomo_gurobi_variable_map,
                                          soscondata)

            # Objective
            for obj_data in block.component_data_objects(Objective,
                                                         active=True,
                                                         descend_into=False):

                if objective_cntr > 1:
                    raise ValueError(
                        "Multiple active objectives found on Pyomo instance '%s'. "
                        "Solver '%s' will only handle a single active objective" \
                        % (pyomo_instance.cname(True), self.type))

                sense = GRB_MIN if (obj_data.is_minimizing()) else GRB_MAX
                grbmodel.ModelSense = sense
                obj_expr = LinExpr()

                if gen_obj_canonical_repn:
                    obj_repn = generate_canonical_repn(obj_data.expr)
                    block_canonical_repn[obj_data] = obj_repn
                else:
                    obj_repn = block_canonical_repn[obj_data]

                if isinstance(obj_repn, LinearCanonicalRepn):

                    if obj_repn.constant != None:
                        obj_expr.addConstant(obj_repn.constant)

                    if obj_repn.linear != None:

                        for i in xrange(len(obj_repn.linear)):
                            var_coefficient = obj_repn.linear[i]
                            var_value = obj_repn.variables[i]
                            self._referenced_variable_ids.add(id(var_value))
                            label = self_variable_symbol_map.getSymbol(
                                var_value)
                            obj_expr.addTerms(var_coefficient,
                                              pyomo_gurobi_variable_map[label])
                else:

                    if 0 in obj_repn:  # constant term
                        obj_expr.addConstant(obj_repn[0][None])

                    if 1 in obj_repn:  # first-order terms
                        hash_to_variable_map = obj_repn[-1]
                        for var_hash, var_coefficient in iteritems(
                                obj_repn[1]):
                            vardata = hash_to_variable_map[var_hash]
                            self._referenced_variable_ids.add(id(vardata))
                            label = self_variable_symbol_map.getSymbol(vardata)
                            obj_expr.addTerms(var_coefficient,
                                              pyomo_gurobi_variable_map[label])

                    if 2 in obj_repn:
                        obj_expr = QuadExpr(obj_expr)
                        hash_to_variable_map = obj_repn[-1]
                        for quad_repn, coef in iteritems(obj_repn[2]):
                            gurobi_expr = QuadExpr(coef)
                            for var_hash, exponent in iteritems(quad_repn):
                                vardata = hash_to_variable_map[var_hash]
                                self._referenced_variable_ids.add(id(vardata))
                                gurobi_var = pyomo_gurobi_variable_map\
                                             [self_variable_symbol_map.\
                                              getSymbol(vardata)]
                                gurobi_expr *= gurobi_var
                                if exponent == 2:
                                    gurobi_expr *= gurobi_var
                            obj_expr += gurobi_expr

                    degree = canonical_degree(obj_repn)
                    if (degree is None) or (degree > 2):
                        raise ValueError(
                            "gurobi_direct plugin does not support general nonlinear "
                            "objective expressions (only linear or quadratic).\n"
                            "Objective: %s" % (obj_data.cname(True)))

                # need to cache the objective label, because the
                # GUROBI python interface doesn't track this.
                # _ObjectiveData objects will not be in the symbol map
                # yet, so avoid some checks.
                self._objective_label = \
                    self_symbol_map.createSymbol(obj_data, labeler)

                grbmodel.setObjective(obj_expr, sense=sense)

            # Constraint
            for constraint_data in block.component_data_objects(
                    Constraint, active=True, descend_into=False):

                if (constraint_data.lower is None) and \
                   (constraint_data.upper is None):
                    continue  # not binding at all, don't bother

                con_repn = None
                if isinstance(constraint_data, LinearCanonicalRepn):
                    con_repn = constraint_data
                else:
                    if gen_con_canonical_repn:
                        con_repn = generate_canonical_repn(
                            constraint_data.body)
                        block_canonical_repn[constraint_data] = con_repn
                    else:
                        con_repn = block_canonical_repn[constraint_data]

                offset = 0.0
                # _ConstraintData objects will not be in the symbol
                # map yet, so avoid some checks.
                constraint_label = \
                    self_symbol_map.createSymbol(constraint_data, labeler)

                trivial = False
                if isinstance(con_repn, LinearCanonicalRepn):

                    #
                    # optimization (these might be generated on the fly)
                    #
                    constant = con_repn.constant
                    coefficients = con_repn.linear
                    variables = con_repn.variables

                    if constant is not None:
                        offset = constant
                    expr = LinExpr() + offset

                    if coefficients is not None:

                        linear_coefs = list()
                        linear_vars = list()

                        for i in xrange(len(coefficients)):

                            var_coefficient = coefficients[i]
                            var_value = variables[i]
                            self._referenced_variable_ids.add(id(var_value))
                            label = self_variable_symbol_map.getSymbol(
                                var_value)
                            linear_coefs.append(var_coefficient)
                            linear_vars.append(
                                pyomo_gurobi_variable_map[label])

                        expr += LinExpr(linear_coefs, linear_vars)

                    else:

                        trivial = True

                else:

                    if 0 in con_repn:
                        offset = con_repn[0][None]
                    expr = LinExpr() + offset

                    if 1 in con_repn:  # first-order terms

                        linear_coefs = list()
                        linear_vars = list()

                        hash_to_variable_map = con_repn[-1]
                        for var_hash, var_coefficient in iteritems(
                                con_repn[1]):
                            var = hash_to_variable_map[var_hash]
                            self._referenced_variable_ids.add(id(var))
                            label = self_variable_symbol_map.getSymbol(var)
                            linear_coefs.append(var_coefficient)
                            linear_vars.append(
                                pyomo_gurobi_variable_map[label])

                        expr += LinExpr(linear_coefs, linear_vars)

                    if 2 in con_repn:  # quadratic constraint
                        if _GUROBI_VERSION_MAJOR < 5:
                            raise ValueError(
                                "The gurobi_direct plugin does not handle quadratic "
                                "constraint expressions for Gurobi major versions "
                                "< 5. Current version: Gurobi %s.%s%s" %
                                (gurobi.version()))

                        expr = QuadExpr(expr)
                        hash_to_variable_map = con_repn[-1]
                        for quad_repn, coef in iteritems(con_repn[2]):
                            gurobi_expr = QuadExpr(coef)
                            for var_hash, exponent in iteritems(quad_repn):
                                vardata = hash_to_variable_map[var_hash]
                                self._referenced_variable_ids.add(id(vardata))
                                gurobi_var = pyomo_gurobi_variable_map\
                                             [self_variable_symbol_map.\
                                              getSymbol(vardata)]
                                gurobi_expr *= gurobi_var
                                if exponent == 2:
                                    gurobi_expr *= gurobi_var
                            expr += gurobi_expr

                    degree = canonical_degree(con_repn)
                    if (degree is None) or (degree > 2):
                        raise ValueError(
                            "gurobi_direct plugin does not support general nonlinear "
                            "constraint expressions (only linear or quadratic).\n"
                            "Constraint: %s" % (constraint_data.cname(True)))

                if (not trivial) or (not self._skip_trivial_constraints):

                    if constraint_data.equality:
                        sense = GRB.EQUAL
                        bound = self._get_bound(constraint_data.lower)
                        grbmodel.addConstr(lhs=expr,
                                           sense=sense,
                                           rhs=bound,
                                           name=constraint_label)
                    else:
                        # L <= body <= U
                        if (constraint_data.upper is not None) and \
                           (constraint_data.lower is not None):
                            grb_con = grbmodel.addRange(
                                expr, self._get_bound(constraint_data.lower),
                                self._get_bound(constraint_data.upper),
                                constraint_label)
                            _self_range_con_var_pairs.append(
                                (grb_con, range_var_idx))
                            range_var_idx += 1
                        # body <= U
                        elif constraint_data.upper is not None:
                            bound = self._get_bound(constraint_data.upper)
                            if bound < float('inf'):
                                grbmodel.addConstr(lhs=expr,
                                                   sense=GRB.LESS_EQUAL,
                                                   rhs=bound,
                                                   name=constraint_label)
                        # L <= body
                        else:
                            bound = self._get_bound(constraint_data.lower)
                            if bound > -float('inf'):
                                grbmodel.addConstr(lhs=expr,
                                                   sense=GRB.GREATER_EQUAL,
                                                   rhs=bound,
                                                   name=constraint_label)

        if modelSOS.sosType:
            for key in modelSOS.sosType:
                grbmodel.addSOS(modelSOS.sosType[key], \
                                modelSOS.varnames[key], \
                                modelSOS.weights[key] )
                self._referenced_variable_ids.update(modelSOS.varids[key])

        for var_id in self._referenced_variable_ids:
            varname = self._variable_symbol_map.byObject[var_id]
            vardata = self._variable_symbol_map.bySymbol[varname]()
            if vardata.fixed:
                if not self._output_fixed_variable_bounds:
                    raise ValueError(
                        "Encountered a fixed variable (%s) inside an active objective "
                        "or constraint expression on model %s, which is usually indicative of "
                        "a preprocessing error. Use the IO-option 'output_fixed_variable_bounds=True' "
                        "to suppress this error and fix the variable by overwriting its bounds in "
                        "the Gurobi instance." % (
                            vardata.cname(True),
                            pyomo_instance.cname(True),
                        ))

                grbvar = pyomo_gurobi_variable_map[varname]
                grbvar.setAttr(GRB.Attr.UB, vardata.value)
                grbvar.setAttr(GRB.Attr.LB, vardata.value)

        grbmodel.update()

        self._gurobi_instance = grbmodel
        self._pyomo_gurobi_variable_map = pyomo_gurobi_variable_map
コード例 #10
0
ファイル: cpxlp.py プロジェクト: qtothec/pyomo
    def _print_model_LP(self,
                        model,
                        output_file,
                        solver_capability,
                        labeler,
                        output_fixed_variable_bounds=False,
                        file_determinism=1,
                        row_order=None,
                        column_order=None,
                        skip_trivial_constraints=False,
                        force_objective_constant=False,
                        include_all_variable_bounds=False):

        symbol_map = SymbolMap()
        variable_symbol_map = SymbolMap()
        # NOTE: we use createSymbol instead of getSymbol because we
        #       know whether or not the symbol exists, and don't want
        #       to the overhead of error/duplicate checking.
        # cache frequently called functions
        create_symbol_func = SymbolMap.createSymbol
        create_symbols_func = SymbolMap.createSymbols
        alias_symbol_func = SymbolMap.alias
        variable_label_pairs = []

        # populate the symbol map in a single pass.
        #objective_list, constraint_list, sosconstraint_list, variable_list \
        #    = self._populate_symbol_map(model,
        #                                symbol_map,
        #                                labeler,
        #                                variable_symbol_map,
        #                                file_determinism=file_determinism)
        sortOrder = SortComponents.unsorted
        if file_determinism >= 1:
            sortOrder = sortOrder | SortComponents.indices
            if file_determinism >= 2:
                sortOrder = sortOrder | SortComponents.alphabetical

        #
        # Create variable symbols (and cache the block list)
        #
        all_blocks = []
        variable_list = []
        for block in model.block_data_objects(active=True,
                                              sort=sortOrder):

            all_blocks.append(block)

            for vardata in block.component_data_objects(
                    Var,
                    active=True,
                    sort=sortOrder,
                    descend_into=False):

                variable_list.append(vardata)
                variable_label_pairs.append(
                    (vardata,create_symbol_func(symbol_map,
                                                vardata,
                                                labeler)))

        variable_symbol_map.addSymbols(variable_label_pairs)

        # and extract the information we'll need for rapid labeling.
        object_symbol_dictionary = symbol_map.byObject
        variable_symbol_dictionary = variable_symbol_map.byObject

        # cache - these are called all the time.
        print_expr_canonical = self._print_expr_canonical

        # print the model name and the source, so we know roughly where
        # it came from.
        #
        # NOTE: this *must* use the "\* ... *\" comment format: the GLPK
        # LP parser does not correctly handle other formats (notably, "%").
        output_file.write(
            "\\* Source Pyomo model name=%s *\\\n\n" % (model.name,) )

        #
        # Objective
        #

        supports_quadratic_objective = \
            solver_capability('quadratic_objective')

        numObj = 0
        onames = []
        for block in all_blocks:

            gen_obj_canonical_repn = \
                getattr(block, "_gen_obj_canonical_repn", True)

            # Get/Create the ComponentMap for the repn
            if not hasattr(block,'_canonical_repn'):
                block._canonical_repn = ComponentMap()
            block_canonical_repn = block._canonical_repn

            for objective_data in block.component_data_objects(
                    Objective,
                    active=True,
                    sort=sortOrder,
                    descend_into=False):

                numObj += 1
                onames.append(objective_data.name)
                if numObj > 1:
                    raise ValueError(
                        "More than one active objective defined for input "
                        "model '%s'; Cannot write legal LP file\n"
                        "Objectives: %s" % (model.name, ' '.join(onames)))

                create_symbol_func(symbol_map,
                                   objective_data,
                                   labeler)

                symbol_map.alias(objective_data, '__default_objective__')
                if objective_data.is_minimizing():
                    output_file.write("min \n")
                else:
                    output_file.write("max \n")

                if gen_obj_canonical_repn:
                    canonical_repn = \
                        generate_canonical_repn(objective_data.expr)
                    block_canonical_repn[objective_data] = canonical_repn
                else:
                    canonical_repn = block_canonical_repn[objective_data]

                degree = canonical_degree(canonical_repn)

                if degree == 0:
                    logger.warning("Constant objective detected, replacing "
                          "with a placeholder to prevent solver failure.")
                    force_objective_constant = True
                elif degree == 2:
                    if not supports_quadratic_objective:
                        raise RuntimeError(
                            "Selected solver is unable to handle "
                            "objective functions with quadratic terms. "
                            "Objective at issue: %s."
                            % objective_data.name)
                elif degree != 1:
                    raise RuntimeError(
                        "Cannot write legal LP file.  Objective '%s' "
                        "has nonlinear terms that are not quadratic."
                        % objective_data.name)

                output_file.write(
                    object_symbol_dictionary[id(objective_data)]+':\n')

                offset = print_expr_canonical(
                    canonical_repn,
                    output_file,
                    object_symbol_dictionary,
                    variable_symbol_dictionary,
                    True,
                    column_order,
                    force_objective_constant=force_objective_constant)

        if numObj == 0:
            raise ValueError(
                "ERROR: No objectives defined for input model '%s'; "
                " cannot write legal LP file" % str(model.name))

        # Constraints
        #
        # If there are no non-trivial constraints, you'll end up with an empty
        # constraint block. CPLEX is OK with this, but GLPK isn't. And
        # eliminating the constraint block (i.e., the "s.t." line) causes GLPK
        # to whine elsewhere. Output a warning if the constraint block is empty,
        # so users can quickly determine the cause of the solve failure.

        output_file.write("\n")
        output_file.write("s.t.\n")
        output_file.write("\n")

        have_nontrivial = False

        supports_quadratic_constraint = solver_capability('quadratic_constraint')

        def constraint_generator():
            for block in all_blocks:

                gen_con_canonical_repn = \
                    getattr(block, "_gen_con_canonical_repn", True)

                # Get/Create the ComponentMap for the repn
                if not hasattr(block,'_canonical_repn'):
                    block._canonical_repn = ComponentMap()
                block_canonical_repn = block._canonical_repn

                for constraint_data in block.component_data_objects(
                        Constraint,
                        active=True,
                        sort=sortOrder,
                        descend_into=False):

                    if isinstance(constraint_data, LinearCanonicalRepn):
                        canonical_repn = constraint_data
                    else:
                        if gen_con_canonical_repn:
                            canonical_repn = generate_canonical_repn(constraint_data.body)
                            block_canonical_repn[constraint_data] = canonical_repn
                        else:
                            canonical_repn = block_canonical_repn[constraint_data]

                    yield constraint_data, canonical_repn

        if row_order is not None:
            sorted_constraint_list = list(constraint_generator())
            sorted_constraint_list.sort(key=lambda x: row_order[x[0]])
            def yield_all_constraints():
                for constraint_data, canonical_repn in sorted_constraint_list:
                    yield constraint_data, canonical_repn
        else:
            yield_all_constraints = constraint_generator

        # FIXME: This is a hack to get nested blocks working...
        eq_string_template = "= %"+self._precision_string+'\n'
        geq_string_template = ">= %"+self._precision_string+'\n\n'
        leq_string_template = "<= %"+self._precision_string+'\n\n'
        for constraint_data, canonical_repn in yield_all_constraints():
            have_nontrivial = True

            degree = canonical_degree(canonical_repn)

            #
            # Write constraint
            #

            # There are conditions, e.g., when fixing variables, under which
            # a constraint block might be empty.  Ignore these, for both
            # practical reasons and the fact that the CPLEX LP format
            # requires a variable in the constraint body.  It is also
            # possible that the body of the constraint consists of only a
            # constant, in which case the "variable" of
            if degree == 0:
                if skip_trivial_constraints:
                    continue
            elif degree == 2:
                if not supports_quadratic_constraint:
                    raise ValueError(
                        "Solver unable to handle quadratic expressions. Constraint"
                        " at issue: '%s'" % (constraint_data.name))
            elif degree != 1:
                raise ValueError(
                    "Cannot write legal LP file.  Constraint '%s' has a body "
                    "with nonlinear terms." % (constraint_data.name))

            # Create symbol
            con_symbol = create_symbol_func(symbol_map, constraint_data, labeler)

            if constraint_data.equality:
                label = 'c_e_' + con_symbol + '_'
                alias_symbol_func(symbol_map, constraint_data, label)
                output_file.write(label+':\n')
                offset = print_expr_canonical(canonical_repn,
                                              output_file,
                                              object_symbol_dictionary,
                                              variable_symbol_dictionary,
                                              False,
                                              column_order)
                bound = constraint_data.lower
                bound = self._get_bound(bound) - offset
                output_file.write(eq_string_template
                                  % (_no_negative_zero(bound)))
                output_file.write("\n")
            else:
                if constraint_data.lower is not None:
                    if constraint_data.upper is not None:
                        label = 'r_l_' + con_symbol + '_'
                    else:
                        label = 'c_l_' + con_symbol + '_'
                    alias_symbol_func(symbol_map, constraint_data, label)
                    output_file.write(label+':\n')
                    offset = print_expr_canonical(canonical_repn,
                                                  output_file,
                                                  object_symbol_dictionary,
                                                  variable_symbol_dictionary,
                                                  False,
                                                  column_order)
                    bound = constraint_data.lower
                    bound = self._get_bound(bound) - offset
                    output_file.write(geq_string_template
                                      % (_no_negative_zero(bound)))
                if constraint_data.upper is not None:
                    if constraint_data.lower is not None:
                        label = 'r_u_' + con_symbol + '_'
                    else:
                        label = 'c_u_' + con_symbol + '_'
                    alias_symbol_func(symbol_map, constraint_data, label)
                    output_file.write(label+':\n')
                    offset = print_expr_canonical(canonical_repn,
                                                  output_file,
                                                  object_symbol_dictionary,
                                                  variable_symbol_dictionary,
                                                  False,
                                                  column_order)
                    bound = constraint_data.upper
                    bound = self._get_bound(bound) - offset
                    output_file.write(leq_string_template
                                      % (_no_negative_zero(bound)))

        if not have_nontrivial:
            logger.warning('Empty constraint block written in LP format '  \
                  '- solver may error')

        # the CPLEX LP format doesn't allow constants in the objective (or
        # constraint body), which is a bit silly.  To avoid painful
        # book-keeping, we introduce the following "variable", constrained
        # to the value 1.  This is used when quadratic terms are present.
        # worst-case, if not used, is that CPLEX easily pre-processes it out.
        prefix = ""
        output_file.write('%sc_e_ONE_VAR_CONSTANT: \n' % prefix)
        output_file.write('%sONE_VAR_CONSTANT = 1.0\n' % prefix)
        output_file.write("\n")

        # SOS constraints
        #
        # For now, we write out SOS1 and SOS2 constraints in the cplex format
        #
        # All Component objects are stored in model._component, which is a
        # dictionary of {class: {objName: object}}.
        #
        # Consider the variable X,
        #
        #   model.X = Var(...)
        #
        # We print X to CPLEX format as X(i,j,k,...) where i, j, k, ... are the
        # indices of X.
        #
        SOSlines = StringIO()
        sos1 = solver_capability("sos1")
        sos2 = solver_capability("sos2")
        writtenSOS = False
        for block in all_blocks:

            for soscondata in block.component_data_objects(
                    SOSConstraint,
                    active=True,
                    sort=sortOrder,
                    descend_into=False):

                create_symbol_func(symbol_map, soscondata, labeler)

                level = soscondata.level
                if (level == 1 and not sos1) or \
                   (level == 2 and not sos2) or \
                   (level > 2):
                    raise ValueError(
                        "Solver does not support SOS level %s constraints" % (level))
                if writtenSOS == False:
                    SOSlines.write("SOS\n")
                    writtenSOS = True
                # This updates the referenced_variable_ids, just in case
                # there is a variable that only appears in an
                # SOSConstraint, in which case this needs to be known
                # before we write the "bounds" section (Cplex does not
                # handle this correctly, Gurobi does)
                self.printSOS(symbol_map,
                              labeler,
                              variable_symbol_map,
                              soscondata,
                              SOSlines)

        #
        # Bounds
        #

        output_file.write("bounds\n")

        # Scan all variables even if we're only writing a subset of them.
        # required because we don't store maps by variable type currently.

        # FIXME: This is a hack to get nested blocks working...
        lb_string_template = "%"+self._precision_string+" <= "
        ub_string_template = " <= %"+self._precision_string+"\n"
        # Track the number of integer and binary variables, so you can
        # output their status later.
        integer_vars = []
        binary_vars = []
        for vardata in variable_list:

            # TODO: We could just loop over the set of items in
            #       self._referenced_variable_ids, except this is
            #       a dictionary that is hashed by id(vardata)
            #       which would make the bounds section
            #       nondeterministic (bad for unit testing)
            if (not include_all_variable_bounds) and \
               (id(vardata) not in self._referenced_variable_ids):
                continue

            if vardata.fixed:
                if not output_fixed_variable_bounds:
                    raise ValueError(
                        "Encountered a fixed variable (%s) inside an active "
                        "objective or constraint expression on model %s, which is "
                        "usually indicative of a preprocessing error. Use the "
                        "IO-option 'output_fixed_variable_bounds=True' to suppress "
                        "this error and fix the variable by overwriting its bounds "
                        "in the LP file." % (vardata.name, model.name))
                if vardata.value is None:
                    raise ValueError("Variable cannot be fixed to a value of None.")
                vardata_lb = value(vardata.value)
                vardata_ub = value(vardata.value)
            else:
                vardata_lb = self._get_bound(vardata.lb)
                vardata_ub = self._get_bound(vardata.ub)

            name_to_output = variable_symbol_dictionary[id(vardata)]

            # track the number of integer and binary variables, so we know whether
            # to output the general / binary sections below.
            if vardata.is_integer():
                integer_vars.append(name_to_output)
            elif vardata.is_binary():
                binary_vars.append(name_to_output)
            elif not vardata.is_continuous():
                raise TypeError("Invalid domain type for variable with name '%s'. "
                                "Variable is not continuous, integer, or binary."
                                % (vardata.name))

            # in the CPLEX LP file format, the default variable
            # bounds are 0 and +inf.  These bounds are in
            # conflict with Pyomo, which assumes -inf and +inf
            # (which we would argue is more rational).
            output_file.write("   ")
            if (vardata_lb is not None) and (vardata_lb != -infinity):
                output_file.write(lb_string_template
                                  % (_no_negative_zero(vardata_lb)))
            else:
                output_file.write(" -inf <= ")
            if name_to_output == "e":
                raise ValueError(
                    "Attempting to write variable with name 'e' in a CPLEX LP "
                    "formatted file will cause a parse failure due to confusion with "
                    "numeric values expressed in scientific notation")

            output_file.write(name_to_output)
            if (vardata_ub is not None) and (vardata_ub != infinity):
                output_file.write(ub_string_template
                                  % (_no_negative_zero(vardata_ub)))
            else:
                output_file.write(" <= +inf\n")

        if len(integer_vars) > 0:

            output_file.write("general\n")
            for var_name in integer_vars:
                output_file.write('  %s\n' % var_name)

        if len(binary_vars) > 0:

            output_file.write("binary\n")
            for var_name in binary_vars:
                output_file.write('  %s\n' % var_name)


        # Write the SOS section
        output_file.write(SOSlines.getvalue())

        #
        # wrap-up
        #
        output_file.write("end\n")

        # Clean up the symbol map to only contain variables referenced
        # in the active constraints **Note**: warm start method may
        # rely on this for choosing the set of potential warm start
        # variables
        vars_to_delete = set(variable_symbol_map.byObject.keys()) - \
                         set(self._referenced_variable_ids.keys())
        sm_byObject = symbol_map.byObject
        sm_bySymbol = symbol_map.bySymbol
        var_sm_byObject = variable_symbol_map.byObject
        for varid in vars_to_delete:
            symbol = var_sm_byObject[varid]
            del sm_byObject[varid]
            del sm_bySymbol[symbol]
        del variable_symbol_map

        return symbol_map
コード例 #11
0
ファイル: cpxlp.py プロジェクト: qtothec/pyomo
    def _print_expr_canonical(self,
                              x,
                              output_file,
                              object_symbol_dictionary,
                              variable_symbol_dictionary,
                              is_objective,
                              column_order,
                              force_objective_constant=False):

        """
        Return a expression as a string in LP format.

        Note that this function does not handle any differences in LP format
        interpretation by the solvers (e.g. CPlex vs GLPK).  That decision is
        left up to the caller.

        required arguments:
          x: A Pyomo canonical expression to write in LP format
        """
        assert (not force_objective_constant) or (is_objective)

        # cache - this is referenced numerous times.
        if isinstance(x, LinearCanonicalRepn):
            var_hashes = None # not needed
        else:
            var_hashes = x[-1]

        #
        # Linear
        #
        linear_coef_string_template = '%+'+self._precision_string+' %s\n'
        if isinstance(x, LinearCanonicalRepn):

            #
            # optimization (these might be generated on the fly)
            #
            coefficients = x.linear
            if coefficients is not None:
                variables = x.variables

                # the 99% case is when the input instance is a linear
                # canonical expression, so the exception should be rare.
                for vardata in variables:
                    self._referenced_variable_ids[id(vardata)] = vardata

                if column_order is None:
                    sorted_names = [(variable_symbol_dictionary[id(variables[i])],
                                     coefficients[i])
                                    for i in xrange(0,len(coefficients))]
                    sorted_names.sort()
                else:
                    sorted_names = [(variables[i], coefficients[i])
                                    for i in xrange(0,len(coefficients))]
                    sorted_names.sort(key=lambda _x: column_order[_x[0]])
                    sorted_names = [(variable_symbol_dictionary[id(var)], coef)
                                    for var, coef in sorted_names]

                for name, coef in sorted_names:
                    output_file.write(linear_coef_string_template % (coef, name))

            elif not is_objective:
                # If we made it to here we are outputing
                # trivial constraints place 0 *
                # ONE_VAR_CONSTANT on this side of the
                # constraint for the benefit of solvers like
                # Glpk that cannot parse an LP file without
                # a variable on the left hand side.
                output_file.write(linear_coef_string_template
                                  % (0, 'ONE_VAR_CONSTANT'))

        elif 1 in x:

            for var_hash in x[1]:
                vardata = var_hashes[var_hash]
                self._referenced_variable_ids[id(vardata)] = vardata

            if column_order is None:
                sorted_names = [(variable_symbol_dictionary[id(var_hashes[var_hash])],
                                 var_coefficient)
                                for var_hash, var_coefficient in iteritems(x[1])]
                sorted_names.sort()
            else:
                sorted_names = [(var_hashes[var_hash], var_coefficient)
                                for var_hash, var_coefficient in iteritems(x[1])]
                sorted_names.sort(key=lambda _x: column_order[_x[0]])
                sorted_names = [(variable_symbol_dictionary[id(var)], coef)
                                for var, coef in sorted_names]

            for name, coef in sorted_names:
                output_file.write(linear_coef_string_template % (coef, name))

        #
        # Quadratic
        #
        quad_coef_string_template = '%+'+self._precision_string+' '
        if canonical_degree(x) == 2:

            # first, make sure there is something to output
            # - it is possible for all terms to have
            # coefficients equal to 0.0, in which case you
            # don't want to get into the bracket notation at
            # all.
            # NOTE: if the coefficient is really 0.0, it
            #       should be preprocessed out by the
            #       canonial expression generator!
            found_nonzero_term = False # until proven otherwise
            for var_hash, var_coefficient in iteritems(x[2]):
                for var in var_hash:
                    vardata = var_hashes[var]

                if math.fabs(var_coefficient) != 0.0:
                    found_nonzero_term = True
                    break

            if found_nonzero_term:

                output_file.write("+ [\n")

                num_output = 0

                var_hashes_order = list(iterkeys(x[2]))
                # sort by the sorted tuple of symbols (or column assignments)
                # for the variables appearing in the term
                if column_order is None:
                    var_hashes_order.sort(
                        key=lambda term: \
                          sorted(variable_symbol_dictionary[id(var_hashes[vh])]
                                 for vh in term))
                else:
                    var_hashes_order.sort(
                        key=lambda term: sorted(column_order[var_hashes[vh]]
                                                for vh in term))

                for var_hash in var_hashes_order:

                    coefficient = x[2][var_hash]

                    if is_objective:
                        coefficient *= 2

                    # times 2 because LP format requires /2 for all the quadratic
                    # terms /of the objective only/.  Discovered the last bit thru
                    # trial and error.  Obnoxious.
                    # Ref: ILog CPlex 8.0 User's Manual, p197.

                    output_file.write(quad_coef_string_template % coefficient)
                    term_variables = []

                    var_hash_order = list(iterkeys(var_hash))
                    # sort by symbols (or column assignments)
                    if column_order is None:
                        var_hash_order.sort(
                            key=lambda vh: \
                              variable_symbol_dictionary[id(var_hashes[vh])])
                    else:
                        var_hash_order.sort(
                            key=lambda vh: column_order[var_hashes[vh]])

                    # sort the term for consistent output
                    for var in var_hash_order:
                        vardata = var_hashes[var]
                        self._referenced_variable_ids[id(vardata)] = vardata
                        name = variable_symbol_dictionary[id(vardata)]
                        term_variables.append(name)

                    if len(term_variables) == 2:
                        output_file.write("%s * %s"
                                          % (term_variables[0], term_variables[1]))
                    else:
                        output_file.write("%s ^ 2" % (term_variables[0]))
                    output_file.write("\n")

                output_file.write("]")

                if is_objective:
                    output_file.write(' / 2\n')
                    # divide by 2 because LP format requires /2 for all the quadratic
                    # terms.  Weird.  Ref: ILog CPlex 8.0 User's Manual, p197
                else:
                    output_file.write("\n")

        #
        # Constant offset
        #
        if isinstance(x, LinearCanonicalRepn):
            constant = x.constant
        else:
            if 0 in x:
                constant = x[0][None]
            else:
                constant = None

        if constant is not None:
            offset = constant
        else:
            offset=0.0

        # Currently, it appears that we only need to print
        # the constant offset term for objectives.
        obj_string_template = '%+'+self._precision_string+' %s\n'
        if is_objective and (force_objective_constant or (offset != 0.0)):
            output_file.write(obj_string_template
                              % (offset, 'ONE_VAR_CONSTANT'))

        #
        # Return constant offset
        #
        return offset
コード例 #12
0
ファイル: CPLEXPersistent.py プロジェクト: Juanlu001/pyomo
    def compile_instance(self,
                         pyomo_instance,
                         symbolic_solver_labels=False,
                         output_fixed_variable_bounds=False,
                         skip_trivial_constraints=False):

        from pyomo.core.base import Var, Constraint, SOSConstraint
        from pyomo.repn import canonical_is_constant, LinearCanonicalRepn, canonical_degree

        self._symbolic_solver_labels = symbolic_solver_labels
        self._output_fixed_variable_bounds = output_fixed_variable_bounds
        self._skip_trivial_constraints = skip_trivial_constraints

        self._has_quadratic_constraints = False
        self._has_quadratic_objective = False
        used_sos_constraints = False

        self._active_cplex_instance = cplex.Cplex()

        if self._symbolic_solver_labels:
            labeler = self._labeler = TextLabeler()
        else:
            labeler = self._labeler = NumericLabeler('x')

        self._symbol_map = SymbolMap()
        self._instance = pyomo_instance
        pyomo_instance.solutions.add_symbol_map(self._symbol_map)
        self._smap_id = id(self._symbol_map)

        # we use this when iterating over the constraints because it
        # will have a much smaller hash table, we also use this for
        # the warm start code after it is cleaned to only contain
        # variables referenced in the constraints
        self._variable_symbol_map = SymbolMap()

        # cplex wants the caller to set the problem type, which is (for
        # current purposes) strictly based on variable type counts.
        num_binary_variables = 0
        num_integer_variables = 0
        num_continuous_variables = 0

        #############################################
        # populate the variables in the cplex model #
        #############################################

        var_names = []
        var_lbs = []
        var_ubs = []
        var_types = []

        self._referenced_variable_ids.clear()

        # maps pyomo var data labels to the corresponding CPLEX variable id.
        self._cplex_variable_ids.clear()

        # cached in the loop below - used to update the symbol map
        # immediately following loop termination.
        var_label_pairs = []

        for var_data in pyomo_instance.component_data_objects(Var, active=True):

            if var_data.fixed and not self._output_fixed_variable_bounds:
                # if a variable is fixed, and we're preprocessing
                # fixed variables (as in not outputting them), there
                # is no need to add them to the compiled model.
                continue

            var_name = self._symbol_map.getSymbol(var_data, labeler)
            var_names.append(var_name)
            var_label_pairs.append((var_data, var_name))

            self._cplex_variable_ids[var_name] = len(self._cplex_variable_ids)

            if (var_data.lb is None) or (var_data.lb == -infinity):
                var_lbs.append(-cplex.infinity)
            else:
                var_lbs.append(value(var_data.lb))

            if (var_data.ub is None) or (var_data.ub == infinity):
                var_ubs.append(cplex.infinity)
            else:
                var_ubs.append(value(var_data.ub))

            if var_data.is_integer():
                var_types.append(self._active_cplex_instance.variables.type.integer)
                num_integer_variables += 1
            elif var_data.is_binary():
                var_types.append(self._active_cplex_instance.variables.type.binary)
                num_binary_variables += 1
            elif var_data.is_continuous():
                var_types.append(self._active_cplex_instance.variables.type.continuous)
                num_continuous_variables += 1
            else:
                raise TypeError("Invalid domain type for variable with name '%s'. "
                                "Variable is not continuous, integer, or binary.")

        self._active_cplex_instance.variables.add(names=var_names,
                                                  lb=var_lbs,
                                                  ub=var_ubs,
                                                  types=var_types)

        self._active_cplex_instance.variables.add(lb=[1],
                                                  ub=[1],
                                                  names=["ONE_VAR_CONSTANT"])

        self._cplex_variable_ids["ONE_VAR_CONSTANT"] = len(self._cplex_variable_ids)

        self._variable_symbol_map.addSymbols(var_label_pairs)
        self._cplex_variable_names = self._active_cplex_instance.variables.get_names()

        ########################################################
        # populate the standard constraints in the cplex model #
        ########################################################

        expressions = []
        senses = []
        rhss = []
        range_values = []
        names = []

        qexpressions = []
        qlinears = []
        qsenses = []
        qrhss = []
        qnames = []

        for block in pyomo_instance.block_data_objects(active=True):

            gen_con_canonical_repn = \
                getattr(block, "_gen_con_canonical_repn", True)
            # Get/Create the ComponentMap for the repn
            if not hasattr(block,'_canonical_repn'):
                block._canonical_repn = ComponentMap()
            block_canonical_repn = block._canonical_repn

            for con in block.component_data_objects(Constraint,
                                                    active=True,
                                                    descend_into=False):

                if (con.lower is None) and \
                   (con.upper is None):
                    continue  # not binding at all, don't bother

                con_repn = None
                if isinstance(con, LinearCanonicalRepn):
                    con_repn = con
                else:
                    if gen_con_canonical_repn:
                        con_repn = generate_canonical_repn(con.body)
                        block_canonical_repn[con] = con_repn
                    else:
                        con_repn = block_canonical_repn[con]

                # There are conditions, e.g., when fixing variables, under which
                # a constraint block might be empty.  Ignore these, for both
                # practical reasons and the fact that the CPLEX LP format
                # requires a variable in the constraint body.  It is also
                # possible that the body of the constraint consists of only a
                # constant, in which case the "variable" of
                if isinstance(con_repn, LinearCanonicalRepn):
                    if (con_repn.linear is None) and \
                       self._skip_trivial_constraints:
                       continue
                else:
                    # we shouldn't come across a constant canonical repn
                    # that is not LinearCanonicalRepn
                    assert not canonical_is_constant(con_repn)

                name = self._symbol_map.getSymbol(con, labeler)
                expr = None
                qexpr = None
                quadratic = False
                if isinstance(con_repn, LinearCanonicalRepn):
                    expr, offset = \
                        self._encode_constraint_body_linear_specialized(con_repn,
                                                                        labeler,
                                                                        use_variable_names=False,
                                                                        cplex_variable_name_index_map=self._cplex_variable_ids)
                else:
                    degree = canonical_degree(con_repn)
                    if degree == 2:
                        quadratic = True
                    elif (degree != 0) or (degree != 1):
                        raise ValueError(
                            "CPLEXPersistent plugin does not support general nonlinear "
                            "constraint expression (only linear or quadratic).\n"
                            "Constraint: %s" % (con.cname(True)))
                    expr, offset = self._encode_constraint_body_linear(con_repn,
                                                                       labeler)

                if quadratic:
                    if expr is None:
                        expr = cplex.SparsePair(ind=[0],val=[0.0])
                    self._has_quadratic_constraints = True

                    qexpr = self._encode_constraint_body_quadratic(con_repn,labeler)
                    qnames.append(name)

                    if con.equality:
                        # equality constraint.
                        qsenses.append('E')
                        qrhss.append(self._get_bound(con.lower) - offset)

                    elif (con.lower is not None) and (con.upper is not None):
                        raise RuntimeError(
                            "The CPLEXDirect plugin can not translate range "
                            "constraints containing quadratic expressions.")

                    elif con.lower is not None:
                        assert con.upper is None
                        qsenses.append('G')
                        qrhss.append(self._get_bound(con.lower) - offset)

                    else:
                        qsenses.append('L')
                        qrhss.append(self._get_bound(con.upper) - offset)

                    qlinears.append(expr)
                    qexpressions.append(qexpr)

                else:
                    names.append(name)
                    expressions.append(expr)

                    if con.equality:
                        # equality constraint.
                        senses.append('E')
                        rhss.append(self._get_bound(con.lower) - offset)
                        range_values.append(0.0)

                    elif (con.lower is not None) and (con.upper is not None):
                        # ranged constraint.
                        senses.append('R')
                        lower_bound = self._get_bound(con.lower) - offset
                        upper_bound = self._get_bound(con.upper) - offset
                        rhss.append(lower_bound)
                        range_values.append(upper_bound - lower_bound)

                    elif con.lower is not None:
                        senses.append('G')
                        rhss.append(self._get_bound(con.lower) - offset)
                        range_values.append(0.0)

                    else:
                        senses.append('L')
                        rhss.append(self._get_bound(con.upper) - offset)
                        range_values.append(0.0)

        ###################################################
        # populate the SOS constraints in the cplex model #
        ###################################################

        # SOS constraints - largely taken from cpxlp.py so updates there,
        # should be applied here
        # TODO: Allow users to specify the variables coefficients for custom
        # branching/set orders - refer to cpxlp.py
        sosn = self._capabilities.sosn
        sos1 = self._capabilities.sos1
        sos2 = self._capabilities.sos2
        modelSOS = ModelSOS()
        for soscondata in pyomo_instance.component_data_objects(SOSConstraint,
                                                                active=True):
            level = soscondata.level
            if (level == 1 and not sos1) or \
               (level == 2 and not sos2) or \
               (level > 2 and not sosn):
                raise Exception("Solver does not support SOS level %s constraints"
                                % (level,))
            modelSOS.count_constraint(self._symbol_map,
                                      labeler,
                                      self._variable_symbol_map,
                                      soscondata)

        if modelSOS.sosType:
            for key in modelSOS.sosType:
                self._active_cplex_instance.SOS.add(type = modelSOS.sosType[key],
                                       name = modelSOS.sosName[key],
                                       SOS = [modelSOS.varnames[key],
                                              modelSOS.weights[key]])
                self._referenced_variable_ids.update(modelSOS.varids[key])
            used_sos_constraints = True

        self._active_cplex_instance.linear_constraints.add(
            lin_expr=expressions,
            senses=senses,
            rhs=rhss,
            range_values=range_values,
            names=names)

        for index in xrange(len(qexpressions)):
            self._active_cplex_instance.quadratic_constraints.add(
                lin_expr=qlinears[index],
                quad_expr=qexpressions[index],
                sense=qsenses[index],
                rhs=qrhss[index],
                name=qnames[index])

        #############################################
        # populate the objective in the cplex model #
        #############################################

        self.compile_objective(pyomo_instance)

        ################################################
        # populate the problem type in the cplex model #
        ################################################

        # This gets rid of the annoying "Freeing MIP data." message.
        def _filter_freeing_mip_data(val):
            if val.strip() == 'Freeing MIP data.':
                return ""
            return val
        self._active_cplex_instance.set_warning_stream(sys.stderr,
                                                       fn=_filter_freeing_mip_data)

        if (self._has_quadratic_objective is True) or \
           (self._has_quadratic_constraints is True):
            if (num_integer_variables > 0) or \
               (num_binary_variables > 0) or \
               (used_sos_constraints):
                if self._has_quadratic_constraints is True:
                    self._active_cplex_instance.set_problem_type(
                        self._active_cplex_instance.problem_type.MIQCP)
                else:
                    self._active_cplex_instance.set_problem_type(
                        self._active_cplex_instance.problem_type.MIQP)
            else:
                if self._has_quadratic_constraints is True:
                    self._active_cplex_instance.set_problem_type(
                        self._active_cplex_instance.problem_type.QCP)
                else:
                    self._active_cplex_instance.set_problem_type(
                        self._active_cplex_instance.problem_type.QP)
        elif (num_integer_variables > 0) or \
             (num_binary_variables > 0) or \
             (used_sos_constraints):
            self._active_cplex_instance.set_problem_type(
                self._active_cplex_instance.problem_type.MILP)
        else:
            self._active_cplex_instance.set_problem_type(
                self._active_cplex_instance.problem_type.LP)

        # restore the warning stream without our filter function
        self._active_cplex_instance.set_warning_stream(sys.stderr)
コード例 #13
0
ファイル: CPLEXPersistent.py プロジェクト: Juanlu001/pyomo
    def compile_objective(self, pyomo_instance):

        from pyomo.core.base import Objective
        from pyomo.repn import canonical_is_constant, LinearCanonicalRepn, canonical_degree

        if self._active_cplex_instance is None:
            raise RuntimeError("***The CPLEXPersistent solver plugin "
                               "cannot compile objective - no "
                               "instance is presently compiled")

        cplex_instance = self._active_cplex_instance

        cntr = 0
        for block in pyomo_instance.block_data_objects(active=True):
            gen_obj_canonical_repn = \
                getattr(block, "_gen_obj_canonical_repn", True)
            # Get/Create the ComponentMap for the repn
            if not hasattr(block,'_canonical_repn'):
                block._canonical_repn = ComponentMap()
            block_canonical_repn = block._canonical_repn

            for obj_data in block.component_data_objects(Objective,
                                                         active=True,
                                                         descend_into=False):

                cntr += 1
                if cntr > 1:
                    raise ValueError(
                        "Multiple active objectives found on Pyomo instance '%s'. "
                        "Solver '%s' will only handle a single active objective" \
                        % (pyomo_instance.cname(True), self.type))

                if obj_data.is_minimizing():
                    cplex_instance.objective.set_sense(
                        cplex_instance.objective.sense.minimize)
                else:
                    cplex_instance.objective.set_sense(
                        cplex_instance.objective.sense.maximize)

                cplex_instance.objective.set_name(
                    self._symbol_map.getSymbol(obj_data,
                                               self._labeler))

                if gen_obj_canonical_repn:
                    obj_repn = generate_canonical_repn(obj_data.expr)
                    block_canonical_repn[obj_data] = obj_repn
                else:
                    obj_repn = block_canonical_repn[obj_data]

                if (isinstance(obj_repn, LinearCanonicalRepn) and \
                    (obj_repn.linear == None)) or \
                    canonical_is_constant(obj_repn):
                    print("Warning: Constant objective detected, replacing "
                          "with a placeholder to prevent solver failure.")
                    offset = obj_repn.constant
                    if offset is None:
                        offset = 0.0
                    objective_expression = [("ONE_VAR_CONSTANT",offset)]
                    cplex_instance.objective.set_linear(objective_expression)

                else:

                    if isinstance(obj_repn, LinearCanonicalRepn):
                        objective_expression, offset = \
                            self._encode_constraint_body_linear_specialized(
                                    obj_repn,
                                    self._labeler,
                                    use_variable_names=False,
                                    cplex_variable_name_index_map=self._cplex_variable_ids,
                                    as_pairs=True)
                        if offset != 0.0:
                            objective_expression.append((self._cplex_variable_ids["ONE_VAR_CONSTANT"],offset))
                        cplex_instance.objective.set_linear(objective_expression)

                    else:
                        #Linear terms
                        if 1 in obj_repn:
                            objective_expression, offset = \
                                self._encode_constraint_body_linear(
                                    obj_repn,
                                    self._labeler,
                                    as_pairs=True)
                            if offset != 0.0:
                                objective_expression.append(("ONE_VAR_CONSTANT",offset))
                            cplex_instance.objective.set_linear(objective_expression)

                        #Quadratic terms
                        if 2 in obj_repn:
                            self._has_quadratic_objective = True
                            objective_expression = \
                                self._encode_constraint_body_quadratic(obj_repn,
                                                                       self._labeler,
                                                                       as_triples=True,
                                                                       is_obj=2.0)
                            cplex_instance.objective.\
                                set_quadratic_coefficients(objective_expression)

                        degree = canonical_degree(obj_repn)
                        if (degree is None) or (degree > 2):
                            raise ValueError(
                                "CPLEXPersistent plugin does not support general nonlinear "
                                "objective expressions (only linear or quadratic).\n"
                                "Objective: %s" % (obj_data.cname(True)))