def test_block_diagonalize_no_waterfilling(self): Nr = np.array([2, 2]) Nt = np.array([2, 2]) K = Nt.size Nti = 1 iPu = 1e-1 # Power for each user (linear scale) pe = 1e-3 # External interference power (in linear scale) noise_var = 1e-1 # The modulator and packet_length are required in the # effective_throughput metric case psk_obj = fundamental.PSK(4) packet_length = 120 multiUserChannel = multiuser.MultiUserChannelMatrixExtInt() multiUserChannel.randomize(Nr, Nt, K, Nti) multiUserChannel.noise_var = noise_var # Channel from all transmitters to the first receiver H1 = multiUserChannel.get_Hk_without_ext_int(0) # Channel from all transmitters to the second receiver H2 = multiUserChannel.get_Hk_without_ext_int(1) # Create the enhancedBD object enhancedBD_obj = blockdiagonalization.EnhancedBD(K, iPu, noise_var, pe) noise_plus_int_cov_matrix \ = multiUserChannel.calc_cov_matrix_extint_plus_noise(pe) # xxxxx First we test without ext. int. handling xxxxxxxxxxxxxxxxxx enhancedBD_obj.set_ext_int_handling_metric(None) (Ms_all, Wk_all, Ns_all) \ = enhancedBD_obj.block_diagonalize_no_waterfilling( multiUserChannel) Ms1 = Ms_all[0] Ms2 = Ms_all[1] self.assertEqual(Ms1.shape[1], Ns_all[0]) self.assertEqual(Ms2.shape[1], Ns_all[1]) # Most likely only one base station (the one with the worst # channel) will employ a precoder with total power of `Pu`, # while the other base stations will use less power. tol = 1e-10 self.assertGreaterEqual(iPu + tol, np.linalg.norm(Ms1, 'fro')**2) # 1e-12 is included to avoid false test fails due to small # precision errors self.assertGreaterEqual(iPu + tol, np.linalg.norm(Ms2, 'fro')**2) # Test if the precoder block diagonalizes the channel self.assertNotAlmostEqual(np.linalg.norm(np.dot(H1, Ms1), 'fro'), 0) self.assertAlmostEqual(np.linalg.norm(np.dot(H1, Ms2), 'fro'), 0) self.assertNotAlmostEqual(np.linalg.norm(np.dot(H2, Ms2), 'fro'), 0) self.assertAlmostEqual(np.linalg.norm(np.dot(H2, Ms1), 'fro'), 0) # Equivalent sinrs (in linear scale) sinrs = np.empty(K, dtype=np.ndarray) sinrs[0] = blockdiagonalization.EnhancedBD._calc_linear_SINRs( np.dot(H1, Ms1), Wk_all[0], noise_plus_int_cov_matrix[0]) sinrs[1] = blockdiagonalization.EnhancedBD._calc_linear_SINRs( np.dot(H2, Ms2), Wk_all[1], noise_plus_int_cov_matrix[1]) # Spectral efficiency # noinspection PyPep8 se = (np.sum( psk_obj.calcTheoreticalSpectralEfficiency(linear2dB( sinrs[0]), packet_length)) + np.sum( psk_obj.calcTheoreticalSpectralEfficiency( linear2dB(sinrs[1]), packet_length))) # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx # xxxxx Now with the Naive Stream Reduction xxxxxxxxxxxxxxxxxxxxxxx num_streams = 1 enhancedBD_obj.set_ext_int_handling_metric( 'naive', {'num_streams': num_streams}) (MsPk_naive_all, Wk_naive_all, Ns_naive_all) \ = enhancedBD_obj.block_diagonalize_no_waterfilling( multiUserChannel) MsPk_naive_1 = MsPk_naive_all[0] MsPk_naive_2 = MsPk_naive_all[1] self.assertEqual(MsPk_naive_1.shape[1], Ns_naive_all[0]) self.assertEqual(MsPk_naive_2.shape[1], Ns_naive_all[1]) self.assertEqual(Ns_naive_all[0], num_streams) self.assertEqual(Ns_naive_all[1], num_streams) # Test if the square of the Frobenius norm of the precoder of each # user is equal to the power available to that user. self.assertAlmostEqual(iPu, np.linalg.norm(MsPk_naive_1, 'fro')**2) self.assertAlmostEqual(iPu, np.linalg.norm(MsPk_naive_2, 'fro')**2) # Test if MsPk really block diagonalizes the channel self.assertNotAlmostEqual( np.linalg.norm(np.dot(H1, MsPk_naive_1), 'fro'), 0) self.assertAlmostEqual(np.linalg.norm(np.dot(H1, MsPk_naive_2), 'fro'), 0) self.assertNotAlmostEqual( np.linalg.norm(np.dot(H2, MsPk_naive_2), 'fro'), 0) self.assertAlmostEqual(np.linalg.norm(np.dot(H2, MsPk_naive_1), 'fro'), 0) sinrs4 = np.empty(K, dtype=np.ndarray) sinrs4[0] = blockdiagonalization.EnhancedBD._calc_linear_SINRs( np.dot(H1, MsPk_naive_1), Wk_naive_all[0], noise_plus_int_cov_matrix[0]) sinrs4[1] = blockdiagonalization.EnhancedBD._calc_linear_SINRs( np.dot(H2, MsPk_naive_2), Wk_naive_all[1], noise_plus_int_cov_matrix[1]) # Spectral efficiency # se4 = ( # np.sum(psk_obj.calcTheoreticalSpectralEfficiency( # linear2dB(sinrs4[0]), # packet_length)) # + # np.sum(psk_obj.calcTheoreticalSpectralEfficiency( # linear2dB(sinrs4[1]), # packet_length))) # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx # xxxxx Now with the Fixed Stream Reduction xxxxxxxxxxxxxxxxxxxxxxx # The 'fixed' metric requires that metric_func_extra_args_dict is # provided and has the 'num_streams' key. If this is not the case # an exception is raised with self.assertRaises(AttributeError): enhancedBD_obj.set_ext_int_handling_metric('fixed') # Now let's test the fixed metric num_streams = 1 enhancedBD_obj.set_ext_int_handling_metric( 'fixed', {'num_streams': num_streams}) (MsPk_fixed_all, Wk_fixed_all, Ns_fixed_all) \ = enhancedBD_obj.block_diagonalize_no_waterfilling( multiUserChannel) MsPk_fixed_1 = MsPk_fixed_all[0] MsPk_fixed_2 = MsPk_fixed_all[1] self.assertEqual(MsPk_fixed_1.shape[1], Ns_fixed_all[0]) self.assertEqual(MsPk_fixed_2.shape[1], Ns_fixed_all[1]) self.assertEqual(Ns_fixed_all[0], num_streams) self.assertEqual(Ns_fixed_all[1], num_streams) # Test if the square of the Frobenius norm of the precoder of each # user is equal to the power available to that user. self.assertAlmostEqual(iPu, np.linalg.norm(MsPk_fixed_1, 'fro')**2) self.assertAlmostEqual(iPu, np.linalg.norm(MsPk_fixed_2, 'fro')**2) # Test if MsPk really block diagonalizes the channel self.assertNotAlmostEqual( np.linalg.norm(np.dot(H1, MsPk_fixed_1), 'fro'), 0) self.assertAlmostEqual(np.linalg.norm(np.dot(H1, MsPk_fixed_2), 'fro'), 0) self.assertNotAlmostEqual( np.linalg.norm(np.dot(H2, MsPk_fixed_2), 'fro'), 0) self.assertAlmostEqual(np.linalg.norm(np.dot(H2, MsPk_fixed_1), 'fro'), 0) sinrs5 = np.empty(K, dtype=np.ndarray) sinrs5[0] = blockdiagonalization.EnhancedBD._calc_linear_SINRs( np.dot(H1, MsPk_fixed_1), Wk_fixed_all[0], noise_plus_int_cov_matrix[0]) sinrs5[1] = blockdiagonalization.EnhancedBD._calc_linear_SINRs( np.dot(H2, MsPk_fixed_2), Wk_fixed_all[1], noise_plus_int_cov_matrix[1]) # Spectral efficiency # se5 = ( # np.sum(psk_obj.calcTheoreticalSpectralEfficiency( # linear2dB(sinrs5[0]), # packet_length)) # + # np.sum(psk_obj.calcTheoreticalSpectralEfficiency( # linear2dB(sinrs5[1]), # packet_length))) # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx # xxxxx Handling external interference xxxxxxxxxxxxxxxxxxxxxxxxxxxx # Handling external interference using the capacity metric enhancedBD_obj.set_ext_int_handling_metric('capacity') (MsPk_all, Wk_cap_all, Ns_cap_all) \ = enhancedBD_obj.block_diagonalize_no_waterfilling( multiUserChannel) MsPk_cap_1 = MsPk_all[0] MsPk_cap_2 = MsPk_all[1] self.assertEqual(MsPk_cap_1.shape[1], Ns_cap_all[0]) self.assertEqual(MsPk_cap_2.shape[1], Ns_cap_all[1]) # Test if the square of the Frobenius norm of the precoder of each # user is equal to the power available to that user. self.assertAlmostEqual(iPu, np.linalg.norm(MsPk_cap_1, 'fro')**2) self.assertAlmostEqual(iPu, np.linalg.norm(MsPk_cap_2, 'fro')**2) # Test if MsPk really block diagonalizes the channel self.assertNotAlmostEqual( np.linalg.norm(np.dot(H1, MsPk_cap_1), 'fro'), 0) self.assertAlmostEqual(np.linalg.norm(np.dot(H1, MsPk_cap_2), 'fro'), 0) self.assertNotAlmostEqual( np.linalg.norm(np.dot(H2, MsPk_cap_2), 'fro'), 0) self.assertAlmostEqual(np.linalg.norm(np.dot(H2, MsPk_cap_1), 'fro'), 0) sinrs2 = np.empty(K, dtype=np.ndarray) sinrs2[0] = blockdiagonalization.EnhancedBD._calc_linear_SINRs( np.dot(H1, MsPk_cap_1), Wk_cap_all[0], noise_plus_int_cov_matrix[0]) sinrs2[1] = blockdiagonalization.EnhancedBD._calc_linear_SINRs( np.dot(H2, MsPk_cap_2), Wk_cap_all[1], noise_plus_int_cov_matrix[1]) # Spectral efficiency # noinspection PyPep8 se2 = (np.sum( psk_obj.calcTheoreticalSpectralEfficiency(linear2dB( sinrs2[0]), packet_length)) + np.sum( psk_obj.calcTheoreticalSpectralEfficiency( linear2dB(sinrs2[1]), packet_length))) # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx # xxxxx Handling external interference xxxxxxxxxxxxxxxxxxxxxxxxxxxx # Handling external interference using the effective_throughput metric enhancedBD_obj.set_ext_int_handling_metric( 'effective_throughput', { 'modulator': psk_obj, 'packet_length': packet_length }) (MsPk_effec_all, Wk_effec_all, Ns_effec_all) \ = enhancedBD_obj.block_diagonalize_no_waterfilling( multiUserChannel) MsPk_effec_1 = MsPk_effec_all[0] MsPk_effec_2 = MsPk_effec_all[1] self.assertEqual(MsPk_effec_1.shape[1], Ns_effec_all[0]) self.assertEqual(MsPk_effec_2.shape[1], Ns_effec_all[1]) # Test if the square of the Frobenius norm of the precoder of each # user is equal to the power available to that user. self.assertAlmostEqual(iPu, np.linalg.norm(MsPk_effec_1, 'fro')**2) self.assertAlmostEqual(iPu, np.linalg.norm(MsPk_effec_2, 'fro')**2) # Test if MsPk really block diagonalizes the channel self.assertNotAlmostEqual( np.linalg.norm(np.dot(H1, MsPk_effec_1), 'fro'), 0) self.assertAlmostEqual(np.linalg.norm(np.dot(H1, MsPk_effec_2), 'fro'), 0) self.assertNotAlmostEqual( np.linalg.norm(np.dot(H2, MsPk_effec_2), 'fro'), 0) self.assertAlmostEqual(np.linalg.norm(np.dot(H2, MsPk_effec_1), 'fro'), 0) sinrs3 = np.empty(K, dtype=np.ndarray) sinrs3[0] = blockdiagonalization.EnhancedBD._calc_linear_SINRs( np.dot(H1, MsPk_effec_1), Wk_effec_all[0], noise_plus_int_cov_matrix[0]) sinrs3[1] = blockdiagonalization.EnhancedBD._calc_linear_SINRs( np.dot(H2, MsPk_effec_2), Wk_effec_all[1], noise_plus_int_cov_matrix[1]) # Spectral efficiency # noinspection PyPep8 se3 = (np.sum( psk_obj.calcTheoreticalSpectralEfficiency(linear2dB( sinrs3[0]), packet_length)) + np.sum( psk_obj.calcTheoreticalSpectralEfficiency( linear2dB(sinrs3[1]), packet_length))) # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx # Test if the effective_throughput obtains a better spectral # efficiency then the capacity and not handling interference. self.assertGreater(se3 + tol, se2) self.assertGreater(se3 + tol, se)
pathlossInt = path_loss_obj.calc_path_loss(cluster0.external_radius - distance_users_to_cluster_center) pathlossInt.shape = (num_cells, 1) num_symbol_errors = 0. num_symbols = 0. num_bit_errors = 0. num_bits = 0. for rep in range(rep_max): # Randomize users channels multiuser_channel.randomize(Nr, Nt, num_cells, ext_int_rank) multiuser_channel.set_pathloss(pathloss, pathlossInt) multiuser_channel.noise_var = noise_var # Create the comp_obj comp_obj = blockdiagonalization.EnhancedBD(num_cells, transmit_power, noise_var, pe) # comp_obj.set_ext_int_handling_metric('capacity') comp_obj.set_ext_int_handling_metric('effective_throughput', { 'modulator': modulator, 'packet_length': packet_length }) (MsPk_all_users, Wk_all_users, Ns_all_users) \ = comp_obj.block_diagonalize_no_waterfilling(multiuser_channel) # xxxxx Performs the actual transmission for each user xxxxxxxxxxxxxxxx # Generate input data and modulate it input_data = np.random.randint(0, M, [np.sum(Ns_all_users), NSymbs]) symbols = modulator.modulate(input_data)
def test_set_ext_int_handling_metric(self): K = 3 iPu = 1e-3 # Power for each user (linear scale) noise_var = 1e-4 pe = 0 # Create the EnhancedBD object enhancedBD_obj = blockdiagonalization.EnhancedBD(K, iPu, noise_var, pe) # xxxxx Test if an assert is raised for invalid arguments xxxxxxxxx with self.assertRaises(AttributeError): enhancedBD_obj.set_ext_int_handling_metric('lala') with self.assertRaises(AttributeError): # If we set the metric to effective_throughput but not provide # the modulator and packet_length attributes. enhancedBD_obj.set_ext_int_handling_metric('effective_throughput') with self.assertRaises(AttributeError): enhancedBD_obj.set_ext_int_handling_metric('naive') # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx # xxxxx Test setting the metric to effective_throughput xxxxxxxxxxx psk_obj = fundamental.PSK(4) enhancedBD_obj.set_ext_int_handling_metric('effective_throughput', { 'modulator': psk_obj, 'packet_length': 120 }) self.assertEqual(enhancedBD_obj._metric_func, blockdiagonalization._calc_effective_throughput) self.assertEqual(enhancedBD_obj.metric_name, "effective_throughput") metric_func_extra_args = enhancedBD_obj._metric_func_extra_args self.assertEqual(metric_func_extra_args['modulator'], psk_obj) self.assertEqual(metric_func_extra_args['packet_length'], 120) # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx # xxxxx Test setting the metric to capacity xxxxxxxxxxxxxxxxxxxxxxx enhancedBD_obj.set_ext_int_handling_metric('capacity') self.assertEqual(enhancedBD_obj._metric_func, calc_shannon_sum_capacity) self.assertEqual(enhancedBD_obj.metric_name, "capacity") # metric_func_extra_args is an empty dictionary for the capacity # metric self.assertEqual(enhancedBD_obj._metric_func_extra_args, {}) # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx # xxxxx Test setting the metric to None xxxxxxxxxxxxxxxxxxxxxxxxxxx enhancedBD_obj.set_ext_int_handling_metric(None) self.assertIsNone(enhancedBD_obj._metric_func) self.assertEqual(enhancedBD_obj.metric_name, "None") # metric_func_extra_args is an empty dictionary for the None metric self.assertEqual(enhancedBD_obj._metric_func_extra_args, {}) # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx # xxxxx Test setting the metric to naive xxxxxxxxxxxxxxxxxxxxxxxxxx enhancedBD_obj.set_ext_int_handling_metric('naive', {'num_streams': 2}) self.assertIsNone(enhancedBD_obj._metric_func) self.assertEqual(enhancedBD_obj.metric_name, "naive") metric_func_extra_args = enhancedBD_obj._metric_func_extra_args self.assertEqual(metric_func_extra_args['num_streams'], 2)
SNR_dB = 15. N0_dBm = -116.4 # Noise power (in dBm) # External Interference Parameters Pe_dBm = -100 # transmit power (in dBm) of the ext. interference ext_int_rank = 1 # Rank of the external interference # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx # xxxxxxxxxxxxxxx Dependent Variables xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx noise_var = conversion.dBm2Linear(N0_dBm) snr = conversion.dB2Linear(SNR_dB) transmit_power = 1.0 # snr * noise_var # External interference power pe = conversion.dBm2Linear(Pe_dBm) # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx # Generate the channel multiuser_channel = pyphysim.channels.multiuser.MultiUserChannelMatrixExtInt() multiuser_channel.randomize(Nr, Nt, K, ext_int_rank) # Generate input data and modulate it input_data = np.random.randint(0, M, [np.sum(Ns_BD), NSymbs]) symbols = modulator.modulate(input_data) BD = blockdiagonalization.BlockDiagonalizer(K, transmit_power, noise_var) enhancedBD = blockdiagonalization.EnhancedBD(K, transmit_power, noise_var, pe) (newH, Ms) = BD.block_diagonalize_no_waterfilling(multiuser_channel.big_H_no_ext_int) (newH_ext, Ms_ext, Ns_all_users) = enhancedBD.block_diagonalize_no_waterfilling(multiuser_channel)