コード例 #1
0
ファイル: myOpenpose.py プロジェクト: jyramel/SLR_LIFAT
def set_params(face=False,
               body=1,
               hand=True,
               hand_detector=0,
               hand_opti=False,
               write_json="",
               nb_people_max=1,
               num_gpu=0,
               model_folder='/home/conte/openpose/models',
               tracking=-1):
    """
    face : bool, calcul des keypoints du visage
    body : int, calcul des keypoints du corps
    hand : bool, calcul des keypoints des mains
    hand_detector : int, Select 0 to select OpenPose body detector (most accurate
        one and fastest one if body is enabled), 2 to indicate that it will be 
        provided by the user, 3 to also apply hand tracking (only for hand)
    hand_opti : bool, paramètres optimaux pour l'efficacité, perte de rapidité
    write_json : str, endroit où enregistrer fichiers JSON des keypoints, "" 
        pour ne pas enregistrer
    nb_people_max : int, nombre de personne max à chercher sur la frame/photo
    num_gpu : int, si l'on souhaite travailler manuellement sur les gpu, 0
        pour ne pas s'en préoccuper
    """
    params = dict()
    params["model_folder"] = model_folder

    # Noyau plante si face = True
    params["face"] = face
    params["hand"] = hand
    params["hand_detector"] = hand_detector
    params["body"] = body

    # On fixe le nombre de personne
    params["number_people_max"] = nb_people_max

    # Best results found with 6 scales
    # --hand_scale_number 6 --hand_scale_range 0.4

    if hand_opti:
        params["hand_scale_number"] = 6
        #params["hand_scale_range"] = float(0.4)

    # Save results in JSON format
    if write_json:
        params["write_json"] = write_json

    if num_gpu:
        params["num_gpu"] = int(op.get_gpu_number())

    params["tracking"] = tracking
    # Pour calcul multi-GPU :
    # https://github.com/CMU-Perceptual-Computing-Lab/openpose/blob/master/examples/tutorial_api_python/05_keypoints_from_images_multi_gpu.py

    return params
コード例 #2
0
        )
        raise e

    # Flags
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--image_dir",
        default="../examples/media/",
        help=
        "Process a directory of images. Read all standard formats (jpg, png, bmp, etc.)."
    )
    parser.add_argument("--no_display",
                        default=False,
                        help="Enable to disable the visual display.")
    parser.add_argument("--num_gpu",
                        default=op.get_gpu_number(),
                        help="Number of GPUs.")
    args = parser.parse_known_args()

    # Custom Params (refer to include/openpose/flags.hpp for more parameters)
    params = dict()
    params["model_folder"] = "../models/"
    params["num_gpu"] = int(vars(args[0])["num_gpu"])
    numberGPUs = int(params["num_gpu"])

    # Add others in path?
    for i in range(0, len(args[1])):
        curr_item = args[1][i]
        if i != len(args[1]) - 1: next_item = args[1][i + 1]
        else: next_item = "1"
        if "--" in curr_item and "--" in next_item:
コード例 #3
0
        if key not in params: params[key] = next_item

# Construct it from system arguments
# op.init_argv(args[1])
# oppython = op.OpenposePython()

# Starting OpenPose
opWrapper = op.WrapperPython()
opWrapper.configure(params)
opWrapper.start()

# Read frames on directory
imagePaths = op.get_images_on_directory(args[0].image_dir)

# Read number of GPUs in your system
numberGPUs = op.get_gpu_number()
start = time.time()

# Process and display images
for imageBaseId in range(0, len(imagePaths), numberGPUs):

    # Create datums
    datums = []

    # Read and push images into OpenPose wrapper
    for gpuId in range(0, numberGPUs):

        imageId = imageBaseId + gpuId
        if imageId < len(imagePaths):

            imagePath = imagePaths[imageBaseId + gpuId]
コード例 #4
0
ファイル: openpose.py プロジェクト: huiwenzhang/pyrobolearn
 def num_gpus(self):
     """Return the number of GPUs."""
     return pyopenpose.get_gpu_number()
コード例 #5
0
            import pyopenpose as op
        else:
            # Change these variables to point to the correct folder (Release/x64 etc.)
            sys.path.append('../../python');
            # If you run `make install` (default path is `/usr/local/python` for Ubuntu), you can also access the OpenPose/python module from there. This will install OpenPose and the python library at your desired installation path. Ensure that this is in your python path in order to use it.
            # sys.path.append('/usr/local/python')
            from openpose import pyopenpose as op
    except ImportError as e:
        print('Error: OpenPose library could not be found. Did you enable `BUILD_PYTHON` in CMake and have this Python script in the right folder?')
        raise e

    # Flags
    parser = argparse.ArgumentParser()
    parser.add_argument("--image_dir", default="../../../examples/media/", help="Process a directory of images. Read all standard formats (jpg, png, bmp, etc.).")
    parser.add_argument("--no_display", default=False, help="Enable to disable the visual display.")
    parser.add_argument("--num_gpu", default=op.get_gpu_number(), help="Number of GPUs.")
    args = parser.parse_known_args()

    # Custom Params (refer to include/openpose/flags.hpp for more parameters)
    params = dict()
    params["model_folder"] = "../../../models/"
    params["num_gpu"] = int(vars(args[0])["num_gpu"])
    numberGPUs = int(params["num_gpu"])

    # Add others in path?
    for i in range(0, len(args[1])):
        curr_item = args[1][i]
        if i != len(args[1])-1: next_item = args[1][i+1]
        else: next_item = "1"
        if "--" in curr_item and "--" in next_item:
            key = curr_item.replace('-','')