def test_pipeline(sampler, problem): """Check that a typical pipeline runs through.""" # optimization optimizer = optimize.ScipyOptimizer(options={'maxiter': 10}) result = optimize.minimize( problem, n_starts=3, optimizer=optimizer) # sample result = sample.sample( problem, sampler=sampler, n_samples=100, result=result) # some plot visualize.sampling_1d_marginals(result) plt.close()
def test_sampling_1d_marginals(): """Test pypesto.visualize.sampling_1d_marginals""" result = create_sampling_result() visualize.sampling_1d_marginals(result) # call with custom arguments visualize.sampling_1d_marginals(result, i_chain=1, stepsize=5, size=(10, 10)) # call with other modes visualize.sampling_1d_marginals(result, plot_type='hist') visualize.sampling_1d_marginals(result, plot_type='kde', bw='silverman')
def test_pipeline(sampler, problem): """Check that a typical pipeline runs through.""" # optimization optimizer = optimize.ScipyOptimizer(options={'maxiter': 10}) result = optimize.minimize(problem, n_starts=3, optimizer=optimizer, filename=None) # sample result = sample.sample(problem, sampler=sampler, n_samples=100, result=result, filename=None) # remove warnings in test/sample/test_sample. # Warning here: pypesto/visualize/sampling.py:1104 # geweke test sample.geweke_test(result=result) # some plot visualize.sampling_1d_marginals(result) plt.close()