class PypeIt(object): """ This class runs the primary calibration and extraction in PypeIt Args: pypeit_file (:obj:`str`): PypeIt filename verbosity (:obj:`int`, optional): Verbosity level of system output. Can be:: - 0: No output - 1: Minimal output (default) - 2: All output overwrite (:obj:`bool`, optional): Flag to overwrite any existing files/directories. reuse_masters (bool, optional): Reuse any pre-existing calibration files logname (:obj:`str`, optional): The name of an ascii log file with the details of the reduction. redux_path (:obj:`str`, optional): Over-ride reduction path in PypeIt file (e.g. Notebook usage) show: (:obj:`bool`, optional): Show reduction steps via plots (which will block further execution until clicked on) and outputs to ginga. Requires remote control ginga session via "ginga --modules=RC &" Attributes: pypeit_file (:obj:`str`): Name of the pypeit file to read. PypeIt files have a specific set of valid formats. A description can be found `here`_ (include doc link). fitstbl (:obj:`pypit.metadata.PypeItMetaData`): holds the meta info """ # __metaclass__ = ABCMeta def __init__(self, pypeit_file, verbosity=2, overwrite=True, reuse_masters=False, logname=None, show=False, redux_path=None): # Load cfg_lines, data_files, frametype, usrdata, setups = parse_pypeit_file(pypeit_file, runtime=True) self.pypeit_file = pypeit_file # Spectrograph cfg = ConfigObj(cfg_lines) spectrograph_name = cfg['rdx']['spectrograph'] self.spectrograph = load_spectrograph(spectrograph_name) # Par # Defaults spectrograph_def_par = self.spectrograph.default_pypeit_par() # Grab a science file for configuration specific parameters sci_file = None for idx, row in enumerate(usrdata): if 'science' in row['frametype']: sci_file = data_files[idx] break # Set spectrograph_cfg_lines = self.spectrograph.config_specific_par(spectrograph_def_par, sci_file).to_config() self.par = PypeItPar.from_cfg_lines(cfg_lines=spectrograph_cfg_lines, merge_with=cfg_lines) # Fitstbl self.fitstbl = PypeItMetaData(self.spectrograph, self.par, file_list=data_files, usrdata=usrdata, strict=True) # The following could be put in a prepare_to_run() method in PypeItMetaData if 'setup' not in self.fitstbl.keys(): self.fitstbl['setup'] = setups[0] self.fitstbl.get_frame_types(user=frametype) # This sets them using the user inputs self.fitstbl.set_defaults() # Only does something if values not set in PypeIt file self.fitstbl._set_calib_group_bits() self.fitstbl._check_calib_groups() # Write .calib file (For QA naming amongst other things) calib_file = pypeit_file.replace('.pypeit', '.calib') self.fitstbl.write_calib(calib_file) # Other Internals self.logname = logname self.overwrite = overwrite # Currently the runtime argument determines the behavior for reuse_masters. There is also a reuse_masters # parameter in the parset but it is currently ignored. self.reuse_masters=reuse_masters self.show = show # Make the output directories self.par['rdx']['redux_path'] = os.getcwd() if redux_path is None else redux_path msgs.info("Setting reduction path to {:s}".format(self.par['rdx']['redux_path'])) paths.make_dirs(self.spectrograph.spectrograph, self.par['calibrations']['caldir'], self.par['rdx']['scidir'], self.par['rdx']['qadir'], overwrite=self.overwrite, redux_path=self.par['rdx']['redux_path']) # Instantiate Calibrations class self.caliBrate \ = calibrations.MultiSlitCalibrations(self.fitstbl, self.par['calibrations'], self.spectrograph, redux_path=self.par['rdx']['redux_path'], reuse_masters=self.reuse_masters, save_masters=True, write_qa=True, show=self.show) # Init self.verbosity = verbosity # TODO: I don't think this ever used self.frame = None self.det = None self.tstart = None self.basename = None self.sciI = None self.obstime = None def build_qa(self): """ Generate QA wrappers """ qa.gen_mf_html(self.pypeit_file) qa.gen_exp_html() def outfile_exists(self, frame): """ Check whether the 2D outfile of a given frame already exists Args: frame (int): Frame index from fitstbl Returns: bool: True if the 2d file exists False if it does not exist """ # Check if the 2d output file exists scidir = os.path.join(self.par['rdx']['redux_path'], self.par['rdx']['scidir']) basename = self.fitstbl.construct_basename(frame) outfile = scidir + '/spec2d_{:s}.fits'.format(basename) return os.path.isfile(outfile) def get_std_outfile(self, standard_frames): """ Grab the output filename from an input list of standard_frame indices If more than one index is provided, the first is taken Args: standard_frames (list): List of indices corresponding to standard stars Returns: str: Full path to the standard spec1d output file """ # TODO: Need to decide how to associate standards with # science frames in the case where there is more than one # standard associated with a given science frame. Below, I # just use the first standard std_outfile = None std_frame = None if len(standard_frames) == 0 else standard_frames[0] # Prepare to load up standard? if std_frame is not None: std_outfile = os.path.join(self.par['rdx']['redux_path'], self.par['rdx']['scidir'], 'spec1d_{:s}.fits'.format(self.fitstbl.construct_basename(std_frame))) \ if isinstance(std_frame, (int,np.integer)) else None if std_outfile is not None and not os.path.isfile(std_outfile): msgs.error('Could not find standard file: {0}'.format(std_outfile)) return std_outfile def reduce_all(self): """ Main driver of the entire reduction Calibration and extraction via a series of calls to reduce_exposure() """ # Validate the parameter set required = ['rdx', 'calibrations', 'scienceframe', 'scienceimage', 'flexure', 'fluxcalib'] can_be_None = ['flexure', 'fluxcalib'] self.par.validate_keys(required=required, can_be_None=can_be_None) self.tstart = time.time() # Find the standard frames is_standard = self.fitstbl.find_frames('standard') # Find the science frames is_science = self.fitstbl.find_frames('science') # Frame indices frame_indx = np.arange(len(self.fitstbl)) # Iterate over each calibration group and reduce the standards for i in range(self.fitstbl.n_calib_groups): # Find all the frames in this calibration group in_grp = self.fitstbl.find_calib_group(i) # Find the indices of the standard frames in this calibration group: grp_standards = frame_indx[is_standard & in_grp] # Reduce all the standard frames, loop on unique comb_id u_combid_std= np.unique(self.fitstbl['comb_id'][grp_standards]) for j, comb_id in enumerate(u_combid_std): frames = np.where(self.fitstbl['comb_id'] == comb_id)[0] bg_frames = np.where(self.fitstbl['bkg_id'] == comb_id)[0] if not self.outfile_exists(frames[0]) or self.overwrite: std_dict = self.reduce_exposure(frames, bg_frames=bg_frames) # TODO come up with sensible naming convention for save_exposure for combined files self.save_exposure(frames[0], std_dict, self.basename) else: msgs.info('Output file: {:s} already exists'.format(self.fitstbl.construct_basename(frames[0])) + '. Set overwrite=True to recreate and overwrite.') # Iterate over each calibration group again and reduce the science frames for i in range(self.fitstbl.n_calib_groups): # Find all the frames in this calibration group in_grp = self.fitstbl.find_calib_group(i) # Find the indices of the science frames in this calibration group: grp_science = frame_indx[is_science & in_grp] # Associate standards (previously reduced above) for this setup std_outfile = self.get_std_outfile(frame_indx[is_standard]) # Reduce all the science frames; keep the basenames of the science frames for use in flux calibration science_basename = [None]*len(grp_science) # Loop on unique comb_id u_combid = np.unique(self.fitstbl['comb_id'][grp_science]) for j, comb_id in enumerate(u_combid): frames = np.where(self.fitstbl['comb_id'] == comb_id)[0] bg_frames = np.where(self.fitstbl['bkg_id'] == comb_id)[0] if not self.outfile_exists(frames[0]) or self.overwrite: sci_dict = self.reduce_exposure(frames, bg_frames=bg_frames, std_outfile=std_outfile) science_basename[j] = self.basename # TODO come up with sensible naming convention for save_exposure for combined files self.save_exposure(frames[0], sci_dict, self.basename) else: msgs.warn('Output file: {:s} already exists'.format(self.fitstbl.construct_basename(frames[0])) + '. Set overwrite=True to recreate and overwrite.') msgs.info('Finished calibration group {0}'.format(i)) # Finish self.print_end_time() def select_detectors(self): """ Return the 1-indexed list of detectors to reduce. Returns: list: List of detectors to be reduced """ if self.par['rdx']['detnum'] is None: return np.arange(self.spectrograph.ndet)+1 return [self.par['rdx']['detnum']] if isinstance(self.par['rdx']['detnum'], int) \ else self.par['rdx']['detnum'] def reduce_exposure(self, frames, bg_frames=[], std_outfile=None): """ Reduce a single exposure Args: frame (:obj:`int`): 0-indexed row in :attr:`fitstbl` with the frame to reduce bgframes (:obj:`list`, optional): List of frame indices for the background std_outfile (:obj:`str`, optional): the name of a file with a previously PypeIt-reduced standard spectrum. Returns: dict: The dictionary containing the primary outputs of extraction """ # if show is set, clear the ginga channels at the start of each new sci_ID if self.show: ginga.clear_all() # Save the frame self.frames = frames self.bg_frames = bg_frames # Is this an IR reduction? self.ir_redux = True if len(bg_frames) > 0 else False # JFH Why does this need to be ordered? sci_dict = OrderedDict() # This needs to be ordered sci_dict['meta'] = {} sci_dict['meta']['vel_corr'] = 0. sci_dict['meta']['ir_redux'] = self.ir_redux # Print status message msgs_string = 'Reducing target {:s}'.format(self.fitstbl['target'][self.frames[0]]) + msgs.newline() msgs_string += 'Combining frames:' + msgs.newline() for iframe in self.frames: msgs_string += '{0:s}'.format(self.fitstbl['filename'][iframe]) + msgs.newline() msgs.info(msgs_string) if len(bg_frames) > 0: bg_msgs_string = '' for iframe in self.bg_frames: bg_msgs_string += '{0:s}'.format(self.fitstbl['filename'][iframe]) + msgs.newline() bg_msgs_string = msgs.newline() + 'Using background from frames:' + msgs.newline() + bg_msgs_string msgs.info(bg_msgs_string) # Find the detectors to reduce detectors = self.select_detectors() if len(detectors) != self.spectrograph.ndet: msgs.warn('Not reducing detectors: {0}'.format(' '.join([ str(d) for d in set(np.arange(self.spectrograph.ndet))-set(detectors)]))) # Loop on Detectors for self.det in detectors: msgs.info("Working on detector {0}".format(self.det)) sci_dict[self.det] = {} # Calibrate #TODO Is the right behavior to just use the first frame? self.caliBrate.set_config(self.frames[0], self.det, self.par['calibrations']) self.caliBrate.run_the_steps() # Extract # TODO: pass back the background frame, pass in background # files as an argument. extract one takes a file list as an # argument and instantiates science within sci_dict[self.det]['sciimg'], sci_dict[self.det]['sciivar'], sci_dict[self.det]['skymodel'], \ sci_dict[self.det]['objmodel'], sci_dict[self.det]['ivarmodel'], sci_dict[self.det]['outmask'], \ sci_dict[self.det]['specobjs'], vel_corr \ = self.extract_one(self.frames, self.det, bg_frames = self.bg_frames, std_outfile = std_outfile) if vel_corr is not None: sci_dict['meta']['vel_corr'] = vel_corr # JFH TODO write out the background frame? # Return return sci_dict def flexure_correct(self, sobjs, maskslits): """ Correct for flexure Spectra are modified in place (wavelengths are shifted) Args: sobjs (SpecObjs): maskslits (ndarray): Mask of SpecObjs """ if self.par['flexure']['method'] != 'skip': flex_list = wave.flexure_obj(sobjs, maskslits, self.par['flexure']['method'], self.par['flexure']['spectrum'], mxshft=self.par['flexure']['maxshift']) # QA wave.flexure_qa(sobjs, maskslits, self.basename, self.det, flex_list, out_dir=self.par['rdx']['redux_path']) else: msgs.info('Skipping flexure correction.') def helio_correct(self, sobjs, maskslits, frame, obstime): """ Perform a heliocentric correction on a set of spectra Args: sobjs (pypeit.specobjs.SpecObjs): Spectra maskslits (ndarray): Slits that are masked frame (int): Frame to use for meta info obstime (astropy.time.Time): Returns: astropy.units.Quantity: Velocity correction in km/s """ # Helio, correct Earth's motion if (self.caliBrate.par['wavelengths']['frame'] in ['heliocentric', 'barycentric']) \ and (self.caliBrate.par['wavelengths']['reference'] != 'pixel'): # TODO change this keyword to refframe instead of frame msgs.info("Performing a {0} correction".format(self.caliBrate.par['wavelengths']['frame'])) vel, vel_corr = wave.geomotion_correct(sobjs, maskslits, self.fitstbl, frame, obstime, self.spectrograph.telescope['longitude'], self.spectrograph.telescope['latitude'], self.spectrograph.telescope['elevation'], self.caliBrate.par['wavelengths']['frame']) else: msgs.info('A wavelength reference-frame correction will not be performed.') vel_corr = None return vel_corr def get_sci_metadata(self, frame, det): """ Grab the meta data for a given science frame and specific detector Args: frame (int): Frame index det (int): Detector index Returns: 5 objects are returned:: - str: Object type; science or standard - str: Setup string from master_key() - astropy.time.Time: Time of observation - str: Basename of the frame - str: Binning of the detector """ # Set binning, obstime, basename, and objtype binning = self.fitstbl['binning'][frame] obstime = self.fitstbl.construct_obstime(frame) basename = self.fitstbl.construct_basename(frame, obstime=obstime) objtype = self.fitstbl['frametype'][frame] if 'science' in objtype: objtype_out = 'science' elif 'standard' in objtype: objtype_out = 'standard' else: msgs.error('Unrecognized objtype') setup = self.fitstbl.master_key(frame, det=det) return objtype_out, setup, obstime, basename, binning def get_std_trace(self, std_redux, det, std_outfile): """ Returns the trace of the standard if it is applicable to the current reduction Args: std_redux (bool): If False, proceed det (int): Detector index std_outfile (str): Filename for the standard star spec1d file Returns: ndarray: Trace of the standard star on input detector """ if std_redux is False and std_outfile is not None: sobjs, hdr_std = load.load_specobjs(std_outfile) # Does the detector match? # TODO Instrument specific logic here could be implemented with the parset. For example LRIS-B or LRIS-R we # we would use the standard from another detector this_det = sobjs.det == det if np.any(this_det): sobjs_det = sobjs[this_det] sobjs_std = sobjs_det.get_std() std_trace = sobjs_std.trace_spat # flatten the array if this multislit if 'MultiSlit' in self.spectrograph.pypeline: std_trace = std_trace.flatten() elif 'Echelle' in self.spectrograph.pypeline: std_trace = std_trace.T else: msgs.error('Unrecognized pypeline') else: std_trace = None else: std_trace = None return std_trace def extract_one(self, frames, det, bg_frames=[], std_outfile=None): """ Extract a single exposure/detector pair sci_ID and det need to have been set internally prior to calling this method Args: frames (list): List of frames to extract; stacked if more than one is provided det (int): bg_frames (list, optional): List of frames to use as the background std_outfile (str, optional): Returns: eight objects are returned:: - ndarray: Science image - ndarray: Science inverse variance image - ndarray: Model of the sky - ndarray: Model of the object - ndarray: Model of inverse variance - ndarray: Mask - :obj:`pypeit.specobjs.SpecObjs`: spectra - astropy.units.Quantity: velocity correction """ # Grab some meta-data needed for the reduction from the fitstbl self.objtype, self.setup, self.obstime, self.basename, self.binning = self.get_sci_metadata(frames[0], det) # Is this a standard star? self.std_redux = 'standard' in self.objtype # Get the standard trace if need be std_trace = self.get_std_trace(self.std_redux, det, std_outfile) # Instantiate ScienceImage for the files we will reduce sci_files = self.fitstbl.frame_paths(frames) self.sciI = scienceimage.ScienceImage(self.spectrograph, sci_files, bg_file_list=self.fitstbl.frame_paths(bg_frames), ir_redux = self.ir_redux, par=self.par['scienceframe'], det=det, binning=self.binning) # For QA on crash. msgs.sciexp = self.sciI # Process images (includes inverse variance image, rn2 image, and CR mask) self.sciimg, self.sciivar, self.rn2img, self.mask, self.crmask = \ self.sciI.proc(self.caliBrate.msbias, self.caliBrate.mspixflatnrm.copy(), self.caliBrate.msbpm, illum_flat=self.caliBrate.msillumflat, show=self.show) # Object finding, first pass on frame without sky subtraction self.maskslits = self.caliBrate.maskslits.copy() self.redux = reduce.instantiate_me(self.spectrograph, self.caliBrate.tslits_dict, self.mask, self.par, ir_redux = self.ir_redux, objtype=self.objtype, setup=self.setup, det=det, binning=self.binning) # Prep for manual extraction (if requested) manual_extract_dict = self.fitstbl.get_manual_extract(frames, det) # Do one iteration of object finding, and sky subtract to get initial sky model self.sobjs_obj, self.nobj, skymask_init = \ self.redux.find_objects(self.sciimg, self.sciivar, std=self.std_redux, ir_redux=self.ir_redux, std_trace=std_trace,maskslits=self.maskslits, show=self.show & (not self.std_redux), manual_extract_dict=manual_extract_dict) # Global sky subtraction, first pass. Uses skymask from object finding step above self.initial_sky = \ self.redux.global_skysub(self.sciimg, self.sciivar, self.caliBrate.tilts_dict['tilts'], skymask=skymask_init, std=self.std_redux, maskslits=self.maskslits, show=self.show) if not self.std_redux: # Object finding, second pass on frame *with* sky subtraction. Show here if requested self.sobjs_obj, self.nobj, self.skymask = \ self.redux.find_objects(self.sciimg - self.initial_sky, self.sciivar, std=self.std_redux, ir_redux=self.ir_redux, std_trace=std_trace,maskslits=self.maskslits,show=self.show, manual_extract_dict=manual_extract_dict) # If there are objects, do 2nd round of global_skysub, local_skysub_extract, flexure, geo_motion if self.nobj > 0: # Global sky subtraction second pass. Uses skymask from object finding self.global_sky = self.initial_sky if self.std_redux else \ self.redux.global_skysub(self.sciimg, self.sciivar, self.caliBrate.tilts_dict['tilts'], skymask=self.skymask, maskslits=self.maskslits, show=self.show) self.skymodel, self.objmodel, self.ivarmodel, self.outmask, self.sobjs = \ self.redux.local_skysub_extract(self.sciimg, self.sciivar, self.caliBrate.tilts_dict['tilts'], self.caliBrate.mswave, self.global_sky, self.rn2img, self.sobjs_obj, model_noise=(not self.ir_redux),std = self.std_redux, maskslits=self.maskslits, show_profile=self.show,show=self.show) # Purge out the negative objects if this was a near-IR reduction. # TODO should we move this purge call to local_skysub_extract?? if self.ir_redux: self.sobjs.purge_neg() # Flexure correction if this is not a standard star if not self.std_redux: self.redux.flexure_correct(self.sobjs, self.basename) # Grab coord radec = ltu.radec_to_coord((self.fitstbl["ra"][frames[0]], self.fitstbl["dec"][frames[0]])) self.vel_corr = self.redux.helio_correct(self.sobjs, radec, self.obstime) else: # Print status message msgs_string = 'No objects to extract for target {:s}'.format(self.fitstbl['target'][frames[0]]) + msgs.newline() msgs_string += 'On frames:' + msgs.newline() for iframe in frames: msgs_string += '{0:s}'.format(self.fitstbl['filename'][iframe]) + msgs.newline() msgs.warn(msgs_string) # set to first pass global sky self.skymodel = self.initial_sky self.objmodel = np.zeros_like(self.sciimg) # Set to sciivar. Could create a model but what is the point? self.ivarmodel = np.copy(self.sciivar) # Set to the initial mask in case no objects were found self.outmask = self.redux.mask # empty specobjs object from object finding if self.ir_redux: self.sobjs_obj.purge_neg() self.sobjs = self.sobjs_obj self.vel_corr = None return self.sciimg, self.sciivar, self.skymodel, self.objmodel, self.ivarmodel, self.outmask, self.sobjs, self.vel_corr # TODO: Why not use self.frame? def save_exposure(self, frame, sci_dict, basename): """ Save the outputs from extraction for a given exposure Args: frame (:obj:`int`): 0-indexed row in the metadata table with the frame that has been reduced. sci_dict (:obj:`dict`): Dictionary containing the primary outputs of extraction basename (:obj:`str`): The root name for the output file. Returns: None or SpecObjs: All of the objects saved to disk """ # TODO: Need some checks here that the exposure has been reduced # Determine the headers head1d = self.fitstbl[frame] # Need raw file header information rawfile = self.fitstbl.frame_paths(frame) head2d = fits.getheader(rawfile, ext=self.spectrograph.primary_hdrext,) refframe = 'pixel' if self.caliBrate.par['wavelengths']['reference'] == 'pixel' else \ self.caliBrate.par['wavelengths']['frame'] # Determine the paths/filenames scipath = os.path.join(self.par['rdx']['redux_path'], self.par['rdx']['scidir']) save.save_all(sci_dict, self.caliBrate.master_key_dict, self.caliBrate.master_dir, self.spectrograph, head1d, head2d, scipath, basename, refframe=refframe, update_det=self.par['rdx']['detnum'], binning=self.fitstbl['binning'][frame]) return def msgs_reset(self): """ Reset the msgs object """ # Reset the global logger msgs.reset(log=self.logname, verbosity=self.verbosity) msgs.pypeit_file = self.pypeit_file def print_end_time(self): """ Print the elapsed time """ # Capture the end time and print it to user tend = time.time() codetime = tend-self.tstart if codetime < 60.0: msgs.info('Execution time: {0:.2f}s'.format(codetime)) elif codetime/60.0 < 60.0: mns = int(codetime/60.0) scs = codetime - 60.0*mns msgs.info('Execution time: {0:d}m {1:.2f}s'.format(mns, scs)) else: hrs = int(codetime/3600.0) mns = int(60.0*(codetime/3600.0 - hrs)) scs = codetime - 60.0*mns - 3600.0*hrs msgs.info('Execution time: {0:d}h {1:d}m {2:.2f}s'.format(hrs, mns, scs)) # TODO: Move this to fitstbl? def show_science(self): """ Simple print of science frames """ indx = self.fitstbl.find_frames('science') print(self.fitstbl[['target','ra','dec','exptime','dispname']][indx]) def __repr__(self): # Generate sets string return '<{:s}: pypeit_file={}>'.format(self.__class__.__name__, self.pypeit_file)
class PypeItSetup: """ Prepare for a pypeit run. .. todo:: - This is now mostly a wrapper for PypeItMetaData. Should we remove this class, or merge PypeItSetup and PypeItMetaData. The main deliverables are the set of parameters used for pypeit's algorithms (:attr:`par`), an :obj:`astropy.table.Table` with the details of the files to be reduced (:attr:`fitstbl`), and a dictionary with the list of instrument setups. Args: file_list (list): A list of strings with the full path to each file to be reduced. frametype (:obj:`dict`, optional): A dictionary that associates the name of the file (just the fits file name without the full path) to a specific frame type (e.g., arc, bias, etc.). If None, this is determined by the :func:`get_frame_types` method. usrdata (:obj:`astropy.table.Table`, optional): A user provided set of data used to supplement or overwrite metadata read from the file headers. The table must have a `filename` column that is used to match to the metadata table generated within PypeIt. setups (:obj:`list`, optional): A list of setups that each file can be associated with. If None, all files are expected to be for a single setup. cfg_lines (:obj:`list`, optional): A list of strings that provide a set of user-defined parameters for executing pypeit. These are the lines of a configuration file. See the documentation for the `configobj`_ package. One of the user-level inputs should be the spectrograph that provided the data to be reduced. One can get the list of spectrographs currently served by running:: from pypeit.spectrographs.util import valid_spectrographs print(valid_spectrographs()) To use all the default parameters when reducing data from a given spectrograph, you can set `cfg_lines = None`, but you then *must* provide the `spectrograph_name`. spectrograph_name (:obj:`str`, optional): If not providing a list of configuration lines (`cfg_lines`), this sets the spectrograph. The spectrograph defined in `cfg_lines` takes precedent over anything provided by this argument. pypeit_file (:obj:`str`, optional): The name of the pypeit file used to instantiate the reduction. This can be None, and will lead to default names for output files (TODO: Give list). Setting :ref:`pypeit_file` here *only sets the name of the file*. To instantiate a :class:`~pypeit.pypeitsetup.PypeItSetup` object directly from a pypeit file (i.e. by reading the file), use the :func:`from_pypeit_file` method; i.e.:: setup = PypeItSetup.from_pypeit_file('myfile.pypeit') Attributes: file_list (list): See description of class argument. frametype (dict): See description of class argument. setups (list): See description of class argument. pypeit_file (str): See description of class argument. spectrograph (:class:`pypeit.spectrographs.spectrograph.Spectrograph`): An instance of the `Spectograph` class used throughout the reduction procedures. par (:class:`pypeit.par.pypeitpar.PypitPar`): An instance of the `PypitPar` class that provides the parameters to all the algorthms that pypeit uses to reduce the data. fitstbl (:class:`pypeit.metadata.PypeItMetaData`): A `Table` that provides the salient metadata for the fits files to be reduced. setup_dict (dict): The dictionary with the list of instrument setups. steps (list): The steps run to provide the pypeit setup. """ def __init__(self, file_list, path=None, frametype=None, usrdata=None, setups=None, cfg_lines=None, spectrograph_name=None, pypeit_file=None): # The provided list of files cannot be None if file_list is None or len(file_list) == 0: msgs.error('Must provide a list of files to be reduced!') # Save input self.file_list = file_list self.path = os.getcwd() if path is None else path self.frametype = frametype self.usrdata = usrdata self.setups = setups self.pypeit_file = pypeit_file self.user_cfg = cfg_lines # Determine the spectrograph name _spectrograph_name = spectrograph_name if cfg_lines is None \ else PypeItPar.from_cfg_lines(merge_with=cfg_lines)['rdx']['spectrograph'] # Cannot proceed without spectrograph name if _spectrograph_name is None: msgs.error('Must provide spectrograph name directly or using configuration lines.') # Instantiate the spectrograph self.spectrograph = load_spectrograph(_spectrograph_name)#, ifile=file_list[0]) # Get the spectrograph specific configuration to be merged with # the user modifications. spectrograph_cfg_lines = self.spectrograph.default_pypeit_par().to_config() # Instantiate the pypeit parameters. The user input # configuration (cfg_lines) can be None. self.par = PypeItPar.from_cfg_lines(cfg_lines=spectrograph_cfg_lines, merge_with=cfg_lines) # Prepare internals for execution self.fitstbl = None self.setup_dict = None self.steps = [] @classmethod def from_pypeit_file(cls, filename): """ Instantiate the :class:`PypeitSetup` object using a pypeit file. Args: filename (str): Name of the pypeit file to read. Pypit files have a specific set of valid formats. A description can be found :ref:`pypeit_file`. Returns: :class:`PypeitSetup`: The instance of the class. """ cfg_lines, data_files, frametype, usrdata, setups = parse_pypeit_file(filename) return cls(data_files, frametype=frametype, usrdata=usrdata, setups=setups, cfg_lines=cfg_lines, pypeit_file=filename) @classmethod def from_file_root(cls, root, spectrograph, extension='.fits', output_path=None): """ Instantiate the :class:`PypeItSetup` object by providing a file root. This is based on first writing a vanilla PypeIt file for the provided spectrograph and extension to a file in the provided path. Args: root (:obj:`str`): The root path to all the files for PypeIt to reduce. This should be everything up to the wild-card before the file extension to use to find the relevant files. The root itself can have wild cards to read through multiple directories. spectrograph (:obj:`str`): The PypeIt name of the spectrograph used to take the observations. This should be one of the available options in :func:`pypeit.spectrographs.valid_spectrographs`. extension (:obj:`str`, optional): The extension common to all the fits files to reduce. Default is '.fits', meaning anything with `root*.fits*` will be be included. output_path (:obj:`str`, optional): Path to use for the output. If None, the default is './setup_files'. If the path doesn't yet exist, it is created. Returns: :class:`PypitSetup`: The instance of the class. """ # Set the output directory outdir = os.path.join(os.getcwd(), 'setup_files') if output_path is None else output_path if not os.path.isdir(outdir): os.makedirs(outdir) # Set the output file name date = str(datetime.date.today().strftime('%Y-%b-%d')) pypeit_file = os.path.join(outdir, '{0}_{1}.pypeit'.format(spectrograph, date)) msgs.info('A vanilla pypeit file will be written to: {0}'.format(pypeit_file)) # Generate the pypeit file cls.vanilla_pypeit_file(pypeit_file, root, spectrograph, extension=extension) # Now setup PypeIt using that file return cls.from_pypeit_file(pypeit_file) @staticmethod def vanilla_pypeit_file(pypeit_file, root, spectrograph, extension='.fits'): """ Write a vanilla PypeIt file. Args: pypeit_file (str): Name of PypeIt file to be generated root (str): spectrograph (str): Name of spectrograph extension (str, optional): File extension Returns: """ # Generate dfname = os.path.join(root, '*{0}*'.format(extension)) \ if os.path.isdir(root) else '{0}*{1}*'.format(root, extension) # configuration lines cfg_lines = ['[rdx]'] cfg_lines += [' spectrograph = {0}'.format(spectrograph)] # cfg_lines += [' sortroot = {0}'.format(root)] make_pypeit_file(pypeit_file, spectrograph, [dfname], cfg_lines=cfg_lines, setup_mode=True) @property def nfiles(self): """The number of files to reduce.""" if self.fitstbl is None: msgs.warn('No fits files have been read!') return 0 if self.fitstbl is None else len(self.fitstbl) def __repr__(self): return '<{:s}: nfiles={:d}>'.format(self.__class__.__name__, self.nfiles) def build_fitstbl(self, strict=True): """ Construct the table with metadata for the frames to reduce. Largely a wrapper for :func:`pypeit.core.load.create_fitstbl`. Args: strict (:obj:`bool`, optional): Function will fault if :func:`fits.getheader` fails to read the headers of any of the files in :attr:`file_list`. Set to False to only report a warning and continue. Returns: :obj:`astropy.table.Table`: Table with the metadata for each fits file to reduce. Note this is different from :attr:`fitstbl` which is a :obj:`PypeItMetaData` object """ # Build and sort the table self.fitstbl = PypeItMetaData(self.spectrograph, par=self.par, files=self.file_list, usrdata=self.usrdata, strict=strict) # Sort by the time if 'time' in self.fitstbl.keys(): self.fitstbl.sort('time') # Add this to the completed steps self.steps.append(inspect.stack()[0][3]) # Return the table return self.fitstbl.table def get_frame_types(self, flag_unknown=False, use_header_id=False): """ Include the frame types in the metadata table. This is mainly a wrapper for :func:`PypeItMetaData.get_frame_types`. .. warning:: Because this merges the frame types with the existing :attr:`fitstbl` this should only be run once. Args: flag_unknown (:obj:`bool`, optional): Allow for frames to have unknown types instead of crashing. This should be True for initial setup and False otherwise. Passed to get_frame_types() use_header_id (bool, optional): Passed to get_frame_types() """ # Use PypeItMetaData methods to get the frame types _ = self.fitstbl.get_frame_types(flag_unknown=flag_unknown, user=self.frametype, useIDname=use_header_id) # Include finished processing step self.steps.append(inspect.stack()[0][3]) def load_metadata(self, fits_file): """ Load the fitstbl from disk (a binary FITS table) Args: fits_file (str): Name of PypeItMetaData file Returns: obj:`PypeItMetaData`: The so-called fitstbl """ self.fitstbl = PypeItMetaData(self.spectrograph, self.par, data=Table.read(fits_file)) msgs.info("Loaded fitstbl from {:s}".format(fits_file)) return self.fitstbl.table def write_metadata(self, sort_dir=None, ofile=None): """ Write the `astropy.table.Table`_ object in :attr:`fitstbl` to a file. If an output file is provided, the file is used. If that file name inclues '.fits', the output will be a fits file; otherwise the format is ascii.fixed_width. If no output file, the default is an ascii table with an '.lst' extension. The root name of the file is either the spectrograph name or the root name of the pypeit file, if the latter exists. If a `sort_dir` is provided, the directory of the nominal output file is changed to this directory. Args: sort_dir (:obj:`str`, optional): The full root of the name for the metadata table ('.lst') file. ofile (:obj:`str`, optional): The name of the file to write. See description above. """ if ofile is None: ofile = self.spectrograph.name + '.lst' if self.pypeit_file is None \ else self.pypeit_file.replace('.pypeit', '.lst') if sort_dir is not None: ofile = os.path.join(sort_dir, os.path.split(ofile)[1]) format = None if '.fits' in ofile else 'ascii.fixed_width' self.fitstbl.write(ofile, #columns=None if format is None else self.spectrograph.pypeit_file_keys(), format=format, overwrite=True) # TODO: Check if user_header_id is ever actually used. def run(self, setup_only=False, calibration_check=False, use_header_id=False, sort_dir=None, write_bkg_pairs=False, clean_config=True): """ Once instantiated, this is the main method used to construct the object. The code flow is as follows:: - Build the fitstbl from an input file_list (optional) - Type the files (bias, arc, etc.) - Match calibration files to the science files - Generate the setup_dict - Write group info to disk - Write calib info to disk (if main run) It is expected that a user will run this three times if they're being careful. Once with `setup_only=True` to confirm the images are properly typed and grouped together for calibration. A second time with `calibration_check=True` to confirm the appropriate calibrations frames are available. And a third time to do the actual setup before proceeding with the reductions. Args: setup_only (:obj:`bool`, optional): Only this setup will be performed. ``PypeIt`` is expected to execute in a way that ends after this class is fully instantiated such that the user can inspect the results before proceeding. This has the effect of providing more output describing the success of the setup and how to proceed, and provides warnings (instead of errors) for issues that may cause the reduction itself to fail. calibration_check (obj:`bool`, optional): Only check that the calibration frames are appropriately setup and exist on disk. ``PypeIt`` is expected to execute in a way that ends after this class is fully instantiated such that the user can inspect the results before proceeding. use_header_id (:obj:`bool`, optional): Allow setup to use the frame types drawn from single, instrument-specific header keywords set to ``idname`` in the metadata table (:attr:`fitstbl`). sort_dir (:obj:`str`, optional): The directory to put the '.sorted' file. write_bkg_pairs (:obj:`bool`, optional): Include columns with the (unassigned) background image pairs. This is a convenience so that users can more easily add/edit the background pair ID numbers. clean_config (:obj:`bool`, optional): Remove files with metadata that indicate an instrument configuration that ``PypeIt`` cannot reduce. See :func:`~pypeit.spectrographs.spectrograph.Spectrograph.valid_configuration_values`. Returns: :obj:`tuple`: Returns, respectively, the :class:`~pypeit.par.pypeitpar.PypeItPar` object with the reduction parameters, the :class:`~pypeit.spectrographs.spectrograph.Spectrograph` object with the spectrograph instance, and an `astropy.table.Table`_ with the frame metadata. If ``setup_only`` is True, these are all returned as None values. """ # Kludge pypeit_file = '' if self.pypeit_file is None else self.pypeit_file # Build fitstbl if self.fitstbl is None: self.build_fitstbl(strict=not setup_only)#, bkg_pairs=bkg_pairs) # Remove frames that have invalid values for # configuration-defining metadata if clean_config: self.fitstbl.clean_configurations() # File typing self.get_frame_types(flag_unknown=setup_only or calibration_check, use_header_id=use_header_id) # Determine the configurations and assign each frame to the # specified configuration cfgs = self.fitstbl.unique_configurations() self.fitstbl.set_configurations(cfgs) # Assign frames to calibration groups self.fitstbl.set_calibration_groups() #global_frames=['bias', 'dark']) # Set default comb_id self.fitstbl.set_combination_groups() # TODO: Are we planning to do this? # Assign science IDs based on the calibrations groups (to be # deprecated) self.fitstbl['failures'] = False # TODO: placeholder if setup_only: # Collate all matching files and write .sorted Table (on pypeit_setup only) sorted_file = self.spectrograph.name + '.sorted' \ if pypeit_file is None or len(pypeit_file) == 0 \ else pypeit_file.replace('.pypeit', '.sorted') if sort_dir is not None: sorted_file = os.path.join(sort_dir, os.path.split(sorted_file)[1]) self.fitstbl.write_sorted(sorted_file, write_bkg_pairs=write_bkg_pairs) msgs.info("Wrote sorted file data to {:s}".format(sorted_file)) else: # Write the calib file # This is currently needed for QA calib_file = self.spectrograph.name + '.calib' \ if pypeit_file is None or len(pypeit_file) == 0 \ else pypeit_file.replace('.pypeit', '.calib') if sort_dir is not None: calib_file = os.path.join(sort_dir, os.path.split(calib_file)[1]) self.fitstbl.write_calib(calib_file) # Finish (depends on PypeIt run mode) # TODO: Do we need this functionality? if calibration_check: msgs.info("Inspect the .calib file: {:s}".format(calib_file)) msgs.info("*********************************************************") msgs.info("Calibration check complete and successful!") # msgs.info("Set 'run calcheck False' to continue with data reduction") msgs.info("*********************************************************") #TODO: Why should this not return the same as when setup_only is True if setup_only: for idx in np.where(self.fitstbl['failures'])[0]: msgs.warn("No Arc found: Skipping object {:s} with file {:s}".format( self.fitstbl['target'][idx],self.fitstbl['filename'][idx])) msgs.info("Setup is complete.") msgs.info("Inspect the .sorted file") return None, None, None return self.par, self.spectrograph, self.fitstbl
class PypeItSetup(object): """ Prepare for a pypeit run. .. todo:: - This is now mostly a wrapper for PypeItMetaData. Should we remove this class, or merge PypeItSetup and PypeItMetaData. The main deliverables are the set of parameters used for pypeit's algorithms (:attr:`par`), an :obj:`astropy.table.Table` with the details of the files to be reduced (:attr:`fitstbl`), and a dictionary with the list of instrument setups. Args: file_list (list): A list of strings with the full path to each file to be reduced. frametype (:obj:`dict`, optional): A dictionary that associates the name of the file (just the fits file name without the full path) to a specific frame type (e.g., arc, bias, etc.). If None, this is determined by the :func:`get_frame_types` method. usrdata (:obj:`astropy.table.Table`, optional): A user provided set of data used to supplement or overwrite metadata read from the file headers. The table must have a `filename` column that is used to match to the metadata table generated within PypeIt. setups (:obj:`list`, optional): A list of setups that each file can be associated with. If None, all files are expected to be for a single setup. cfg_lines (:obj:`list`, optional): A list of strings that provide a set of user-defined parameters for executing pypeit. These are the lines of a configuration file. See the documentation for the `configobj`_ package. One of the user-level inputs should be the spectrograph that provided the data to be reduced. One can get the list of spectrographs currently served by running:: from pypeit.spectrographs.util import valid_spectrographs print(valid_spectrographs()) To use all the default parameters when reducing data from a given spectrogaph, you can set `cfg_lines = None`, but you then *must* provide the `spectrograph_name`. spectrograph_name (:obj:`str`, optional): If not providing a list of configuration lines (`cfg_lines`), this sets the spectrograph. The spectrograph defined in `cfg_lines` takes precedent over anything provided by this argument. pypeit_file (:obj:`str`, optional): The name of the pypeit file used to instantiate the reduction. This can be None, and will lead to default names for output files (TODO: Give list). Setting `pypeit_file` here *only sets the name of the file*. To instantiate a `PypitSetup` object directly from a pypeit file (i.e. by reading the file), use the :func:`from_pypeit_file` method; i.e.:: setup = PypitSetup.from_pypeit_file('myfile.pypeit') Attributes: file_list (list): See description of class argument. frametype (dict): See description of class argument. setups (list): See description of class argument. pypeit_file (str): See description of class argument. spectrograph (:class:`pypeit.spectrographs.spectrograph.Spectrograph`): An instance of the `Spectograph` class used throughout the reduction procedures. par (:class:`pypeit.par.pypeitpar.PypitPar`): An instance of the `PypitPar` class that provides the parameters to all the algorthms that pypeit uses to reduce the data. fitstbl (:class:`pypeit.metadata.PypeItMetaData`): A `Table` that provides the salient metadata for the fits files to be reduced. setup_dict (dict): The dictionary with the list of instrument setups. steps (list): The steps run to provide the pypeit setup. .. _configobj: http://configobj.readthedocs.io/en/latest/ """ def __init__(self, file_list, path=None, frametype=None, usrdata=None, setups=None, cfg_lines=None, spectrograph_name=None, pypeit_file=None): # The provided list of files cannot be None if file_list is None or len(file_list) == 0: msgs.error('Must provide a list of files to be reduced!') # Save input self.file_list = file_list self.path = os.getcwd() if path is None else path self.frametype = frametype self.usrdata = usrdata self.setups = setups self.pypeit_file = pypeit_file self.user_cfg = cfg_lines # Determine the spectrograph name _spectrograph_name = spectrograph_name if cfg_lines is None \ else PypeItPar.from_cfg_lines(merge_with=cfg_lines)['rdx']['spectrograph'] # Cannot proceed without spectrograph name if _spectrograph_name is None: msgs.error( 'Must provide spectrograph name directly or using configuration lines.') # Instantiate the spectrograph self.spectrograph = load_spectrograph(_spectrograph_name) # Get the spectrograph specific configuration to be merged with # the user modifications. spectrograph_cfg_lines = self.spectrograph.default_pypeit_par().to_config() # Instantiate the pypeit parameters. The user input # configuration (cfg_lines) can be None. self.par = PypeItPar.from_cfg_lines( cfg_lines=spectrograph_cfg_lines, merge_with=cfg_lines) # Prepare internals for execution self.fitstbl = None self.setup_dict = None self.steps = [] @classmethod def from_pypeit_file(cls, filename): """ Instantiate the :class:`PypeitSetup` object using a pypeit file. Args: filename (str): Name of the pypeit file to read. Pypit files have a specific set of valid formats. A description can be found `here`_ (include doc link). Returns: :class:`PypeitSetup`: The instance of the class. """ cfg_lines, data_files, frametype, usrdata, setups = parse_pypeit_file( filename) return cls(data_files, frametype=frametype, usrdata=usrdata, setups=setups, cfg_lines=cfg_lines, pypeit_file=filename) @classmethod def from_file_root(cls, root, spectrograph, extension='.fits', output_path=None): """ Instantiate the :class:`PypeItSetup` object by providing a file root. This is based on first writing a vanilla PypeIt file for the provided spectrograph and extension to a file in the provided path. Args: root (:obj:`str`): The root path to all the files for PypeIt to reduce. This should be everything up to the wild-card before the file extension to use to find the relevant files. The root itself can have wild cards to read through multiple directories. spectrograph (:obj:`str`): The PypeIt name of the spectrograph used to take the observations. This should be one of the available options in :func:`pypeit.spectrographs.valid_spectrographs`. extension (:obj:`str`, optional): The extension common to all the fits files to reduce. Default is '.fits', meaning anything with `root*.fits*` will be be included. output_path (:obj:`str`, optional): Path to use for the output. If None, the default is './setup_files'. If the path doesn't yet exist, it is created. Returns: :class:`PypitSetup`: The instance of the class. """ # Set the output directory outdir = os.path.join( os.getcwd(), 'setup_files') if output_path is None else output_path if not os.path.isdir(outdir): os.makedirs(outdir) # Set the output file name date = str(datetime.date.today().strftime('%Y-%b-%d')) pypeit_file = os.path.join( outdir, '{0}_{1}.pypeit'.format(spectrograph, date)) msgs.info( 'A vanilla pypeit file will be written to: {0}'.format(pypeit_file)) # Generate the pypeit file cls.vanilla_pypeit_file( pypeit_file, root, spectrograph, extension=extension) # Now setup PypeIt using that file return cls.from_pypeit_file(pypeit_file) @staticmethod def vanilla_pypeit_file(pypeit_file, root, spectrograph, extension='.fits'): """ Write a vanilla PypeIt file. Args: pypeit_file (str): Name of PypeIt file root (str): spectrograph (str): Name of spectrograph extension (str, optional): File extension Returns: """ # Generate dfname = os.path.join(root, '*{0}*'.format(extension)) \ if os.path.isdir(root) else '{0}*{1}*'.format(root, extension) # configuration lines cfg_lines = ['[rdx]'] cfg_lines += [' spectrograph = {0}'.format(spectrograph)] # cfg_lines += [' sortroot = {0}'.format(root)] # check if this needs to be uncommented make_pypeit_file(pypeit_file, spectrograph, [ dfname], cfg_lines=cfg_lines, setup_mode=True) @property def nfiles(self): """The number of files to reduce.""" if self.fitstbl is None: msgs.warn('No fits files have been read!') return 0 if self.fitstbl is None else len(self.fitstbl) def __repr__(self): return '<{:s}: nfiles={:d}>'.format(self.__class__.__name__, self.nfiles) def build_fitstbl(self, strict=True): """ Construct the table with metadata for the frames to reduce. Largely a wrapper for :func:`pypeit.core.load.create_fitstbl`. Args: strict (:obj:`bool`, optional): Function will fault if :func:`fits.getheader` fails to read the headers of any of the files in :attr:`file_list`. Set to False to only report a warning and continue. Returns: :obj:`astropy.table.Table`: Table with the metadata for each fits file to reduce. Note this is different from :attr:`fitstbl` which is a :obj:`PypeItMetaData` object """ # Build and sort the table self.fitstbl = PypeItMetaData(self.spectrograph, par=self.par, file_list=self.file_list, # CHANGE THIS BACK TO files WHEN YOU ARE DONE WITH CODING EVERYTHING ELSE usrdata=self.usrdata, strict=strict) # Sort by the time if 'time' in self.fitstbl.keys(): self.fitstbl.sort('time') # Add this to the completed steps self.steps.append(inspect.stack()[0][3]) # Return the table return self.fitstbl.table def get_frame_types(self, flag_unknown=False, use_header_id=False): """ Include the frame types in the metadata table. This is mainly a wrapper for :func:`PypeItMetaData.get_frame_types`. .. warning:: Because this merges the frame types with the existing :attr:`fitstbl` this should only be run once. Args: flag_unknown (:obj:`bool`, optional): Allow for frames to have unknown types instead of crashing. This should be True for initial setup and False otherwise. Passed to get_frame_types() use_header_id (bool, optional): Passed to get_frame_types() """ # Use PypeItMetaData methods to get the frame types _ = self.fitstbl.get_frame_types(flag_unknown=flag_unknown, user=self.frametype, useIDname=use_header_id) # Include finished processing step self.steps.append(inspect.stack()[0][3]) def load_metadata(self, fits_file): """ Load the fitstbl from disk (a binary FITS table) Args: fits_file (str): Name of PypeItMetaData file Returns: obj:`PypeItMetaData`: The so-called fitstbl """ self.fitstbl = PypeItMetaData( self.spectrograph, self.par, data=Table.read(fits_file)) msgs.info("Loaded fitstbl from {:s}".format(fits_file)) return self.fitstbl.table def write_metadata(self, sort_dir=None, ofile=None): """ Write the :class:`astropy.table.Table` object in :attr:`fitstbl` to a file. If an output file is provided, the file is used. If that file name inclues '.fits', the output will be a fits file; otherwise the format is ascii.fixed_width. If no output file, the default is an ascii table with an '.lst' extension. The root name of the file is either the spectrograph name or the root name of the pypeit file, if the latter exists. If a `sort_dir` is provided, the directory of the nominal output file is changed to this directory. Args: sort_dir (:obj:`str`, optional): The full root of the name for the metadata table ('.lst') file. ofile (:obj:`str, optional): The name of the file to write. See description above. """ if ofile is None: ofile = self.spectrograph.spectrograph + '.lst' if self.pypeit_file is None \ else self.pypeit_file.replace('.pypeit', '.lst') if sort_dir is not None: ofile = os.path.join(sort_dir, os.path.split(ofile)[1]) format = None if '.fits' in ofile else 'ascii.fixed_width' self.fitstbl.write(ofile, #columns=None if format is None else self.spectrograph.pypeit_file_keys(), format=format, overwrite=True) def run(self, setup_only=False, calibration_check=False, use_header_id=False, sort_dir=None, write_bkg_pairs=False): """ Once instantiated, this is the main method used to construct the object. The code flow is as follows:: - Build the fitstbl from an input file_list (optional) - Type the files (bias, arc, etc.) - Match calibration files to the science files - Generate the setup_dict - Write group info to disk - Write calib info to disk (if main run) It is expected that a user will run this three times if they're being careful. Once with `setup_only=True` to confirm the images are properly typed and grouped together for calibration. A second time with `calibration_check=True` to confirm the appropriate calibrations frames are available. And a third time to do the actual setup before proceeding with the reductions. Args: setup_only (:obj:`bool`, optional): Only this setup will be performed. Pypit is expected to execute in a way that ends after this class is fully instantiated such that the user can inspect the results before proceeding. This has the effect of providing more output describing the success of the setup and how to proceed, and provides warnings (instead of errors) for issues that may cause the reduction itself to fail. calibration_check (obj:`bool`, optional): Only check that the calibration frames are appropriately setup and exist on disk. Pypit is expected to execute in a way that ends after this class is fully instantiated such that the user can inspect the results before proceeding. use_header_id (:obj:`bool`, optional): Allow setup to use the frame types drawn from single, instrument-specific header keywords set to `idname` in the metadata table (:attr:`fitstbl`). sort_dir (:obj:`str`, optional): The directory to put the '.sorted' file. Returns: :class:`pypeit.par.pypeitpar.PypeItPar`, :class:`pypeit.spectrographs.spectrograph.Spectrograph`, :class:`astropy.table.Table`: Returns the attributes :attr:`par`, :attr:`spectrograph`, :attr:`fitstbl` If running with `setup_only` or `calibrations_check`, these are all returned as `None` values. """ # Kludge pypeit_file = '' if self.pypeit_file is None else self.pypeit_file # Build fitstbl if self.fitstbl is None: self.build_fitstbl(strict=not setup_only) # , bkg_pairs=bkg_pairs) # File typing a = self.get_frame_types(flag_unknown=setup_only or calibration_check, use_header_id=use_header_id) # frame types aren't being printed, you have to figure out where you want prediction to be stored, and if you want filepath to spit to be parameter for prediction method # spit classification spit_frame_types, spit_framebits = self.spit_classify() # compare spit to rules-based for index, framebit in enumerate(self.fitstbl['framebit']): # check if they're different if spit_framebits[index] != framebit: # if so, notify user of difference, and set to spit's values # add at which files they differ so the user can check msgs.warn("SPIT and rules-based framebits differ at %s" % (self.fitstbl['filename'][0])) self.fitstbl['framebit'][index] = spit_framebits[index] self.fitstbl['frametype'][index] = spit_frame_types[index] # Determine the configurations and assign each frame to the # specified configuration ignore_frames = ['bias', 'dark'] cfgs = self.fitstbl.unique_configurations(ignore_frames=ignore_frames) self.fitstbl.set_configurations(cfgs, ignore_frames=ignore_frames) # Assign frames to calibration groups self.fitstbl.set_calibration_groups(global_frames=['bias', 'dark']) # Set default comb_id self.fitstbl.set_combination_groups() # Assign science IDs based on the calibrations groups (to be # deprecated) self.fitstbl['failures'] = False # TODO: placeholder if setup_only: # Collate all matching files and write .sorted Table (on pypeit_setup only) sorted_file = self.spectrograph.spectrograph + '.sorted' \ if pypeit_file is None or len(pypeit_file) == 0 \ else pypeit_file.replace('.pypeit', '.sorted') if sort_dir is not None: sorted_file = os.path.join( sort_dir, os.path.split(sorted_file)[1]) self.fitstbl.write_sorted( sorted_file, write_bkg_pairs=write_bkg_pairs) msgs.info("Wrote sorted file data to {:s}".format(sorted_file)) else: # Write the calib file calib_file = self.spectrograph.spectrograph + '.calib' \ if pypeit_file is None or len(pypeit_file) == 0 \ else pypeit_file.replace('.pypeit', '.calib') if sort_dir is not None: calib_file = os.path.join( sort_dir, os.path.split(calib_file)[1]) self.fitstbl.write_calib(calib_file) # Finish (depends on PypeIt run mode) # TODO: Do we need this functionality? if calibration_check: msgs.info("Inspect the .calib file: {:s}".format(calib_file)) msgs.info("*********************************************************") msgs.info("Calibration check complete and successful!") # msgs.info("Set 'run calcheck False' to continue with data reduction") msgs.info("*********************************************************") # TODO: Why should this not return the same as when setup_only is True if setup_only: for idx in np.where(self.fitstbl['failures'])[0]: msgs.warn("No Arc found: Skipping object {:s} with file {:s}".format( self.fitstbl['target'][idx], self.fitstbl['filename'][idx])) msgs.info("Setup is complete.") msgs.info("Inspect the .sorted file") return None, None, None return self.par, self.spectrograph, self.fitstbl def spit_classify(self, spit_path=os.getenv('SPIT_MODEL_PATH')): """ Get frame types of all SPIT predictions. Parameters: spit_path: Path to the best spit model. Environmental variable by default. ***User must have model downloaded, and must manually set path.*** Returns: spit_frame_types: 1-d list containing string frame type for each file spit_framebits: 1-d list containing frame bit integers for each file """ # load best model, SPIT_MODEL_PATH must be set by user elsewhere until best_model.h5 is in spit or pypeit repo best_model = keras.models.load_model(spit_path+'best_model.h5') # initialize predictions list predictions = [] # loop through all files in fitstbl['filename'] for directory, file in zip(self.fitstbl['directory'], self.fitstbl['filename']): # get image data from fits file raw_frame, hdu = self.spectrograph.load_raw_frame( os.path.join(directory, file)) # perform pre-processing on the image preproc_dict = spit_p.original_preproc_dict() img_np = spit_p.process_image(raw_frame, preproc_dict) img_np = np.uint8(img_np) # classify with spit pred_list, pred = self.predict_one_image(img_np, best_model) # add to list of predictions predictions.append(pred) # get frame types and framebits from spit predictions spit_frame_types, spit_framebits = self.predictions_to_framebits( predictions) # return predictions return spit_frame_types, spit_framebits def predict_one_image(self, image, model): """ Predict one image's label with a given neural network. Parameters: image: 2-d numpy array containing image data model: keras model, likely densenet Returns: prediction[0]: 1-d array containing probability of each label being the true label maxIndex[0][0]: integer containing the index at which the highest probability (predicted label) is contained """ # get shape of the image ishape = list(image.shape) # reshape to what is necessary for classifier image = image.reshape([1]+ishape+[1]) # get predictions for labels prediction = model.predict(image) # get max value of prediction maxIndex = np.where(prediction[0] == np.amax(prediction[0])) # return correct values within respective return values return prediction[0], maxIndex[0][0] def predictions_to_framebits(self, predictions): """ Get framebits and frame types of all SPIT predictions. Parameters: predictions: 1-d list containing integers representing index of label Returns: spit_frame_types: 1-d list containing string frame type for each file type_bits: 1-d list containing frame bit integers for each file """ # convert integers to string labels using label_dict and frame_types, store in numpy array with each index having strings of frametypes spit_labels = self.get_spit_labels() spit_frame_types = self.get_spit_frame_types(spit_labels, predictions) # use some of the code from metadata.py lines 1267-1295 type_bits = np.zeros( len(self.fitstbl), dtype=self.fitstbl.type_bitmask.minimum_dtype()) # create dictionary to be used for setting framebit user = {} for index, file in enumerate(self.fitstbl['filename']): user[file] = spit_frame_types[index] # Use the user-defined frame types from the input dictionary, could eventually integrate this and other methods in metadata.py if len(user.keys()) != len(self.fitstbl): raise ValueError( 'The user-provided dictionary does not match table length.') msgs.info('Converting SPIT frame types.') for ifile, ftypes in user.items(): indx = self.fitstbl['filename'] == ifile # turn on relevant framebits type_bits[indx] = self.fitstbl.type_bitmask.turn_on( type_bits[indx], flag=ftypes.split(',')) return spit_frame_types, type_bits def get_spit_labels(self): """ Get SPIT labels in framematch format. Parameters: None Returns: classes: 1-d list containing cleaned up SPIT labels for frame typing. """ # initialize label dict and classes array, could optimize this label_dict = spit_l.kast_label_dict() classes = [] for label in label_dict: if '_label' in label: label = label.replace('_label', '') classes.append(label) return classes def get_spit_frame_types(self, spit_labels, predictions): """ Get frame types of all SPIT predictions. Parameters: spit_labels: Cleaned up labels from SPIT's label dict (strings) predictions: 1-d list containing integers representing index of label Returns: spit_frame_types: 1-d list containing string frame type for each file """ # initialize empty list spit_frame_types = [] # get all frame types for each label for p in predictions: spit_frame_type = spit_labels[p] # a string # map spit labels to proper frames for specific cases if 'flat' in spit_frame_type: spit_frame_type = spit_frame_type.replace('flat','pixelflat,trace') elif 'arc' in spit_frame_type: spit_frame_type += ',tilt' spit_frame_types.append(spit_frame_type) return spit_frame_types