コード例 #1
0
ファイル: test_classes.py プロジェクト: pypm/pypmca
def test_class_Chain():
    """tests to ensure the behaviour class Chain"""
    test_model = Model('test_model')
    from_pop = Population('from_pop', 0.)
    to_pop = Population('to_pop', 0.)
    pop_a = Population('pop_a', 0.)
    pop_b = Population('pop_b', 0.)
    start = 100000
    from_pop.future = [start]

    mean = 10.
    sigma = 2.
    delay_pars = {'mean': Parameter('mean', mean, parameter_min=0.1, parameter_max=100.),
                  'sigma': Parameter('sigma', sigma, parameter_min=0.1, parameter_max=1000.)}
    delay = Delay('delay', 'norm', delay_pars, test_model)
    frac = 0.8
    fraction = Parameter('frac', frac)
    chain = []
    chain.append(Propagator('prop_0', from_pop, pop_a, fraction, delay))
    chain.append(Propagator('prop_1', pop_a, pop_b, fraction, delay))

    test_chain = Chain('test_chain', from_pop, to_pop, chain, fraction, delay, test_model)
    test_model.add_connector(test_chain)

    for time_step in [1., 1. / 4.]:
        test_model.set_time_step(time_step)
        for func in [test_chain.update_expectation, test_chain.update_data]:
            EPS = 0.02
            if func == test_chain.update_data:
                EPS = 0.2
            to_pop.reset()
            pop_a.reset()
            pop_b.reset()
            func()
            for pop in [to_pop, pop_b]:
                distribution = pop.future
                total = start * (1. - frac ** 2) * frac
                ave = mean
                std_dev = sigma
                if pop == pop_b:
                    total = start * frac ** 2
                    ave = 2. * mean
                    std_dev = np.sqrt(2.) * sigma
                sum_p = 0.
                sum_tp = 0.
                sum_ttp = 0.
                for i in range(len(distribution)):
                    sum_p += distribution[i]
                    sum_tp += i * distribution[i] * time_step
                    sum_ttp += i * i * distribution[i] * time_step ** 2
                assert np.abs(sum_p - total) < EPS * total
                est_mean = sum_tp / total
                assert np.abs(est_mean - ave) < EPS * ave
                est_sigma = np.sqrt(sum_ttp / total - est_mean ** 2)
                assert np.abs(est_sigma - std_dev) < EPS * std_dev
コード例 #2
0
ファイル: test_classes.py プロジェクト: pypm/pypmca
def test_class_Splitter():
    """tests to ensure the behaviour class Splitter"""
    test_model = Model('test_model')
    start = 100000
    from_pop = Population('from_pop', 0)
    from_pop.future = [start]
    to_pops = [Population('to_pop1', 0.), Population('to_pop2', 0.)]
    fracs = [0.4, 0.6]
    fraction = Parameter('frac', fracs[0])
    mean = 10.
    std_dev = 4.
    delay_pars = {
        'mean': Parameter('mean', mean, parameter_min=-100., parameter_max=100.),
        'sigma': Parameter('sigma', std_dev, parameter_min=-100., parameter_max=100.)
    }
    test_delay = Delay('test_delay', 'norm', delay_parameters=delay_pars, model=test_model)

    test_split = Splitter('test_prop', from_pop, to_pops, [fraction], test_delay)
    test_model.add_connector(test_split)
    for time_step in [1., 1. / 4.]:
        test_model.set_time_step(time_step)
        for func in [test_split.update_expectation, test_split.update_data]:
            EPS = 0.01
            if func == test_split.update_data:
                EPS = 0.1
            to_pops[0].reset()
            to_pops[1].reset()
            func()
            total = 0
            for i in range(2):
                distribution = to_pops[i].future
                frac = fracs[i]
                sum_p = 0.
                sum_tp = 0.
                sum_ttp = 0.
                for i in range(len(distribution)):
                    sum_p += distribution[i]
                    sum_tp += i * distribution[i] * time_step
                    sum_ttp += i * i * distribution[i] * time_step ** 2
                total += sum_p
                assert np.abs(sum_p - start * frac) < EPS * start * frac
                est_mean = sum_tp / (start * frac)
                assert np.abs(est_mean - mean) < EPS * mean
                est_sigma = np.sqrt(sum_ttp / (start * frac) - est_mean ** 2)
                assert np.abs(est_sigma - std_dev) < EPS * std_dev
            assert np.abs(total - start) < 0.1
コード例 #3
0
ファイル: test_classes.py プロジェクト: pypm/pypmca
def test_class_Multiplier():
    """tests to ensure the behaviour class Multiplier"""
    test_model = Model('test_model')
    EPS = 1.
    n1 = 50.
    n2 = 20.
    n3 = 2.
    scale = 0.1
    f_pops = [Population('f1_pop', n1), Population('f2_pop', n2), Population('f3_pop', n3)]
    to_pop = Population('to_pop', 0.)
    scale_par = Parameter('alpha', scale)
    delay = Delay('fast', 'fast')
    test_multiplier = Multiplier('test_multiplier', f_pops, to_pop, scale_par, delay, model=test_model)
    test_model.add_connector(test_multiplier)
    for time_step in [1., 1. / 4.]:
        test_model.set_time_step(time_step)
        # expectation:
        expected = n1 * n2 / n3 * scale * time_step
        to_pop.reset()
        test_multiplier.set_distribution('poisson', None)
        test_multiplier.update_expectation()
        assert to_pop.future[0] == expected

        # Poisson
        n_rep = 1000
        n_list = []
        for i in range(n_rep):
            to_pop.reset()
            test_multiplier.update_data()
            n_list.append(to_pop.future[0])
        assert np.abs(np.mean(n_list) - expected) < EPS
        assert np.abs(np.std(n_list) - np.sqrt(expected)) < EPS

        # Negative binomial
        p_nb = 0.2
        nbinom_par = Parameter('nb', p_nb)
        test_multiplier.set_distribution('nbinom', nbinom_par)

        n_rep = 1000
        n_list = []
        for i in range(n_rep):
            to_pop.reset()
            test_multiplier.update_data()
            n_list.append(to_pop.future[0])
        assert np.abs(np.mean(n_list) - expected) < EPS
        assert np.abs(np.std(n_list) - np.sqrt(expected / p_nb)) < EPS
コード例 #4
0
ファイル: test_classes.py プロジェクト: pypm/pypmca
def test_class_Propagator():
    """tests to ensure the behaviour class Propagator"""
    test_model = Model('test_model')
    start = 100000
    from_pop = Population('from_pop', 0)
    from_pop.future = [start]
    to_pop = Population('to_pop', 0.)
    frac = 0.4
    fraction = Parameter('frac', frac)
    mean = 10.
    std_dev = 4.
    delay_pars = {
        'mean': Parameter('mean', mean, parameter_min=-100., parameter_max=100.),
        'sigma': Parameter('sigma', std_dev, parameter_min=-100., parameter_max=100.)
    }
    test_delay = Delay('test_delay', 'norm', delay_parameters=delay_pars, model=test_model)

    test_prop = Propagator('test_prop', from_pop, to_pop, fraction, test_delay)
    test_model.add_connector(test_prop)
    for time_step in [1., 1. / 4.]:
        test_model.set_time_step(time_step)
        for func in [test_prop.update_expectation, test_prop.update_data]:
            EPS = 0.01
            if func == test_prop.update_data:
                EPS = 0.1
            to_pop.reset()
            func()
            distribution = to_pop.future
            sum_p = 0.
            sum_tp = 0.
            sum_ttp = 0.
            for i in range(len(distribution)):
                sum_p += distribution[i]
                sum_tp += i * distribution[i] * time_step
                sum_ttp += i * i * distribution[i] * time_step ** 2
            assert np.abs(sum_p - start * frac) < EPS * start * frac
            est_mean = sum_tp / (start * frac)
            assert np.abs(est_mean - mean) < EPS * mean
            est_sigma = np.sqrt(sum_ttp / (start * frac) - est_mean ** 2)
            assert np.abs(est_sigma - std_dev) < EPS * std_dev
コード例 #5
0
contagious_pop = Population('contagious', initial_contagious_par,
                            'number of people that can cause someone to become infected',
                            hidden=False, color='red')

# this value is only used if the transition is removed
trans_rate = Parameter('alpha', 0.4, 0., 2.,
                       'mean number of people that a contagious person infects ' +
                       'per day', hidden=True)
fast_delay = Delay('fast', 'fast', model=bc_model)

neg_binom_par = Parameter('neg_binom_p', 0.5, 0.001, 0.999,
                          'Dispersion parameter p for neg binom')

bc_model.add_connector(
    Multiplier('infection cycle', [susceptible_pop, contagious_pop, total_pop],
               infected_pop, trans_rate, fast_delay, bc_model,
               distribution='nbinom', nbinom_par=neg_binom_par))

contagious_frac = Parameter('cont_frac', 0.9, 0., 1.,
                            'fraction of infected people that become contagious',
                            hidden=False)
contagious_delay_pars = {
    'mean': Parameter('cont_delay_mean', 5., 0., 50.,
                      'mean time from being infected to becoming contagious'),
    'sigma': Parameter('cont_delay_sigma', 3., 0.01, 20.,
                       'standard deviation of times from being infected to becoming contagious')
}

contagious_delay = Delay('cont_delay', 'norm', contagious_delay_pars, bc_model)

bc_model.add_connector(
コード例 #6
0
ファイル: ref_model_1.py プロジェクト: pypm/pypmca
initial_contagious_par = Parameter('cont_0', 55., 0., 5000.,
                                   'Number of contagious people at t0',
                                   hidden=False)

contagious_pop = Population('contagious', initial_contagious_par,
                            'number of people that can cause someone to become infected',
                            hidden=False, color='red')

# this value is only used if the transition is removed
trans_rate = Parameter('alpha', 0.390, 0., 2.,
                       'mean number of people that a contagious person infects ' +
                       'per day', hidden=True)
infection_delay = Delay('fast', 'fast', model=bc_model)

bc_model.add_connector(
    Multiplier('infection cycle', [susceptible_pop, contagious_pop, total_pop],
               infected_pop, trans_rate, infection_delay, bc_model))

contagious_frac = Parameter('cont_frac', 0.9, 0., 1.,
                            'fraction of infected people that become contagious',
                            hidden=False)
contagious_delay_pars = {
    'mean': Parameter('cont_delay_mean', 2., 0., 50.,
                      'mean time from being infected to becoming contagious'),
    'sigma': Parameter('cont_delay_sigma', 1., 0.01, 20.,
                       'standard deviation of times from being infected to becoming contagious')
}

contagious_delay = Delay('cont_delay', 'norm', contagious_delay_pars, bc_model)

bc_model.add_connector(
コード例 #7
0
trans_rate = Parameter(
    'alpha',
    0.4,
    0.,
    2.,
    'mean number of people that a contagious person infects ' + 'per day',
    hidden=True)
infection_delay = Delay('fast', 'fast', model=bc_model)

neg_binom_par = Parameter('neg_binom_p', 0.5, 0.001, 0.999,
                          'Dispersion parameter p for neg binom')

bc_model.add_connector(
    Multiplier('infection cycle', [susceptible_pop, contagious_pop, total_pop],
               infected_pop,
               trans_rate,
               infection_delay,
               bc_model,
               distribution='nbinom',
               nbinom_par=neg_binom_par))

contagious_frac = Parameter(
    'cont_frac',
    0.9,
    0.,
    1.,
    'fraction of infected people that become contagious',
    hidden=False)
contagious_delay_pars = {
    'mean':
    Parameter('cont_delay_mean', 5., 0., 50.,
              'mean time from being infected to becoming contagious'),