コード例 #1
0
def test_proc_diff(nires_sci_files, nires_bg_files):
    """
    Run on near-IR frames
    """
    # Setup
    det = 1
    bpm = np.zeros((2048,1024))
    pixelflat = np.ones_like(bpm)

    # Sci image
    sciImg = scienceimage.build_from_file_list(keck_nires, det,
                                               nires_par['scienceframe']['process'], bpm,
                                               nires_sci_files, None, pixelflat)
    # Bg image
    bgImg = scienceimage.build_from_file_list(keck_nires, det,
                                              nires_par['scienceframe']['process'], bpm,
                                              nires_bg_files, None, pixelflat)
    # Difference
    sciImg = sciImg - bgImg
    # Test
    assert isinstance(sciImg, scienceimage.ScienceImage)
コード例 #2
0
def test_from_list(shane_kast_blue_sci_files):
    """
    Run on two frames
    """
    det = 1
    # Load calibrations
    pixelflat = load_kast_blue_masters(pixflat=True)[0]
    bpm = kast_blue.empty_bpm(shane_kast_blue_sci_files[0], det)
    # Do it
    sciImg = scienceimage.build_from_file_list(
        kast_blue, det, kast_par['scienceframe']['process'], bpm,
        shane_kast_blue_sci_files, None, pixelflat)
    # Test
    assert isinstance(sciImg, scienceimage.ScienceImage)
コード例 #3
0
ファイル: pypeit.py プロジェクト: YoemanLeung/PypeIt
    def extract_one(self, frames, det, bg_frames, std_outfile=None):
        """
        Extract a single exposure/detector pair

        sci_ID and det need to have been set internally prior to calling this method

        Args:
            frames (list):
                List of frames to extract;  stacked if more than one is provided
            det (int):
            bg_frames (list):
                List of frames to use as the background
                Can be empty
            std_outfile (str, optional):

        Returns:
            seven objects are returned::
                - ndarray: Science image
                - ndarray: Science inverse variance image
                - ndarray: Model of the sky
                - ndarray: Model of the object
                - ndarray: Model of inverse variance
                - ndarray: Mask
                - :obj:`pypeit.specobjs.SpecObjs`: spectra

        """
        # Grab some meta-data needed for the reduction from the fitstbl
        self.objtype, self.setup, self.obstime, self.basename, self.binning = self.get_sci_metadata(
            frames[0], det)
        # Is this a standard star?
        self.std_redux = 'standard' in self.objtype
        # Get the standard trace if need be
        std_trace = self.get_std_trace(self.std_redux, det, std_outfile)

        # Build Science image
        sci_files = self.fitstbl.frame_paths(frames)
        self.sciImg = scienceimage.build_from_file_list(
            self.spectrograph,
            det,
            self.par['scienceframe']['process'],
            self.caliBrate.msbpm,
            sci_files,
            self.caliBrate.msbias,
            self.caliBrate.mspixelflat,
            illum_flat=self.caliBrate.msillumflat)

        # Background Image?
        if len(bg_frames) > 0:
            bg_file_list = self.fitstbl.frame_paths(bg_frames)
            self.sciImg = self.sciImg - scienceimage.build_from_file_list(
                self.spectrograph,
                det,
                self.par['scienceframe']['process'],
                self.caliBrate.msbpm,
                bg_file_list,
                self.caliBrate.msbias,
                self.caliBrate.mspixelflat,
                illum_flat=self.caliBrate.msillumflat)

        # Update mask for slitmask
        slitmask = pixels.tslits2mask(self.caliBrate.tslits_dict)
        self.sciImg.update_mask_slitmask(slitmask)

        # For QA on crash
        msgs.sciexp = self.sciImg

        # Instantiate Reduce object
        self.maskslits = self.caliBrate.tslits_dict['maskslits'].copy()
        # Required for pypeline specific object
        # TODO -- caliBrate should be replaced by the ~3 primary Objects needed
        #   once we have the data models in place.
        self.redux = reduce.instantiate_me(self.sciImg,
                                           self.spectrograph,
                                           self.par,
                                           self.caliBrate,
                                           maskslits=self.maskslits,
                                           ir_redux=self.ir_redux,
                                           std_redux=self.std_redux,
                                           objtype=self.objtype,
                                           setup=self.setup,
                                           show=self.show,
                                           det=det,
                                           binning=self.binning)
        # Show?
        if self.show:
            self.redux.show('image',
                            image=self.sciImg.image,
                            chname='processed',
                            slits=True,
                            clear=True)

        # Prep for manual extraction (if requested)
        manual_extract_dict = self.fitstbl.get_manual_extract(frames, det)

        self.skymodel, self.objmodel, self.ivarmodel, self.outmask, self.sobjs = self.redux.run(
            std_trace=std_trace,
            manual_extract_dict=manual_extract_dict,
            show_peaks=self.show,
            basename=self.basename,
            ra=self.fitstbl["ra"][frames[0]],
            dec=self.fitstbl["dec"][frames[0]],
            obstime=self.obstime)

        # Return
        return self.sciImg.image, self.sciImg.ivar, self.skymodel, self.objmodel, self.ivarmodel, self.outmask, self.sobjs