コード例 #1
0
            def run(self, queue, atol, rtol):
                qcomp = queue.cl_queue_comp

                xarr = Array(qcomp, cnt, dtype, data=x.data)
                yarr = Array(qcomp, cnt, dtype, data=y.data)
                zarr = Array(qcomp, cnt, dtype, data=z.data)

                self._retarr = rkern(xarr, yarr, zarr, atol, rtol, queue=qcomp)
コード例 #2
0
    def __init__(self, sf, omega):
        '''Param:
             sf: the freeze out hypersf ds0,ds1,ds2,ds3,vx,vy,veta,etas
             omega: omega^tau, x, y, etas
        '''
        self.cwd, cwf = os.path.split(__file__)
        self.mass = 1.115
        self.Tfrz = 0.137
        self.ctx = cl.create_some_context()
        self.queue = cl.CommandQueue(self.ctx)

        src = open('kernel_polarization.cl', 'r').read()
        self.prg = cl.Program(self.ctx, src).build()

        # calc umu since they are used for each (Y,pt,phi)
        vx = sf[:, 4]
        vy = sf[:, 5]
        vz = sf[:, 6]
        v_sqr = vx * vx + vy * vy + vz * vz
        v_sqr[v_sqr > 1.0] = 0.99999
        u0 = 1.0 / np.sqrt(1.0 - v_sqr)

        self.size_sf = len(sf[:, 0])

        h_umu = np.zeros((self.size_sf, 4), dtype=np.float32)
        h_umu[:, 0] = u0
        h_umu[:, 1] = u0 * vx
        h_umu[:, 2] = u0 * vy
        h_umu[:, 3] = u0 * vz

        h_smu = sf[:, 0:4].astype(np.float32)
        h_etas = sf[:, 7].astype(np.float32)
        h_omegaY = 0.5 * omega[:, 2].astype(np.float32)

        mf = cl.mem_flags
        self.d_smu = cl.Buffer(self.ctx,
                               mf.READ_ONLY | mf.COPY_HOST_PTR,
                               hostbuf=h_smu)
        self.d_umu = cl.Buffer(self.ctx,
                               mf.READ_ONLY | mf.COPY_HOST_PTR,
                               hostbuf=h_umu)
        self.d_omegaY = cl.Buffer(self.ctx,
                                  mf.READ_ONLY | mf.COPY_HOST_PTR,
                                  hostbuf=h_omegaY)
        self.d_etas = cl.Buffer(self.ctx,
                                mf.READ_ONLY | mf.COPY_HOST_PTR,
                                hostbuf=h_etas)

        self.d_pol = Array(self.queue, self.size_sf, np.float32)
        self.d_vor = Array(self.queue, self.size_sf, np.float32)
        self.d_rho = Array(self.queue, self.size_sf, np.float32)
コード例 #3
0
    def getitem_device(self, item):
        if isinstance(item, slice):
            item = np.arange(len(self))[item]

        if is_iterable(item):
            return CLRaggedArray.from_buffer(
                self.queue,
                self.cl_buf,
                self.starts[item],
                self.shape0s[item],
                self.shape1s[item],
                self.stride0s[item],
                self.stride1s[item],
                names=[self.names[i] for i in item],
            )
        else:
            s = self.dtype.itemsize
            return Array(
                self.queue,
                (self.shape0s[item], self.shape1s[item]),
                self.dtype,
                strides=(self.stride0s[item] * s, self.stride1s[item] * s),
                data=self.cl_buf.data,
                offset=self.starts[item] * s,
            )
コード例 #4
0
    def inner_rand(queue, shape, dtype, luxury=None, a=0, b=1):
        from pyopencl.array import Array
        luxury = kwargs.pop("luxury", None)

        gen = _get_generator(queue, luxury)
        result = Array(queue, shape, dtype)
        gen.fill_uniform(result, a=a, b=b)
        return result
コード例 #5
0
def rand(queue, shape, dtype, luxury=None, a=0, b=1):
    """Return an array of `shape` filled with random values of `dtype`
    in the range [a,b).
    """

    from pyopencl.array import Array
    gen = _get_generator(queue, luxury)
    result = Array(queue, shape, dtype)
    result.add_event(gen.fill_uniform(result, a=a, b=b))
    return result
コード例 #6
0
 def setup(sizes, dtype):
     ctx = cl.create_some_context()
     queue = cl.CommandQueue(ctx)
     host_arrays, device_arrays = [], []
     for size in sizes:
         numpy_array = np.random.rand(*size).astype(dtype=dtype)
         opencl_array = Array(queue, numpy_array.shape, numpy_array.dtype)
         opencl_array.set(numpy_array)
         host_arrays.append(numpy_array)
         device_arrays.append(opencl_array)
     queue.finish()
     return queue, host_arrays, device_arrays
コード例 #7
0
def rand(context, queue, shape, dtype):
    from pyopencl.array import Array
    from pyopencl.elementwise import get_elwise_kernel

    result = Array(context, shape, dtype, queue=queue)

    if dtype == numpy.float32:
        func = get_elwise_kernel(
            context, "float *dest, unsigned int seed", md5_code + """
            #define POW_2_M32 (1/4294967296.0f)
            dest[i] = a*POW_2_M32;
            if ((i += gsize) < n)
                dest[i] = b*POW_2_M32;
            if ((i += gsize) < n)
                dest[i] = c*POW_2_M32;
            if ((i += gsize) < n)
                dest[i] = d*POW_2_M32;
            """, "md5_rng_float")
    elif dtype == numpy.float64:
        func = get_elwise_kernel(
            context, "double *dest, unsigned int seed", md5_code + """
            #define POW_2_M32 (1/4294967296.0)
            #define POW_2_M64 (1/18446744073709551616.)

            dest[i] = a*POW_2_M32 + b*POW_2_M64;

            if ((i += gsize) < n)
            {
              dest[i] = c*POW_2_M32 + d*POW_2_M64;
            }
            """, "md5_rng_float")
    elif dtype in [numpy.int32, numpy.uint32]:
        func = get_elwise_kernel(
            context, "unsigned int *dest, unsigned int seed", md5_code + """
            dest[i] = a;
            if ((i += gsize) < n)
                dest[i] = b;
            if ((i += gsize) < n)
                dest[i] = c;
            if ((i += gsize) < n)
                dest[i] = d;
            """, "md5_rng_int")
    else:
        raise NotImplementedError

    func(queue, result._global_size, result._local_size, result.data,
         numpy.random.randint(2**31 - 1), result.size)

    return result
コード例 #8
0
ファイル: clrandom.py プロジェクト: guilhersantos/pyopencl
def rand(queue, shape, dtype, luxury=None, a=0, b=1):
    """Return an array of `shape` filled with random values of `dtype`
    in the range [a,b).
    """

    if luxury is not None:
        from warnings import warn
        warn("Specifying the 'luxury' argument is deprecated and will stop being "
                "supported in PyOpenCL 2018.x", stacklevel=2)

    from pyopencl.array import Array
    gen = _get_generator(queue.context)
    result = Array(queue, shape, dtype)
    gen.fill_uniform(result, a=a, b=b)
    return result
コード例 #9
0
    def getitem_device(self, item):
        if isinstance(item, slice):
            item = np.arange(len(self))[item]

        if is_iterable(item):
            rval = self.__class__.__new__(self.__class__)
            rval.queue = self.queue
            rval.starts = self.starts[item]
            rval.shape0s = self.shape0s[item]
            rval.shape1s = self.shape1s[item]
            rval.stride0s = self.stride0s[item]
            rval.stride1s = self.stride1s[item]
            rval.cl_buf = self.cl_buf
            rval.names = [self.names[i] for i in item]
            return rval
        else:
            s = self.dtype.itemsize
            return Array(
                self.queue,
                (self.shape0s[item], self.shape1s[item]), self.dtype,
                strides=(self.stride0s[item] * s, self.stride1s[item] * s),
                data=self.cl_buf.data, offset=self.starts[item] * s)
コード例 #10
0
def rand(context, queue, shape, dtype):
    from pyopencl.array import Array

    result = Array(context, shape, dtype, queue=queue)
    _rand(result, numpy.random.randint(2**31 - 1))
    return result
コード例 #11
0
from pyopencl.array import arange, Array
from pyopencl.reduction import ReductionKernel
import numpy

ctx = pyopencl.create_some_context()
queue = pyopencl.CommandQueue(ctx)

#print dir(cl)
#a = arange(queue, 400, dtype=numpy.float32)
#b = arange(queue, 400, dtype=numpy.float32)
acpu = numpy.zeros((100, 1), dtype=numpy.int32)
for i in xrange(0, 100):
    if i % 5 == 0:
        acpu[i] = 1

a = Array(queue, (100, 1), numpy.int32)
a.set(acpu)
queue.finish()

krnl = ReductionKernel(
    ctx,
    numpy.int32,
    neutral="0",
    reduce_expr="a+b",
    map_expr="x[i]",  #*y[i]",
    arguments="__global int *x")  #, __global in *y")

my_sum = krnl(a).get()
queue.finish()
print my_sum
コード例 #12
0
# generate some random data on the CPU
m, n = 5, 4
dtype = 'float32'  # also supports 'float64'

A = np.zeros((m, n), dtype=dtype)
x = np.zeros(n, dtype=dtype)
y = np.zeros(m, dtype=dtype)

rng = np.random.RandomState(1)  # change the seed to see different data
A[...] = rng.uniform(-1, 1, size=A.shape)
x[...] = rng.uniform(-1, 1, size=x.shape)
y[...] = rng.uniform(-1, 1, size=y.shape)

# allocate OpenCL memory on the device
clA = Array(queue, A.shape, A.dtype)
clx = Array(queue, x.shape, x.dtype)
cly = Array(queue, y.shape, y.dtype)

# copy data to device
clA.set(A)
clx.set(x)

# compute a matrix-vector product (gemv)
blas.gemv(queue, clA, clx, cly)

# check the result
print("Expected: ", np.dot(A, x))
print("Actual:   ", cly.get())

# try a matrix-vector product with the transpose
コード例 #13
0
def to_ocl(a):
    cla = Array(queue, a.shape, a.dtype)
    cla.set(a)
    return cla
コード例 #14
0
ファイル: dot.py プロジェクト: andrewreisner/pyopencl_blas
# start up the BLAS
blas.setup()

# generate some random data on the CPU
n = 5
dtype = 'float64'  # also supports 'float64'

x = np.zeros(n, dtype=dtype)
y = np.zeros(n, dtype=dtype)

rng = np.random.RandomState(1)  # change the seed to see different data
x[...] = rng.uniform(-1, 1, size=x.shape)
y[...] = rng.uniform(-1, 1, size=y.shape)

# allocate OpenCL memory on the device
clx = Array(queue, x.shape, x.dtype)
cly = Array(queue, y.shape, y.dtype)
cld = Array(queue, 1, x.dtype)

# copy data to device
clx.set(x)
cly.set(y)

# compute a dot product (dot)
blas.dot(queue, clx, cly, cld)

# check the result
print("Expected: ", np.dot(x, y))
print("Actual:   ", cld.get()[0])

# tidy up the BLAS
コード例 #15
0
ファイル: sgemm.py プロジェクト: sivagnanamn/CLBlast
import numpy as np
import pyopencl as cl
from pyopencl.array import Array
import pyclblast

# Settings for this sample
dtype = 'float32'

print("# Setting up OpenCL")
ctx = cl.create_some_context()
queue = cl.CommandQueue(ctx)

print("# Setting up Numpy arrays")
m, n, k = 2, 3, 4
a = np.random.rand(m, k).astype(dtype=dtype)
b = np.random.rand(k, n).astype(dtype=dtype)
c = np.random.rand(m, n).astype(dtype=dtype)

print("# Setting up OpenCL arrays")
cla = Array(queue, a.shape, a.dtype)
clb = Array(queue, b.shape, b.dtype)
clc = Array(queue, c.shape, c.dtype)
cla.set(a)
clb.set(b)
clc.set(c)

print("# Example level-3 operation: GEMM")
pyclblast.gemm(queue, m, n, k, cla, clb, clc, a_ld=k, b_ld=n, c_ld=n)
print("# Matrix C result: %s" % clc.get())
print("# Expected result: %s" % (np.dot(a, b)))
コード例 #16
0
import pyclblast

# Settings for this sample
dtype = 'float32'
m, n = 4, 3
alpha = 1.0
beta = 0.0

print("# Setting up OpenCL")
ctx = cl.create_some_context()
queue = cl.CommandQueue(ctx)

print("# Setting up Numpy arrays")
a = np.random.rand(m, n).astype(dtype=dtype)
x = np.random.rand(n).astype(dtype=dtype)
y = np.random.rand(m).astype(dtype=dtype)

print("# Setting up OpenCL arrays")
cla = Array(queue, a.shape, a.dtype)
clx = Array(queue, x.shape, x.dtype)
cly = Array(queue, y.shape, y.dtype)
cla.set(a)
clx.set(x)
cly.set(y)

print("# Example level-2 operation: GEMV")
pyclblast.gemv(queue, m, n, cla, clx, cly, a_ld=n, alpha=alpha, beta=beta)
queue.finish()
print("# Result for vector y: %s" % cly.get())
print("# Expected result:     %s" % (alpha * np.dot(a, x) + beta * y))
コード例 #17
0
ファイル: trsv.py プロジェクト: andrewreisner/pyopencl_blas
A = np.zeros((n, n), dtype=dtype)
x = np.zeros(n, dtype=dtype)
x1 = np.zeros(n, dtype=dtype)
x2 = np.zeros(n, dtype=dtype)

rng = np.random.RandomState(1)  # change the seed to see different data
A[...] = rng.uniform(-1, 1, size=A.shape)
x[...] = rng.uniform(-1, 1, size=x.shape)
x1[...] = rng.uniform(-1, 1, size=x1.shape)
x2[...] = rng.uniform(-1, 1, size=x2.shape)

A_upper = np.triu(A)
A = np.tril(A)

# allocate OpenCL memory on the device
clA = Array(queue, A.shape, A.dtype)
clA_upper = Array(queue, A.shape, A.dtype)
clx = Array(queue, x.shape, x.dtype)
clx1 = Array(queue, x1.shape, x1.dtype)
clx2 = Array(queue, x2.shape, x2.dtype)

# copy data to device
clA.set(A)
clA_upper.set(A_upper)
clx.set(x)

# compute a triangular solve (trsv)
blas.trsv(queue, clA, clx)

# check the result
print("Expected: ", np.linalg.solve(A, x))