コード例 #1
0
def dev__run_simulations():
    test_case = test_case_MgO

    assert os.path.isfile(config_fn)
    assert os.path.isfile(data_in_fn)

    o = PyposmatFileSampler(config_fn=test_case['config_fn'],
                            data_in_fn=test_case['data_in_fn'])
    o.run_simulations(i_iteration=test_case['i_iteration'])
コード例 #2
0
def test__configure_task_manager():
    o_sampler = PyposmatFileSampler(
            config_fn=config_fn,
            data_in_fn=datafile_in_fn,
            data_out_fn=datafile_out_fn)
    o_sampler.create_base_directories()
    o_sampler.read_configuration_file()
    o_sampler.configure_qoi_manager(use_fitting_qois=False,use_testing_qois=True)
    o_sampler.configure_task_manager()
    
    from pypospack.task import TaskManager
    assert type(o_sampler.task_manager) is TaskManager
コード例 #3
0
def dev__configure_qoi_manager():
    config_fn = test_case_MgO['config_fn']
    data_in_fn = test_case_MgO['data_in_fn']

    o = PyposmatFileSampler(config_fn=config_fn, data_in_fn=data_in_fn)
    qois = [k for k in o.configuration.qois]
    print('qoi_names:', qois)
    o.configure_qoi_manager()
    print('o.configuration.qoi_names:', o.configuration.qoi_names)
    s = str(type(o.qoi_manager))
    print("type(o.qoi_manager):{}".format(s))

    s = str(type((o.qoi_manager.tasks)))
    print('type(o.qoi_manager.tasks:{}'.format(s))
コード例 #4
0
def test____init__():

    o_sampler = PyposmatFileSampler(
            config_fn=config_fn,
            data_in_fn=datafile_in_fn,
            data_out_fn=datafile_out_fn)

    assert o_sampler.reference_potentials == reference_potentials
コード例 #5
0
    def initialize_sampler(self,
                           config_fn,
                           results_fn,
                           mpi_rank=None,
                           mpi_size=None,
                           o_log=None):
        """ initialize the sampling object 

        This method initializes the `mc_sampler` attribute with a sampler.

        Note:
            This breakout is part of a larger effort within PYPOSPACK, to have 
            more object-oriented approach for parametric sampling.  The goal 
            eventually is to implement an instance of PyposmatBaseSampler, and 
            allow users of this software library to be able to extend this 
            software by simply extending the base class.
        Args:
            config_fn(str): path to the configuration file
            results_fn(str): path to the results file
            mpi_rank(int,optional): the MPI rank of executing this method
            mpi_size(int,optional): the size of the MPI execution group
            o_log(PyposmatLogFile,str,optional): the log file.  If a string is 
                passed, then the sampling class will initialize a separate log 
                file with the string of path created.  If a log file object is 
                passed, then sampling object will use that instance of the 
                object to log information.  By defaut, it will pass the 
                attribute, `o_log`.
        """

        assert type(config_fn) is str
        assert type(results_fn) is str
        assert type(mpi_rank) in [type(None), int]
        assert type(mpi_size) in [type(None), int]
        assert type(o_log) in [type(None), PyposmatLogFile, str]

        # check to see if the paths provided are absolute paths
        assert os.path.isabs(config_fn)
        assert os.path.isabs(results_fn)

        if mpi_rank is None: mpi_rank = self.mpi_rank
        if mpi_size is None: mpi_size = self.mpi_size

        self.mc_sampler = PyposmatMonteCarloSampler(filename_in=config_fn,
                                                    filename_out=results_fn,
                                                    mpi_rank=mpi_rank,
                                                    mpi_size=mpi_size,
                                                    o_log=o_log)
        self.mc_sampler.create_base_directories()
        self.mc_sampler.read_configuration_file()
        # we have to be able to find the structure directory
        self.mc_sampler.configuration.structures[
            'structure_directory'] = self.structure_directory
        self.mc_sampler.configure_qoi_manager()
        self.mc_sampler.configure_task_manager()
        self.mc_sampler.configure_pyposmat_datafile_out()
        self.mc_sampler.configure_pyposmat_badparameters_file()

        self.log_more_iteration_information()
コード例 #6
0
def test____init__():
    config_fn = test_case_MgO['config_fn']
    data_in_fn = test_case_MgO['data_in_fn']

    assert os.path.isfile(config_fn)
    assert os.path.isfile(data_in_fn)

    o = PyposmatFileSampler(config_fn=config_fn, data_in_fn=data_in_fn)

    assert isinstance(o.configuration, PyposmatConfigurationFile)
    assert isinstance(o.datafile_in, PyposmatDataFile)
    assert isinstance(o.datafile_out, PyposmatDataFile)
コード例 #7
0
def dev____init__():
    config_fn = test_case_MgO['config_fn']
    data_in_fn = test_case_MgO['data_in_fn']

    assert os.path.isfile(config_fn)
    assert os.path.isfile(data_in_fn)

    o = PyposmatFileSampler(config_fn=config_fn, data_in_fn=data_in_fn)

    s = []
    s.append("type(o.configuration)={}".format(type(o.configuration)))
    s.append("type(o.datafile_in)={}".format(type(o.datafile_in)))
    s.append("type(o.datafile_out={}".format(type(o.datafile_out)))
    print("\n".join(s))
コード例 #8
0
def test__configure_qoi_manager():
    test_case = test_case_MgO

    o = PyposmatFileSampler(config_fn=test_case['config_fn'],
                            data_in_fn=test_case['data_in_fn'],
                            fullauto=False)
    o.read_configuration_file(filename=test_case['config_fn'])
    o.configure_qoi_manager()

    assert isinstance(o.configuration, PyposmatConfigurationFile)
    assert isinstance(o.qoi_manager, QoiManager)
コード例 #9
0
def setup__configure_qoi_manager():
    config_directory = "./data"
    config_fn = os.path.join(config_directory,'pyposmat.config.in')
    
    data_directory = "../../data/MgO_pareto_data"
    datafile_in_fn = os.path.join(data_directory,'culled_005.out')

    output_directory = "./"
    datafile_out_fn = os.path.join(output_directory,'qoiplus_005.out')
    
    o_sampler = PyposmatFileSampler(
            config_fn=config_fn,
            data_in_fn=datafile_in_fn,
            data_out_fn=datafile_out_fn)
    o_sampler.create_base_directories()
    o_sampler.read_configuration_file()
コード例 #10
0
class PyposmatIterativeSampler(object):
    """  Iterative Sampler which wraps multiple simulation algorithms.

    This class wraps multiple simulation algorithms so that they can be run in an iterative manner.
    Since this class has so many configuration options, the attributes of this class is set
    by a YAML based configuration file.  The class PyposmatConfigurationFile aids in the creation
    and reading of these options.  These attributes are public and be set programmatically within
    a script.

    Notes:
        config_fn = 'data/pyposmat.config.in'

        engine = PyposmatIterativeSampler(configuration_filename=config_fn)
        engine.read_configuration_file()
        engine.run_all()

    Args:
        configuration_filename(str): the filename of the YAML configuration file
        is_restart(bool,optional): When set to True, this argument controls the restart behavior
            of this class.  By default, is set to False
        is_auto(bool,optional): When set to True, this agument will automatically configure the
            class.  By default this is set to False, mostly because this software is currently in
            development, and this necessary to to write integration testing
        log_fn(str,optional): This the filename path where to set logging, by default it is set
           as `pyposmat.log` contained in the configurable data directory
        log_to_stdout(bool,optional): When set to True, all log messages will be directed to
           standard out as well as the log file

    Attributes:
        mpi_comm(MPI.Intracomm)
        mpi_rank(int)
        mpi_size(int)
        mpi_nprocs(int)
        i_iteration(int)
        n_iterations(int)
        rv_seed(int)
        rv_seeds(np.ndarray)
        configuration_filename = configuration(filename)
        configuration(PyposmatConfigurationFile)
        mc_sampler(PyposmatMonteCarloSampler)
        root_directory(str)
        data_directory(str)
        is_restart(bool)
        start_iteration=0
        
    """

    parameter_sampling_types = [
        'parametric', 'kde', 'from_file', 'kde_w_clusters'
    ]

    def __init__(self,
                 configuration_filename,
                 is_restart=False,
                 is_auto=False,
                 log_fn=None,
                 log_to_stdout=True):

        # formats should not contain a trailing end line chracter
        self.SECTION_HEADER_FORMAT = "\n".join([80 * '=', "{:^80}", 80 * "="])
        self.RANK_DIR_FORMAT = 'rank_{}'

        self.mpi_comm = None
        self.mpi_rank = None
        self.mpi_size = None
        self.mpi_nprocs = None
        self.i_iteration = None
        self.rv_seed = None
        self.rv_seeds = None

        self.configuration_filename = configuration_filename
        self.configuration = None
        self.mc_sampler = None

        self.root_directory = os.getcwd()
        self.data_directory = 'data'
        self.is_restart = is_restart
        self.start_iteration = 0

        self.log_fn = log_fn
        self.log_to_stdout = log_to_stdout
        self.o_log = None
        self.initialize_logger(log_fn=log_fn, log_to_stdout=log_to_stdout)

        if self.is_restart:
            self.delete_mpi_rank_directories()

    @property
    def structure_directory(self):
        if self.configuration is None:
            return None
        else:
            d = self.configuration.structures['structure_directory']

            if not os.path.isabs(d):
                d = os.path.join(self.root_directory, d)

            return d

    @property
    def n_iterations(self):
        if self.configuration is None:
            return None
        else:
            return self.configuration.n_iterations

    @property
    def qoi_names(self):
        if self.configuration is None:
            return None
        else:
            return self.configuration.qoi_names

    @property
    def error_names(self):
        if self.configuration is None:
            return None
        else:
            return self.configuration.error_names

    def delete_mpi_rank_directories(self):
        if self.mpi_rank == 0:
            self.log('Deleting previous rank directories')
            mpi_rank_directories = [
                d for d in os.listdir(self.root_directory)
                if d.startswith('rank_')
            ]
            for d in mpi_rank_directories:
                try:
                    shutil.rmtree(os.path.join(self.root_directory, d))
                except:
                    raise
        MPI.COMM_WORLD.Barrier()

    def determine_last_iteration_completed(self):

        for i in range(self.n_iterations):
            results_fn = os.path.join(self.data_directory,
                                      'pyposmat.results.{}.out'.format(i))
            kde_fn = os.path.join(self.data_directory,
                                  'pyposmat.kde.{}.out'.format(i + 1))

            if os.path.isfile(results_fn) and os.path.isfile(kde_fn):
                if self.mpi_rank == 0:
                    self.log('iteration {}: is complete'.format(i))
                self.start_iteration = i + 1
            else:
                self.start_iteration = i
                break

        MPI.COMM_WORLD.Barrier()
        return self.start_iteration

    def run_all(self):
        """runs all iterations

        This method runs all iterations

        """
        self.setup_mpi_environment()

        self.initialize_data_directory()

        self.start_iteration = 0

        if self.is_restart:
            self.determine_last_iteration_completed()

        if self.mpi_rank == 0:
            self.log("starting at simulation: {}".format(self.start_iteration))
        MPI.COMM_WORLD.Barrier()

        for i in range(self.start_iteration, self.n_iterations):
            self.i_iteration = i

            # log iteration information
            self.log_iteration_information(i_iteration=i)

            self.run_simulations(i)
            MPI.COMM_WORLD.Barrier()

            if self.mpi_rank == 0:
                self.log("ALL SIMULATIONS COMPLETE FOR ALL RANKS")
                self.log("MERGING FILES")
                self.merge_data_files(i)
                self.merge_error_files(i)
            MPI.COMM_WORLD.Barrier()

            if self.mpi_rank == 0:
                self.log("ANALYZE RESULTS")
                self.analyze_results(i)
            MPI.COMM_WORLD.Barrier()

        if self.mpi_rank == 0:
            self.log(80 * '-')
            self.log('JOBCOMPLETE')

    def initialize_sampler(self,
                           config_fn,
                           results_fn,
                           mpi_rank=None,
                           mpi_size=None,
                           o_log=None):
        """ initialize the sampling object 

        This method initializes the `mc_sampler` attribute with a sampler.

        Note:
            This breakout is part of a larger effort within PYPOSPACK, to have 
            more object-oriented approach for parametric sampling.  The goal 
            eventually is to implement an instance of PyposmatBaseSampler, and 
            allow users of this software library to be able to extend this 
            software by simply extending the base class.
        Args:
            config_fn(str): path to the configuration file
            results_fn(str): path to the results file
            mpi_rank(int,optional): the MPI rank of executing this method
            mpi_size(int,optional): the size of the MPI execution group
            o_log(PyposmatLogFile,str,optional): the log file.  If a string is 
                passed, then the sampling class will initialize a separate log 
                file with the string of path created.  If a log file object is 
                passed, then sampling object will use that instance of the 
                object to log information.  By defaut, it will pass the 
                attribute, `o_log`.
        """

        assert type(config_fn) is str
        assert type(results_fn) is str
        assert type(mpi_rank) in [type(None), int]
        assert type(mpi_size) in [type(None), int]
        assert type(o_log) in [type(None), PyposmatLogFile, str]

        # check to see if the paths provided are absolute paths
        assert os.path.isabs(config_fn)
        assert os.path.isabs(results_fn)

        if mpi_rank is None: mpi_rank = self.mpi_rank
        if mpi_size is None: mpi_size = self.mpi_size

        self.mc_sampler = PyposmatMonteCarloSampler(filename_in=config_fn,
                                                    filename_out=results_fn,
                                                    mpi_rank=mpi_rank,
                                                    mpi_size=mpi_size,
                                                    o_log=o_log)
        self.mc_sampler.create_base_directories()
        self.mc_sampler.read_configuration_file()
        # we have to be able to find the structure directory
        self.mc_sampler.configuration.structures[
            'structure_directory'] = self.structure_directory
        self.mc_sampler.configure_qoi_manager()
        self.mc_sampler.configure_task_manager()
        self.mc_sampler.configure_pyposmat_datafile_out()
        self.mc_sampler.configure_pyposmat_badparameters_file()

        self.log_more_iteration_information()

    def initialize_file_sampler(self,
                                config_fn,
                                results_fn,
                                i_iteration=0,
                                mpi_rank=None,
                                mpi_size=None,
                                o_log=None):
        """ initialize the sampling object 

        This method initializes the `mc_sampler` attribute with a sampler.

        Note:
            This breakout is part of a larger effort within PYPOSPACK, to have 
            more object-oriented approach for parametric sampling.  The goal 
            eventually is to implement an instance of PyposmatBaseSampler, and 
            allow users of this software library to be able to extend this 
            software by simply extending the base class.
        Args:
            config_fn(str): path to the configuration file
            results_fn(str): path to the results file
            i_iteration(int,optional): the iteration to sample the file from,
                by default this is set to zero.
            mpi_rank(int,optional): the MPI rank of executing this method
            mpi_size(int,optional): the size of the MPI execution group
            o_log(PyposmatLogFile,str,optional): the log file.  If a string is 
                passed, then the sampling class will initialize a separate log 
                file with the string of path created.  If a log file object is 
                passed, then sampling object will use that instance of the 
                object to log information.  By defaut, it will pass the 
                attribute, `o_log`.
        """

        assert type(config_fn) is str
        assert type(results_fn) is str
        assert type(mpi_rank) in [type(None), int]
        assert type(mpi_size) in [type(None), int]
        assert type(o_log) in [type(None), PyposmatLogFile, str]

        # check to see if the paths provided are absolute paths
        assert os.path.isabs(config_fn)
        assert os.path.isabs(results_fn)

        if mpi_rank is None: mpi_rank = self.mpi_rank
        if mpi_size is None: mpi_size = self.mpi_size

        # get the absolute path of the datafile we are sampling from
        data_in_fn = None
        if os.path.isabs(
                self.configuration.sampling_type[i_iteration]['file']):
            data_in_fn = self.configuration.sampling_type[i_iteration]['file']
        else:
            data_in_fn = os.path.join(
                self.root_directory,
                self.configuration.sampling_type[i_iteration]['file'])

        data_out_fn = results_fn

        self.mc_sampler = PyposmatFileSampler(config_fn=config_fn,
                                              data_in_fn=data_in_fn,
                                              data_out_fn=data_out_fn,
                                              mpi_rank=mpi_rank,
                                              mpi_size=mpi_size,
                                              o_log=o_log,
                                              fullauto=False)

        self.mc_sampler.create_base_directories()
        self.mc_sampler.read_configuration_file()

        # we have to be able to find the structure directory
        self.mc_sampler.configuration.structures[
            'structure_directory'] = self.structure_directory
        self.mc_sampler.configure_qoi_manager()
        self.mc_sampler.configure_task_manager()
        self.mc_sampler.configure_datafile_out()
        self.mc_sampler.configure_pyposmat_badparameters_file()

        self.log_more_iteration_information()

    def initialize_rank_directory(self):
        """ create the rank directory

        This method defines the rank directory as an absolute path and stores it in
        the attribute `rank_directory`.  If a current directory exists there, then
        it is deleted with alll it's contents and then recreated.

        """
        rank_directory = os.path.join(
            self.root_directory, self.RANK_DIR_FORMAT.format(self.mpi_rank))

        # find the directory, delete it and it's constants and then recreates ot
        if os.path.isdir(rank_directory):
            shutil.rmtree(rank_directory)
        os.mkdir(rank_directory)

        self.rank_directory = rank_directory

    def run_simulations(self, i_iteration):
        """ run simulation for a single iteration

        Each rank is given a different execution context so that the disk IO 
        don't conflict
        """
        self.initialize_rank_directory()
        config_filename = self.configuration_filename
        results_filename = os.path.join(self.rank_directory,
                                        'pyposmat.results.out')
        bad_parameters_filename = os.path.join(self.rank_directory,
                                               'pyposmat.badparameters.out')

        # change execution context for this rank
        os.chdir(self.rank_directory)

        # set random seed
        self.determine_rv_seeds()
        self.log_random_seeds(i_iteration=i_iteration)

        sampling_type = self.configuration.sampling_type[i_iteration]['type']
        if self.mpi_rank == 0:
            self.log("sampling_type={}".format(sampling_type))
        MPI.COMM_WORLD.Barrier()

        # <----- parameter sampling type ---------------------------------------
        if sampling_type == 'parametric':
            self.initialize_sampler(config_fn=config_filename,
                                    results_fn=results_filename,
                                    mpi_rank=self.mpi_rank,
                                    mpi_size=self.mpi_size,
                                    o_log=self.o_log)

            self.run_parametric_sampling(i_iteration=i_iteration)

        # <----- kde sampling sampling type ---------------------------------------
        elif sampling_type == 'kde':
            self.initialize_sampler(config_fn=config_filename,
                                    results_fn=results_filename,
                                    mpi_rank=self.mpi_rank,
                                    mpi_size=self.mpi_size,
                                    o_log=self.o_log)

            self.run_kde_sampling(i_iteration=i_iteration)

        # <----- sampling from a file type ---------------------------------------
        # get parameters from file
        elif sampling_type == 'from_file':

            self.initialize_file_sampler(config_fn=config_filename,
                                         results_fn=results_filename,
                                         mpi_rank=self.mpi_rank,
                                         mpi_size=self.mpi_size,
                                         o_log=self.o_log)

            self.run_file_sampling(i_iteration=i_iteration)

        # <----- kde with clusters sampling type ---------------------------------------
        elif sampling_type == 'kde_w_clusters':
            cluster_fn = "pyposmat.cluster.{}.out".format(i_iteration)
            pyposmat_datafile_in = os.path.join(self.root_directory,
                                                self.data_directory,
                                                cluster_fn)

            _config_filename = os.path.join(self.root_directory,
                                            self.configuration_filename)

            # determine number of sims for this rank
            _mc_n_samples = _mc_config['n_samples_per_cluster']
            _n_samples_per_rank = int(_mc_n_samples / self.mpi_size)
            if _mc_n_samples % self.mpi_size > self.mpi_rank:
                _n_samples_per_rank += 1

            # initialize sampling object
            o = PyposmatClusterSampler(o_logger=self.log,
                                       mpi_rank=self.mpi_rank,
                                       mpi_comm=self.mpi_comm,
                                       mpi_size=self.mpi_size)
            o.create_base_directories()
            o.read_configuration_file(filename=_config_filename)
            # check to see if clustered data file exists
            if self.mpi_rank == 0:
                if not os.path.isfile(pyposmat_datafile_in):
                    kde_fn = "pyposmat.kde.{}.out".format(i_iteration)
                    kde_fn = os.path.join(self.root_directory,
                                          self.data_directory, kde_fn)
                    o.write_cluster_file(filename=kde_fn,
                                         i_iteration=i_iteration)
            MPI.COMM_WORLD.Barrier()

            o.configure_pyposmat_datafile_in(filename=pyposmat_datafile_in)
            # fix relative path to structure databae folder
            _structure_dir = o.configuration.structures['structure_directory']
            o.configuration.structures['structure_directory'] = \
                    os.path.join('..',_structure_dir)
            # finish the rest of the initialization
            o.configure_qoi_manager()
            o.configure_task_manager()
            o.configure_pyposmat_datafile_out()
            MPI.COMM_WORLD.Barrier()

            # run simulations
            o.run_simulations(i_iteration=i_iteration,
                              n_samples=_mc_n_samples,
                              filename=pyposmat_datafile_in)
            MPI.COMM_WORLD.Barrier()
        else:
            error_dict = OrderedDict([('i_iteration', i_iteration),
                                      ('sampling_type', sampling_type)])
            m = "unknown parameter sampling type: {}".format(sampling_type)
            m += "the valid sampling types are: {}".format(",".join(
                self.parameter_sampling_types))
            raise PyposmatSamplingTypeError(m, error_dict)

        # return to root directory
        os.chdir(self.root_directory)

    def initialize_data_directory(self, data_directory=None):
        """ determine the absolute path of the data directory and create it

        This method sets the `data_directory` attribute of the class and creates
        the `data directory` if the data directory already exists.

        Args:
            data_directory(str):the path of the data directory, the path can be 
                expressed in either a relative path, or an absolute path
        Returns:
            (str) the absolute path of the data directory
        Raises:
            OSError: if the directory is not able to be created
            
        """

        assert type(data_directory) in [type(None), str]
        assert type(self.data_directory) in [type(None), str]

        # determine the data directory path
        if data_directory is None:
            if self.data_directory is None:
                self.data_directory = os.path.join(self.root_directory, 'data')
            else:
                if os.path.isabs(self.data_directory):
                    self.data_directory = data_directory
                else:
                    self.data_directory = os.path.join(self.root_directory,
                                                       self.data_directory)
        elif os.path.isabs(data_directory):
            # absolute path
            self.data_directory = data_directory
        else:
            # create a absolute path from the relative path
            self.data_directory = os.path.join(self.root_directory,
                                               data_directory)
            self.data_directory = os.path.abspath(self.data_directory)

        # create data directory
        if self.mpi_rank == 0:
            try:
                os.mkdir(self.data_directory)
                self.log('created the data directory.')
                self.log('\tdata_directory;{}'.format(self.data_directory))
            except FileExistsError as e:
                self.log(
                    'attempted to create data directory, directory already exists.'
                )
                self.log('\tdata_directory:{}'.format(self.data_directory))
            except OSError as e:
                self.log(
                    'attempted to create data directory, cannot create directory.'
                )
                self.log('\tdata_directory:{}'.format(self.data_directory))
        MPI.COMM_WORLD.Barrier()

    def run_parametric_sampling(self, i_iteration):
        """ run parametric sampling 

        Args:
            i_iteration(int): what iteration of the sampling is happening
        """

        assert type(i_iteration) is int
        assert type(self.mc_sampler) is PyposmatMonteCarloSampler

        self.mc_sampler.run_simulations(
            i_iteration=i_iteration,
            n_samples=self.determine_number_of_samples_per_rank(
                i_iteration=i_iteration))

    def run_kde_sampling(self, i_iteration):
        """ run kde sampling

        Args:
            i_iteration(int): what iteration of the sampling is happening
        """
        is_debug = False

        assert type(i_iteration) is int
        assert type(self.mc_sampler) is PyposmatMonteCarloSampler

        kde_filename = os.path.join(self.data_directory,
                                    'pyposmat.kde.{}.out'.format(i_iteration))
        n_samples_per_rank = self.determine_number_of_samples_per_rank(
            i_iteration=i_iteration)

        if is_debug:
            print('cwd:{}'.format(os.getcwd()))
            print('mpi_rank:{},kde_filename:{}'.format(self.mpi_rank,
                                                       kde_filename))
            print('n_samples_per_rank:{}'.format(n_samples_per_rank))

        self.mc_sampler.run_simulations(i_iteration=i_iteration,
                                        n_samples=n_samples_per_rank,
                                        filename=kde_filename)

    def run_file_sampling(self, i_iteration):
        """ run file sampling

        Args:
            i_iteration(int): the iteration which to sampling for
        """
        assert type(i_iteration) is int
        assert type(self.mc_sampler) is PyposmatFileSampler

        if 'file' in self.configuration.sampling_type[i_iteration]:
            filename = os.path.join(
                self.root_directory,
                self.configuration.sampling_type[i_iteration]['file'])
        else:
            if os.path.isabs(self.data_directory):
                filename = os.path.join(
                    self.data_directory,
                    'pyposmat.kde.{}.out'.format(i_iteration))
            else:
                filename = os.path, join(
                    self.root_directory, self.data_directory,
                    'pyposmat.kde.{}.out'.format(i_iteration))

        if self.mpi_rank == 0:
            self.log(80 * '-')
            self.log('{:^80}'.format('file sampling'))
            self.log(80 * '-')
            self.log('filename_in:{}'.format(filename))
        MPI.COMM_WORLD.Barrier()

        self.mc_sampler.run_simulations(
            i_iteration=i_iteration,
            n_samples=self.determine_number_of_samples_per_rank(
                i_iteration=i_iteration),
            filename=filename)

    def determine_number_of_samples_per_rank(self,
                                             i_iteration,
                                             N_samples=None):
        """ determine the number of samples per rank

        The total number of samples needs to be broken up between the ranks, but roughly
        divided the work evenly.

        Args:
            i_iteration(int): which iteration we are in the simulation
            N_samples(int,optional): the total number of samples we are using for 
                this iteration.  If a number is provided, it will override 
                the number of simulations specified in the configuration file.
        Returns:
            (int): the number of samples for this rank
        """

        assert type(i_iteration) is int
        assert type(N_samples) in [type(None), int]
        assert type(self.configuration) is PyposmatConfigurationFile

        if N_samples is None:
            N_samples = self.configuration.sampling_type[i_iteration][
                'n_samples']

        N_samples_per_rank = int(N_samples / self.mpi_size)
        if N_samples % self.mpi_size > self.mpi_rank:
            N_samples_per_rank += 1

        return N_samples_per_rank

    def initialize_logger(self, log_fn=None, log_to_stdout=None):
        """initialize log object
        
        Args:
            log_fn(str,optional)

        """

        assert type(log_fn) in [type(None), str]
        assert type(log_to_stdout) in [type(None), bool]

        if log_fn is None:
            self.log_fn = os.path.join(self.root_directory,
                                       self.data_directory, 'pyposmat.log')
        else:
            self.log_fn = log_fn
        self.o_log = PyposmatLogFile(filename=self.log_fn)

        self.log_to_stdout = log_to_stdout

    def setup_mpi_environment(self):
        self.mpi_comm = MPI.COMM_WORLD
        self.mpi_rank = self.mpi_comm.Get_rank()
        self.mpi_size = self.mpi_comm.Get_size()
        self.mpi_procname = MPI.Get_processor_name()
        self.log_mpi_environment()

    # random seed management
    def determine_rv_seeds(self, seed=None, i_iteration=None):
        """ set the random variable seed across simulations 
        
        Args:
           seed(int,optional)=a seed to determine the rest of the seeds for
               different ranks and iterations.
        """
        RAND_INT_LOW = 0
        RAND_INT_HIGH = 2147483647

        assert type(seed) in [type(None), int]
        assert type(i_iteration) in [type(None), int]

        if type(i_iteration) is type(None):
            i_iteration = self.i_iteration

        # set the seed attribute
        if type(seed) is int:
            self.rv_seed == seed

        # set the seed attribute, if the seed attribute is none
        if self.rv_seed is None:
            self.rv_seed = np.random.randint(low=RAND_INT_LOW,
                                             high=RAND_INT_HIGH)

        # if the rv_seed was determined in the script, then all ranks will
        # have the same rv_seed attribute
        np.random.seed(self.rv_seed)

        # each rank, will need it's own seed.  So we sample from the freshly
        # generated random number generator, which is identical across ranks
        self.rv_seeds = np.random.randint(low=0,
                                          high=2147483647,
                                          size=(int(self.mpi_size),
                                                self.n_iterations))

        # now restart the seed for this rank
        np.random.seed(self.rv_seeds[self.mpi_rank, i_iteration])

    # logging methods
    def log(self, s):
        if self.log_to_stdout:
            print(s)
        if self.o_log is not None:
            self.o_log.write(s)

    def log_iteration_information(self, i_iteration):
        """log iteration information
        
        Args:
            i_iteration_id(int):the iteration number
        Returns:
            (str) the log string
        """
        if self.mpi_rank == 0:
            s = self.SECTION_HEADER_FORMAT.format(
                'Begin Iteration {}/{}'.format(i_iteration + 1,
                                               self.n_iterations))
            self.log(s)
        MPI.COMM_WORLD.Barrier()

        #if self.mpi_rank == 0:
        #    return "\n".join(s)

    def log_more_iteration_information(self):
        #TODO: this logging needs to go into a separate logging method. -EJR
        if self.mpi_rank == 0:
            self.mc_sampler.print_structure_database()
            self.mc_sampler.print_sampling_configuration()
        if self.mpi_rank == 0 and self.i_iteration == 0:
            self.mc_sampler.print_initial_parameter_distribution()
        if self.mpi_rank == 0:
            self.log(80 * '-')
        MPI.COMM_WORLD.Barrier()

    def log_mpi_environment(self):
        if self.mpi_rank == 0:
            m = [
                self.SECTION_HEADER_FORMAT.format(
                    'MPI communication information')
            ]

            m += ['mpi_size={}'.format(self.mpi_size)]

        MPI.COMM_WORLD.Barrier()

    def log_random_seeds(self, i_iteration):
        if self.mpi_rank == 0:
            self.log(80 * '-')
            self.log('{:^80}'.format('GENERATED RANDOM SEEDS'))
            self.log(80 * '-')
            self.log('global_seed:{}'.format(str(self.rv_seed)))
            self.log('seeds_for_this_iteration:')
            self.log('{:^8} {:^8}'.format('rank', 'seed'))
            self.log('{} {}'.format(8 * '-', 8 * '-'))
        MPI.COMM_WORLD.Barrier()
        for i_rank in range(self.mpi_size):
            if self.mpi_rank == i_rank:
                self.log('{:^8} {:>10}'.format(
                    i_rank, self.rv_seeds[i_rank, i_iteration]))
        MPI.COMM_WORLD.Barrier()

    def get_results_dict(self):
        rd = OrderedDict()
        rd['mpi'] = OrderedDict()
        rd['mpi']['size'] = self.mpi_size

    def analyze_data_directories(self, data_dir=None):
        _d = data_dir
        i = 0
        contents = []
        if not os.path.exists(_d): return i, contents
        if not os.path.isdir(_d): return i, contents

        while True:
            kde_fn = os.path.join(_d, "pyposmat.kde.{}.out".format(i))
            if os.path.exists(kde_fn):
                contents.append(kde_fn)
            else:
                if i > 0:
                    contents.append(results_fn)
                    break

            results_fn = os.path.join(_d, "pyposmat.results.{}.out".format(i))
            if os.path.exists(results_fn): pass
            else: break
            i = i + 1

        return i, contents

    def analyze_rank_directories(self, root_dir=None):
        i = 0
        contents = []

        if root_dir is None:
            _d = self.root_directory
        else:
            _d = root_directory

        while True:
            rank_dir = os.path.join(_d, "rank_{}".format(i))
            if not os.path.exists(rank_dir):
                break
            if not os.path.isdir(rank_dir):
                break

            rank_fn = os.path.join("rank_{}".format(i), "pyposmat.results.out")
            if not os.path.exists(os.path.join(_d, rank_fn)):
                break
            if not os.path.isfile(os.path.join(_d, rank_fn)):
                break
            else:
                contents.append(rank_fn)
            i = i + 1
        return i, contents

    def find_initial_parameters_file(self):
        if 'file' in self.configuration.sampling_type[0]:
            _init_fn = os.path.join(
                self.root_directory,
                self.configuration.sampling_type[0]['file'])
            if os.path.exists(_init_fn):
                if os.path.isfile(_init_fn):
                    return _init_fn
                else:
                    return None

    def merge_data_files(self,
                         i_iteration,
                         last_datafile_fn=None,
                         new_datafile_fn=None):
        """ merge the pyposmat data files

        Args:
            i_iteration(int): the current iteration which just finished
            last_datafile_fn(str,optional): the filename of the last dataset in the data directory.
            new_datafile_fn(str,optional): where to output the file results 
        """

        if last_datafile_fn is None:
            last_datafile_fn = os.path.join(
                self.data_directory, 'pyposmat.kde.{}.out'.format(i_iteration))

        if new_datafile_fn is None:
            new_datafile_fn = os.path.join(
                self.data_directory,
                'pyposmat.results.{}.out'.format(i_iteration))

        data_dir = self.data_directory
        rank_dirs = [
            v for v in os.listdir(self.root_directory) if v.startswith('rank_')
        ]
        filenames = [
            os.path.join(self.root_directory, v, 'pyposmat.results.out')
            for v in rank_dirs
        ]

        data = None
        for i, v in enumerate(filenames):
            data_new = None
            if i == 0:
                data = PyposmatDataFile()
                data.read(filename=v)
            else:
                data_new = PyposmatDataFile()
                data_new.read(filename=v)

                data.df = pd.concat([data.df, data_new.df])

        nrows = len(data.df)

        if self.configuration.sampling_type[i_iteration][
                'type'] == 'from_file':
            pass
        else:
            sim_id_fmt = '{:0>2}_{:0>6}'
            sim_id_str = [
                sim_id_fmt.format(i_iteration, i) for i in range(nrows)
            ]
            data.df['sim_id'] = [
                sim_id_fmt.format(i_iteration, i) for i in range(nrows)
            ]

        if self.configuration.sampling_type[i_iteration][
                'type'] == "from_file":
            data_new = PyposmatDataFile()
            data_new.read(filename=filenames[0])
            data_new.df = data.df
            data_new.write(filename=new_datafile_fn)
        else:
            self.log("merging with candidates from previous simulations")
            self.log("\tfilename:{}".format(last_datafile_fn))
            data_old = PyposmatDataFile()
            try:
                data_old.read(filename=last_datafile_fn)
                data_old.df = pd.concat([data_old.df, data.df])
                data_old.write(filename=new_datafile_fn)
            except FileNotFoundError as e:
                if i_iteration == 0:
                    data.write(filename=new_datafile_fn)
                else:
                    raise

    def merge_error_files(self, i_iteration):
        """ merge the pyposmat data files

        Args:
            i_iteration(int): the current iteration which just finished
            last_datafile_fn(str,optional): the filename of the last dataset in the data directory.
            new_datafile_fn(str,optional): where to output the file results 
        """

        badparameters_fn = os.path.join(self.data_directory,
                                        'pyposmat.badparameters.out')

        data_dir = self.data_directory
        rank_dirs = [
            v for v in os.listdir(self.root_directory) if v.startswith('rank_')
        ]
        filenames = [
            os.path.join(self.root_directory, v, 'pyposmat.badparameters.out')
            for v in rank_dirs
        ]

        # consolidate rank directories
        badparameters_new = None
        badparameters_next = None
        for i, v in enumerate(filenames):
            if badparameters_new is None:
                try:
                    badparameters_new = PyposmatBadParametersFile(
                        o_config=self.configuration)
                    badparameters_new.read(filename=v)
                except FileNotFoundError as e:
                    self.log("no bad parameters file at {}".format(v))

            else:
                try:
                    badparameters_next = PyposmatBadParametersFile(
                        o_config=self.configuration)
                    badparameters_next.read(filename=v)
                    badparameters_new.df = pd.concat(
                        [badparameters_new.df, badparameters_next.df])
                except FileNotFoundError as e:
                    self.log("no bad parameters file as {}".format(v))

        # determine the sim_id for bad parameters of the sim_id
        if badparameters_new.df is None:
            # no previous bad paramters found
            # TODO: need to implement something here to deal with bad parameters
            pass

        else:
            nrows = len(badparameters_new.df)
            sim_id_fmt = '{:0>2}_{:0>6}'
            sim_id_str = [
                sim_id_fmt.format(i_iteration, i) for i in range(nrows)
            ]
            badparameters_new.df['sim_id'] = sim_id_str

            if self.configuration.sampling_type[i_iteration][
                    'type'] == "from_file":
                badparameters_new.write(filename=badparameters_fn)

            else:
                self.log(
                    "merging with bad candidates from previous simulations")
                self.log("\tfilename:{}".format(badparameters_fn))
                badparameters = PyposmatBadParametersFile(
                    o_config=self.configuration)

                try:
                    badparameters.read(filename=badparameters_fn)
                    badparameters.df = pd.concat(
                        [badparameters.df, badparameters_new.df])
                    badparameters.write(filename=badparameters_fn)
                except FileNotFoundError as e:
                    if i_iteration == 0:
                        badparameters_new.write(filename=badparameters_fn)
                    else:
                        raise

    def analyze_results(self,
                        i_iteration,
                        data_fn=None,
                        config_fn=None,
                        kde_fn=None,
                        analysis_fn=None):
        """ analyze the results of the simulation

        this method analyzes the results of the simulation, and does post simulation
        tasks, such as filtering by qoi performance, pareto optimization, etc.

        Args:
            data_fn(str): the path of the data file.  By default this is set to none 
                where the the file will be determine by i_iteration and internal 
                attributes
            config_fn(str): the path of the data file.  By default this is set to none 
                where the the file will be determine by i_iteration and internal 
                attributes
            kde_fn(str): the path of the data file.  By default this is set to none 
                where the the file will be determine by i_iteration and internal 
                attributes
        """

        if data_fn is None:
            data_fn = os.path.join(\
                    self.root_directory,
                    self.data_directory,
                    'pyposmat.results.{}.out'.format(i_iteration))
        if config_fn is None:
            config_fn = os.path.join(\
                    self.root_directory,
                    self.configuration_filename)
        if kde_fn is None:
            kde_fn = os.path.join(\
                    self.root_directory,
                    self.data_directory,
                    'pyposmat.kde.{}.out'.format(i_iteration+1))
        if analysis_fn is None:
            analysis_fn = os.path.join(self.root_directory,
                                       self.data_directory,
                                       'pyposmat.analysis.out')

        data_analyzer = PyposmatDataAnalyzer()
        data_analyzer.initialize_configuration(config_fn=config_fn)

        data_analyzer.analyze_results_data(i_iteration, filename=data_fn)

        assert isinstance(data_analyzer.results_statistics, OrderedDict)

        if os.path.isfile(analysis_fn):
            data_analyzer.read_analysis_file(filename=analysis_fn)

        self.log(
            data_analyzer.str__results_descriptive_statistics(
                statistics=data_analyzer.results_statistics))
        self.log(data_analyzer.str__qoi_filtering_summary())

        data_analyzer.write_kde_file(filename=kde_fn)
        data_analyzer.analyze_kde_data(i_iteration, filename=kde_fn)

        assert isinstance(data_analyzer.kde_statistics, OrderedDict)
        self.log(
            data_analyzer.str__kde_descriptive_statistics(
                statistics=data_analyzer.kde_statistics))

        data_analyzer.update_analysis(i_iteration)
        data_analyzer.write_analysis_file(filename=analysis_fn)

    def read_configuration_file(self, filename=None):

        assert type(filename) in [type(None), str]
        assert type(self.configuration_filename) in [type(None), str]

        if filename is not None:
            self.configuration_filename = filename

        if not os.path.isabs(self.configuration_filename):
            self.configuration_filename = os.path.abspath(
                self.configuration_filename)

        self.configuration = PyposmatConfigurationFile()
        self.configuration.read(filename=self.configuration_filename)

        if self.mpi_rank == 0:
            self._write_parameter_names()
            self._write_qoi_names()
            self._write_error_names()

    def _write_parameter_names(self, parameter_names=None):
        if parameter_names is None: _parameter_names = self.parameter_names
        else: _parameter_names = parameter_names

        s = [80 * '-']
        s += ['{:^80}'.format('PARAMETER_NAMES')]
        s += [80 * '-']
        s += [p for p in _parameter_names]

        self.log("\n".join(s))

    def _write_qoi_names(self, qoi_names=None):
        if qoi_names is None: _qoi_names = self.qoi_names
        else: _qoi_names = qoi_names

        s = [80 * '-']
        s += ['{:^80}'.format('QOI_NAMES')]
        s += [80 * '-']
        s += [p for p in _qoi_names]

        self.log("\n".join(s))

    def _write_error_names(self, error_names=None):
        if error_names is None: _error_names = self.error_names
        else: _error_names = error_names

        s = [80 * '-']
        s += ['{:^80}'.format('ERROR_NAMES')]
        s += [80 * '-']
        s += [p for p in _error_names]

        self.log("\n".join(s))
コード例 #11
0
def test____init__():

    o_sampler = PyposmatFileSampler(
            config_fn=config_fn,
            data_in_fn=datafile_in_fn,
            data_out_fn=datafile_out_fn)

    assert o_sampler.reference_potentials == reference_potentials

def reference_potential_names_to_string(o_sampler):
    s = 80*'-'+"\n"
    s += "{:^80}\n".format('CHECK REFERENCE POTENTIALS')
    s += 80*'-'+"\n"
    for v in o_sampler.reference_potentials:
        s += "{}.{}\n".format(
                v,
                v in o_sampler.reference_potentials)
    return s

if __name__ == "__main__":
    print ("config_directory:{}".format(config_directory))
    print ("data_directory:{}".format(data_directory))
    print ("output_directory:{}".format(output_directory))

    o_sampler = PyposmatFileSampler(
            config_fn=config_fn,
            data_in_fn=datafile_in_fn,
            data_out_fn=datafile_out_fn)

    print(reference_potential_names_to_string(o_sampler=o_sampler))
コード例 #12
0
def test__subselect_by_dmetric():
    
    o_sampler = PyposmatFileSampler(
            config_fn=config_fn,
            data_in_fn=datafile_in_fn,
            data_out_fn=datafile_out_fn
            )
    o_sampler.create_base_directories()
    o_sampler.read_configuration_file()
    o_sampler.configure_qoi_manager(use_fitting_qois=False,use_testing_qois=True)
    o_sampler.configure_task_manager()
    o_sampler.configure_datafile_out()
    o_sampler.subselect_by_dmetric(nsmallest=n_smallest)
    
    import pandas as pd
    assert type(o_sampler.subselect_df) is pd.DataFrame
コード例 #13
0
    config_directory = "./data"
    config_fn = os.path.join(config_directory,'pyposmat.config.in')
    
    data_directory = "../../data/MgO_pareto_data"
    datafile_in_fn = os.path.join(data_directory,'culled_005.out')

    output_directory = "./"
    datafile_out_fn = os.path.join(output_directory,'qoiplus_005.out')

    from pypospack.pyposmat.data import PyposmatConfigurationFile
    o_config=PyposmatConfigurationFile()
    o_config.read(filename=config_fn)

    o_sampler = PyposmatFileSampler(
            config_fn=config_fn,
            data_in_fn=datafile_in_fn,
            data_out_fn=datafile_out_fn
            )

    check_reference_potentials(o_sampler=o_sampler)

    o_sampler.create_base_directories()
    o_sampler.read_configuration_file()
    
    # Determine which QOIS you want to calculate
    # calculate only the fitting qois
    #o_sampler.configure_qoi_manager(use_fitting_qois=True,use_testing_qois=False)
    # Calculate only the testing qois
    o_sampler.configure_qoi_manager(use_fitting_qois=False,use_testing_qois=True)
    # Calculate all qois
    #o_sampler.configure_qoi_manager(use_fitting_qois=True,use_testing_qois=True)