コード例 #1
0
ファイル: __init__.py プロジェクト: yurigba/PyPDE
def viscous_shock_ns():
    """ 10.1016/j.jcp.2016.02.015
        4.13 Viscous shock profile
    """
    tf = 0.2
    nx = 200

    x = arange(-0.5, 0.5, 1 / nx)
    ρ = zeros(nx)
    p = zeros(nx)
    v = zeros(nx)
    for i in range(nx):
        ρ[i], p[i], v[i] = viscous_shock_exact(x[i])

    v -= v[0]  # Velocity in shock 0

    u = zeros([nx, 5])
    for i in range(nx):
        u[i] = make_Q(ρ[i], p[i], array([v[i], 0, 0]))

    L = [1.]

    ret = pde_solver(u, tf, L, F=F_navier_stokes, cfl=0.6)

    plt.plot(ret[-1, :, 2] / ret[-1, :, 0])
    plt.show()

    return ret
コード例 #2
0
ファイル: __init__.py プロジェクト: pminak/PyPDE
def viscous_shock_gpr():
    """ 10.1016/j.jcp.2016.02.015
        4.13 Viscous shock profile
    """

    tf = 0.2
    nx = 200

    x = arange(-0.5, 0.5, 1 / nx)
    ρ = zeros(nx)
    p = zeros(nx)
    v = zeros(nx)
    for i in range(nx):
        ρ[i], p[i], v[i] = viscous_shock_exact(x[i])

    v -= v[0]  # Velocity in shock 0

    u = zeros([nx, 17])
    for i in range(nx):
        A = (ρ[i])**(1 / 3) * eye(3)
        J = zeros(3)
        u[i] = Cvec(ρ[i], p[i], array([v[i], 0, 0]), A, J)

    L = [1.]

    ret = pde_solver(u, tf, L, F=F_gpr, B=B_gpr, S=S_gpr, cfl=0.6)

    plt.plot(ret[-1, :, 2] / ret[-1, :, 0])
    plt.show()

    return ret
コード例 #3
0
def detonation_wave():

    nx = 400

    ρL = 1.4
    pL = 1
    vL = [0, 0, 0]
    λL = 0
    EL = energy(ρL, pL, vL, λL)

    ρR = 0.887565
    pR = 0.191709
    vR = [-0.57735, 0, 0]
    λR = 1
    ER = energy(ρR, pR, vR, λR)

    QL = ρL * array([1, EL] + vL + [λL])
    QR = ρR * array([1, ER] + vR + [λR])

    u = zeros([nx, 6])
    for i in range(nx):
        if i / nx < 0.25:
            u[i] = QL
        else:
            u[i] = QR

    tf = 0.5
    L = [1.]

    ret = pde_solver(u,
                     tf,
                     L,
                     F=F_reactive_euler,
                     S=S_reactive_euler,
                     stiff=False,
                     cfl=0.6,
                     flux='roe',
                     order=3)

    plt.plot(ret[-1, :, 0])
    plt.show()

    return ret
コード例 #4
0
ファイル: __init__.py プロジェクト: yurigba/PyPDE
def taylor_green_vortex_2d():
    """ 10.1016/j.jcp.2016.02.015
        4.10 2D Taylor-Green Vortex
    """
    L = [2 * pi, 2 * pi]

    nx = 50
    ny = 50
    tf = 1

    C = 100 / γ
    ρ = 1
    v = zeros(3)

    u = zeros([nx, ny, 5])
    for i in range(nx):
        for j in range(ny):
            x = (i + 0.5) * L[0] / nx
            y = (j + 0.5) * L[1] / ny
            v[0] = sin(x) * cos(y)
            v[1] = -cos(x) * sin(y)
            p = C + (cos(2 * x) + cos(2 * y)) / 4
            u[i, j] = make_Q(ρ, p, v)

    ret = pde_solver(u,
                     tf,
                     L,
                     F=F_navier_stokes,
                     cfl=0.9,
                     order=2,
                     boundaryTypes='periodic')

    x = linspace(0, L[0], nx)
    y = linspace(0, L[1], ny)

    ut = ret[-1, :, :, 2] / ret[-1, :, :, 0]
    vt = ret[-1, :, :, 3] / ret[-1, :, :, 0]
    plt.streamplot(x, y, ut, vt)
    plt.show()

    return ret
コード例 #5
0
ファイル: __init__.py プロジェクト: yurigba/PyPDE
def sod_shock():

    nx = 200
    ny = 5

    ρL = 1
    pL = 1
    vL = 0

    ρR = 0.125
    pR = 0.1
    vR = 0

    QL = ρL * array([1., energy(ρL, pL, vL), vL])
    QR = ρR * array([1., energy(ρR, pR, vR), vR])

    u_ = zeros([nx, 3])
    for i in range(nx):
        if i / nx < 0.5:
            u_[i] = QL
        else:
            u_[i] = QR

    tf = 0.2

    u = zeros([nx, ny, 3])
    for i in range(ny):
        u[:, i] = u_
    L = [1., .2]
    boundaryTypes = ['transitive', 'periodic']

    ret = pde_solver(u,
                     tf,
                     L,
                     F=F_euler,
                     stiff=False,
                     boundaryTypes=boundaryTypes)

    plot_2d(L, ret[-1, :, :, 0])

    return ret