コード例 #1
0
ファイル: MPC_ORCA.py プロジェクト: EASY-SPARC/TCC-Glauber
    def compute(self, setpoint):
        # Updating initial conditions
        x_0 = numpy.array([
            self.agent.position[0], self.agent.position[1],
            self.agent.velocity[0], self.agent.velocity[1]
        ])

        self.q = numpy.hstack([
            -self.Q.dot(setpoint[0:self.nx]),
            -self.Q_0.dot(setpoint[self.nx:2 * self.nx]),
            numpy.dot(
                sparse.kron(sparse.eye(self.N - 1), -self.Q).toarray(),
                setpoint[2 * self.nx:]),
            numpy.zeros(self.N * self.nu)
        ])

        self.l[:self.nx] = -x_0
        self.u[:self.nx] = -x_0

        # Predict future states with constant velocity, i.e. no acceleration
        for k in range(self.N):
            agent_k = Agent(
                self.agent.position + k * self.agent.velocity * self.Ts,
                self.agent.velocity, numpy.zeros(2), self.agent.radius)

            for i, collider in enumerate(self.colliders):
                collider_k = Agent(
                    collider.position + k * collider.velocity * self.Ts,
                    collider.velocity, numpy.zeros(2), collider.radius)

                # Discovering ORCA half-space
                v0, n = orca(agent_k, collider_k, self.tau, self.Ts)

                self.A[self.orca_rows_idx + i * self.N + k,
                       self.nx + k * self.nx + 2] = n[0]
                self.A[self.orca_rows_idx + i * self.N + k,
                       self.nx + k * self.nx + 3] = n[1]

                self.l[self.orca_rows_idx + i * self.N + k] = -numpy.inf
                self.u[self.orca_rows_idx + i * self.N + k] = numpy.dot(n, v0)

        self.problem.update(q=self.q, l=self.l, u=self.u, Ax=self.A.data)
        result = self.problem.solve()

        if result.info.status == 'solved':
            # return the first resulting velocity after control action
            return [
                result.x[(self.nx + 2):(self.nx + 4)],
                result.x[-self.N * self.nu:-(self.N - 1) * self.nu]
            ]
        else:
            print(result.info.status)

            damping = 3
            new_acceleration = (1 - damping) * self.agent.acceleration
            return [
                self.agent.velocity + new_acceleration * self.Ts,
                new_acceleration
            ]
コード例 #2
0
ファイル: test.py プロジェクト: jucargoe/robotics_challenge

running = True
accum = 0
all_lines = [[]] * len(agents)
while running:
    accum += clock.tick(FPS)

    while accum >= dt * 1000:
        accum -= dt * 1000

        new_vels = [None] * len(agents)
        for i, agent in enumerate(agents):
            candidates = agents[:i] + agents[i + 1:]
            # print(candidates)
            new_vels[i], all_lines[i] = orca(agent, candidates, tau, dt)
            # print(i, agent.velocity)

        for i, agent in enumerate(agents):
            agent.velocity = new_vels[i]
            agent.position += agent.velocity * dt

    screen.fill(pygame.Color(0, 0, 0))

    for agent in agents[1:]:
        draw_orca_circles(agents[0], agent)

    for agent, color in zip(agents, itertools.cycle(colors)):
        draw_agent(agent, color)
        draw_velocity(agent)
        # print(sqrt(norm_sq(agent.velocity)))
コード例 #3
0
ファイル: test.py プロジェクト: Muon/pyorca
    # pygame.draw.line(screen, pygame.Color(255, 0, 255), rint(a.position * scale + O).astype(int), rint((a.position + a.pref_velocity) * scale + O).astype(int), 1)

running = True
accum = 0
all_lines = [[]] * len(agents)
while running:
    accum += clock.tick(FPS)

    while accum >= dt * 1000:
        accum -= dt * 1000

        new_vels = [None] * len(agents)
        for i, agent in enumerate(agents):
            candidates = agents[:i] + agents[i + 1:]
            # print(candidates)
            new_vels[i], all_lines[i] = orca(agent, candidates, tau, dt)
            # print(i, agent.velocity)

        for i, agent in enumerate(agents):
            agent.velocity = new_vels[i]
            agent.position += agent.velocity * dt

    screen.fill(pygame.Color(0, 0, 0))

    for agent in agents[1:]:
        draw_orca_circles(agents[0], agent)

    for agent, color in zip(agents, itertools.cycle(colors)):
        draw_agent(agent, color)
        draw_velocity(agent)
        # print(sqrt(norm_sq(agent.velocity)))
コード例 #4
0
sub_0 = rospy.Subscriber('/robot_0/odom', Odometry, callback_0)
sub_1 = rospy.Subscriber('/robot_1/odom', Odometry, callback_1)
sub_2 = rospy.Subscriber('/robot_2/odom', Odometry, callback_2)
sub_3 = rospy.Subscriber('/robot_3/odom', Odometry, callback_3)
pub = []
pub.append(rospy.Publisher('/robot_0/cmd_vel', Twist, queue_size=10))
pub.append(rospy.Publisher('/robot_1/cmd_vel', Twist, queue_size=10))
pub.append(rospy.Publisher('/robot_2/cmd_vel', Twist, queue_size=10))
pub.append(rospy.Publisher('/robot_3/cmd_vel', Twist, queue_size=10))
t = 0

while not rospy.is_shutdown():
    agents = update_agents(agents)
    for i, agent in enumerate(agents):
        candidates = agents[:i] + agents[i + 1:]
        agent.velocity, _ = orca(agent, candidates, tau, Ts)

    for i in xrange(len(X)):
        vel = Twist()
        vel.linear.x = agents[i].velocity[0]
        vel.linear.y = agents[i].velocity[1]

        pub[i].publish(vel)

    if t % 100:
        print(X)
        #print(agents[0].velocity)
    t += 1
    rospy.sleep(Ts)
コード例 #5
0
    def command(self, rate):
        goal = PointStamped()
        base_goal = PointStamped()
        goal.header.frame_id = "odom"
        goal.header.stamp = rospy.Time()

        if len(self.goals) > 3:
            theta = 1
            atheta = 0.1
        else:
            theta = 4
            atheta = 0.2

        if len(self.goals) < 1 or self.currentGoalIndex >= len(self.goals):
            if len(self.goals) < 1:
                self.publish(0, 0)
            else:
                rospy.loginfo("Objetivos alcanzados")
                self.publish(0, 0)
                self.shutdown()
                rospy.signal_shutdown("Finished")
        else:
            goal.point.y = self.goals[self.currentGoalIndex][1]['y']
            goal.point.x = self.goals[self.currentGoalIndex][1]['x']
            goal.point.z = 0.0
            try:
                base_goal = self.listener.transformPoint(
                    'base_footprint', goal)
            except (tf.LookupException, tf.ConnectivityException,
                    tf.ExtrapolationException):
                rospy.loginfo("Problem TF")
                return

            angular = math.atan2(base_goal.point.y, base_goal.point.x)
            degrees = math.degrees(angular)
            if degrees > 5:
                angular = 0.3
                linear = 0.1
            elif degrees < -5:
                angular = -0.3
                linear = 0.1
            else:
                angular = degrees * 0.3 * 0.35
                linear = 0.4

            if math.sqrt((base_goal.point.x)**2 +
                         (base_goal.point.y)**2) < 0.5:
                if self.currentGoalIndex + 1 == len(self.goals):
                    if math.sqrt((base_goal.point.x)**2 +
                                 (base_goal.point.y)**2) < 0.3:
                        self.currentGoalIndex = self.currentGoalIndex + 1
                else:
                    self.currentGoalIndex = self.currentGoalIndex + 1

            x_vel = math.cos(angular) * linear
            y_vel = math.sin(angular) * linear
            self.robotAgent = Agent(
                (0, 0),
                (self.robotAgent.velocity[0], self.robotAgent.velocity[1]),
                0.25, 0.001, (x_vel, y_vel))
            [newVel, lines] = orca(self.robotAgent, self.collidingAgents,
                                   theta, atheta)
            x_vel = newVel[0]
            y_vel = newVel[1]
            self.robotAgent = Agent((0, 0), (x_vel, y_vel), 0.25, 0.001,
                                    (x_vel, y_vel))

            linear = math.sqrt(x_vel**2.0 + y_vel**2.0)
            linear = min(linear, 0.4)
            angular = angular + (math.atan2(y_vel, x_vel) - angular) * 10
            angular = min(angular, 0.3)
            angular = max(angular, -0.3)

            self.publish(linear, angular)