def t_makeLODF(quiet=False): """Tests for C{makeLODF}. @author: Ray Zimmerman (PSERC Cornell) @author: Richard Lincoln """ ntests = 31 t_begin(ntests, quiet) tdir = dirname(__file__) casefile = join(tdir, 't_auction_case') verbose = 0 #not quiet ## load case ppc = loadcase(casefile) ppopt = ppoption(VERBOSE=verbose, OUT_ALL=0) r = rundcopf(ppc, ppopt) baseMVA, bus, gen, branch = r['baseMVA'], r['bus'], r['gen'], r['branch'] _, bus, gen, branch = ext2int1(bus, gen, branch) ## compute injections and flows F0 = branch[:, PF] ## create some PTDF matrices H = makePTDF(baseMVA, bus, branch, 0) ## create some PTDF matrices try: LODF = makeLODF(branch, H) except ZeroDivisionError: pass ## take out non-essential lines one-by-one and see what happens ppc['bus'] = bus ppc['gen'] = gen branch0 = branch outages = r_[arange(12), arange(13, 15), arange(16, 18), [19], arange(26, 33), arange(34, 41)] for k in outages: ppc['branch'] = branch0.copy() ppc['branch'][k, BR_STATUS] = 0 r, _ = rundcpf(ppc, ppopt) baseMVA, bus, gen, branch = \ r['baseMVA'], r['bus'], r['gen'], r['branch'] F = branch[:, PF] t_is(LODF[:, k], (F - F0) / F0[k], 6, 'LODF[:, %d]' % k) t_end()
def t_makeLODF(quiet=False): """Tests for C{makeLODF}. @author: Ray Zimmerman (PSERC Cornell) @author: Richard Lincoln """ ntests = 31 t_begin(ntests, quiet) tdir = dirname(__file__) casefile = join(tdir, 't_auction_case') verbose = 0#not quiet ## load case ppc = loadcase(casefile) ppopt = ppoption(VERBOSE=verbose, OUT_ALL=0) r = rundcopf(ppc, ppopt) baseMVA, bus, gen, branch = r['baseMVA'], r['bus'], r['gen'], r['branch'] _, bus, gen, branch = ext2int1(bus, gen, branch) ## compute injections and flows F0 = branch[:, PF] ## create some PTDF matrices H = makePTDF(baseMVA, bus, branch, 0) ## create some PTDF matrices try: LODF = makeLODF(branch, H) except ZeroDivisionError: pass ## take out non-essential lines one-by-one and see what happens ppc['bus'] = bus ppc['gen'] = gen branch0 = branch outages = r_[arange(12), arange(13, 15), arange(16, 18), [19], arange(26, 33), arange(34, 41)] for k in outages: ppc['branch'] = branch0.copy() ppc['branch'][k, BR_STATUS] = 0 r, _ = rundcpf(ppc, ppopt) baseMVA, bus, gen, branch = \ r['baseMVA'], r['bus'], r['gen'], r['branch'] F = branch[:, PF] t_is(LODF[:, k], (F - F0) / F0[k], 6, 'LODF[:, %d]' % k) t_end()
def t_dcline(quiet=False): """Tests for DC line extension in L{{toggle_dcline}. @author: Ray Zimmerman (PSERC Cornell) """ num_tests = 50 t_begin(num_tests, quiet) tdir = dirname(__file__) casefile = join(tdir, 't_case9_dcline') if quiet: verbose = False else: verbose = False t0 = '' ppopt = ppoption(OPF_VIOLATION=1e-6, PDIPM_GRADTOL=1e-8, PDIPM_COMPTOL=1e-8, PDIPM_COSTTOL=1e-9) ppopt = ppoption(ppopt, OPF_ALG=560, OPF_ALG_DC=200) ppopt = ppoption(ppopt, OUT_ALL=0, VERBOSE=verbose) ## set up indices ib_data = r_[arange(BUS_AREA + 1), arange(BASE_KV, VMIN + 1)] ib_voltage = arange(VM, VA + 1) ib_lam = arange(LAM_P, LAM_Q + 1) ib_mu = arange(MU_VMAX, MU_VMIN + 1) ig_data = r_[[GEN_BUS, QMAX, QMIN], arange(MBASE, APF + 1)] ig_disp = array([PG, QG, VG]) ig_mu = arange(MU_PMAX, MU_QMIN + 1) ibr_data = arange(ANGMAX + 1) ibr_flow = arange(PF, QT + 1) ibr_mu = array([MU_SF, MU_ST]) ibr_angmu = array([MU_ANGMIN, MU_ANGMAX]) ## load case ppc0 = loadcase(casefile) del ppc0['dclinecost'] ppc = ppc0 ppc = toggle_dcline(ppc, 'on') ppc = toggle_dcline(ppc, 'off') ndc = ppc['dcline'].shape[0] ## run AC OPF w/o DC lines t = ''.join([t0, 'AC OPF (no DC lines) : ']) r0 = runopf(ppc0, ppopt) success = r0['success'] t_ok(success, [t, 'success']) r = runopf(ppc, ppopt) success = r['success'] t_ok(success, [t, 'success']) t_is(r['f'], r0['f'], 8, [t, 'f']) t_is(r['bus'][:, ib_data], r0['bus'][:, ib_data], 10, [t, 'bus data']) t_is(r['bus'][:, ib_voltage], r0['bus'][:, ib_voltage], 3, [t, 'bus voltage']) t_is(r['bus'][:, ib_lam], r0['bus'][:, ib_lam], 3, [t, 'bus lambda']) t_is(r['bus'][:, ib_mu], r0['bus'][:, ib_mu], 2, [t, 'bus mu']) t_is(r['gen'][:, ig_data], r0['gen'][:, ig_data], 10, [t, 'gen data']) t_is(r['gen'][:, ig_disp], r0['gen'][:, ig_disp], 3, [t, 'gen dispatch']) t_is(r['gen'][:, ig_mu], r0['gen'][:, ig_mu], 3, [t, 'gen mu']) t_is(r['branch'][:, ibr_data], r0['branch'][:, ibr_data], 10, [t, 'branch data']) t_is(r['branch'][:, ibr_flow], r0['branch'][:, ibr_flow], 3, [t, 'branch flow']) t_is(r['branch'][:, ibr_mu], r0['branch'][:, ibr_mu], 2, [t, 'branch mu']) t = ''.join([t0, 'AC PF (no DC lines) : ']) ppc1 = { 'baseMVA': r['baseMVA'], 'bus': r['bus'][:, :VMIN + 1].copy(), 'gen': r['gen'][:, :APF + 1].copy(), 'branch': r['branch'][:, :ANGMAX + 1].copy(), 'gencost': r['gencost'].copy(), 'dcline': r['dcline'][:, :c.LOSS1 + 1].copy() } ppc1['bus'][:, VM] = 1 ppc1['bus'][:, VA] = 0 rp = runpf(ppc1, ppopt) success = rp['success'] t_ok(success, [t, 'success']) t_is(rp['bus'][:, ib_voltage], r['bus'][:, ib_voltage], 3, [t, 'bus voltage']) t_is(rp['gen'][:, ig_disp], r['gen'][:, ig_disp], 3, [t, 'gen dispatch']) t_is(rp['branch'][:, ibr_flow], r['branch'][:, ibr_flow], 3, [t, 'branch flow']) ## run with DC lines t = ''.join([t0, 'AC OPF (with DC lines) : ']) ppc = toggle_dcline(ppc, 'on') r = runopf(ppc, ppopt) success = r['success'] t_ok(success, [t, 'success']) expected = array([[10, 8.9, -10, 10, 1.0674, 1.0935], [2.2776, 2.2776, 0, 0, 1.0818, 1.0665], [0, 0, 0, 0, 1.0000, 1.0000], [10, 9.5, 0.0563, -10, 1.0778, 1.0665]]) t_is(r['dcline'][:, c.PF:c.VT + 1], expected, 4, [t, 'P Q V']) expected = array([[0, 0.8490, 0.6165, 0, 0, 0.2938], [0, 0, 0, 0.4290, 0.0739, 0], [0, 0, 0, 0, 0, 0], [0, 7.2209, 0, 0, 0.0739, 0]]) t_is(r['dcline'][:, c.MU_PMIN:c.MU_QMAXT + 1], expected, 3, [t, 'mu']) t = ''.join([t0, 'AC PF (with DC lines) : ']) ppc1 = { 'baseMVA': r['baseMVA'], 'bus': r['bus'][:, :VMIN + 1].copy(), 'gen': r['gen'][:, :APF + 1].copy(), 'branch': r['branch'][:, :ANGMAX + 1].copy(), 'gencost': r['gencost'].copy(), 'dcline': r['dcline'][:, :c.LOSS1 + 1].copy() } ppc1 = toggle_dcline(ppc1, 'on') ppc1['bus'][:, VM] = 1 ppc1['bus'][:, VA] = 0 rp = runpf(ppc1, ppopt) success = rp['success'] t_ok(success, [t, 'success']) t_is(rp['bus'][:, ib_voltage], r['bus'][:, ib_voltage], 3, [t, 'bus voltage']) #t_is( rp['gen'][:,ig_disp ], r['gen'][:,ig_disp ], 3, [t, 'gen dispatch']) t_is(rp['gen'][:2, ig_disp], r['gen'][:2, ig_disp], 3, [t, 'gen dispatch']) t_is(rp['gen'][2, PG], r['gen'][2, PG], 3, [t, 'gen dispatch']) t_is(rp['gen'][2, QG] + rp['dcline'][0, c.QF], r['gen'][2, QG] + r['dcline'][0, c.QF], 3, [t, 'gen dispatch']) t_is(rp['branch'][:, ibr_flow], r['branch'][:, ibr_flow], 3, [t, 'branch flow']) ## add appropriate P and Q injections and check angles and generation when running PF t = ''.join([t0, 'AC PF (with equivalent injections) : ']) ppc1 = { 'baseMVA': r['baseMVA'], 'bus': r['bus'][:, :VMIN + 1].copy(), 'gen': r['gen'][:, :APF + 1].copy(), 'branch': r['branch'][:, :ANGMAX + 1].copy(), 'gencost': r['gencost'].copy(), 'dcline': r['dcline'][:, :c.LOSS1 + 1].copy() } ppc1['bus'][:, VM] = 1 ppc1['bus'][:, VA] = 0 for k in range(ndc): if ppc1['dcline'][k, c.BR_STATUS]: ff = find(ppc1['bus'][:, BUS_I] == ppc1['dcline'][k, c.F_BUS]) tt = find(ppc1['bus'][:, BUS_I] == ppc1['dcline'][k, c.T_BUS]) ppc1['bus'][ff, PD] = ppc1['bus'][ff, PD] + r['dcline'][k, c.PF] ppc1['bus'][ff, QD] = ppc1['bus'][ff, QD] - r['dcline'][k, c.QF] ppc1['bus'][tt, PD] = ppc1['bus'][tt, PD] - r['dcline'][k, c.PT] ppc1['bus'][tt, QD] = ppc1['bus'][tt, QD] - r['dcline'][k, c.QT] ppc1['bus'][ff, VM] = r['dcline'][k, c.VF] ppc1['bus'][tt, VM] = r['dcline'][k, c.VT] ppc1['bus'][ff, BUS_TYPE] = PV ppc1['bus'][tt, BUS_TYPE] = PV rp = runpf(ppc1, ppopt) success = rp['success'] t_ok(success, [t, 'success']) t_is(rp['bus'][:, ib_voltage], r['bus'][:, ib_voltage], 3, [t, 'bus voltage']) t_is(rp['gen'][:, ig_disp], r['gen'][:, ig_disp], 3, [t, 'gen dispatch']) t_is(rp['branch'][:, ibr_flow], r['branch'][:, ibr_flow], 3, [t, 'branch flow']) ## test DC OPF t = ''.join([t0, 'DC OPF (with DC lines) : ']) ppc = ppc0.copy() ppc['gen'][0, PMIN] = 10 ppc['branch'][4, RATE_A] = 100 ppc = toggle_dcline(ppc, 'on') r = rundcopf(ppc, ppopt) success = r['success'] t_ok(success, [t, 'success']) expected = array([[10, 8.9, 0, 0, 1.01, 1], [2, 2, 0, 0, 1, 1], [0, 0, 0, 0, 1, 1], [10, 9.5, 0, 0, 1, 0.98]]) t_is(r['dcline'][:, c.PF:c.VT + 1], expected, 4, [t, 'P Q V']) expected = array([[0, 1.8602, 0, 0, 0, 0], [1.8507, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0], [0, 0.2681, 0, 0, 0, 0]]) t_is(r['dcline'][:, c.MU_PMIN:c.MU_QMAXT + 1], expected, 3, [t, 'mu']) t = ''.join([t0, 'DC PF (with DC lines) : ']) ppc1 = { 'baseMVA': r['baseMVA'], 'bus': r['bus'][:, :VMIN + 1].copy(), 'gen': r['gen'][:, :APF + 1].copy(), 'branch': r['branch'][:, :ANGMAX + 1].copy(), 'gencost': r['gencost'].copy(), 'dcline': r['dcline'][:, :c.LOSS1 + 1].copy() } ppc1 = toggle_dcline(ppc1, 'on') ppc1['bus'][:, VA] = 0 rp = rundcpf(ppc1, ppopt) success = rp['success'] t_ok(success, [t, 'success']) t_is(rp['bus'][:, ib_voltage], r['bus'][:, ib_voltage], 3, [t, 'bus voltage']) t_is(rp['gen'][:, ig_disp], r['gen'][:, ig_disp], 3, [t, 'gen dispatch']) t_is(rp['branch'][:, ibr_flow], r['branch'][:, ibr_flow], 3, [t, 'branch flow']) ## add appropriate P injections and check angles and generation when running PF t = ''.join([t0, 'DC PF (with equivalent injections) : ']) ppc1 = { 'baseMVA': r['baseMVA'], 'bus': r['bus'][:, :VMIN + 1].copy(), 'gen': r['gen'][:, :APF + 1].copy(), 'branch': r['branch'][:, :ANGMAX + 1].copy(), 'gencost': r['gencost'].copy(), 'dcline': r['dcline'][:, :c.LOSS1 + 1].copy() } ppc1['bus'][:, VA] = 0 for k in range(ndc): if ppc1['dcline'][k, c.BR_STATUS]: ff = find(ppc1['bus'][:, BUS_I] == ppc1['dcline'][k, c.F_BUS]) tt = find(ppc1['bus'][:, BUS_I] == ppc1['dcline'][k, c.T_BUS]) ppc1['bus'][ff, PD] = ppc1['bus'][ff, PD] + r['dcline'][k, c.PF] ppc1['bus'][tt, PD] = ppc1['bus'][tt, PD] - r['dcline'][k, c.PT] ppc1['bus'][ff, BUS_TYPE] = PV ppc1['bus'][tt, BUS_TYPE] = PV rp = rundcpf(ppc1, ppopt) success = rp['success'] t_ok(success, [t, 'success']) t_is(rp['bus'][:, ib_voltage], r['bus'][:, ib_voltage], 3, [t, 'bus voltage']) t_is(rp['gen'][:, ig_disp], r['gen'][:, ig_disp], 3, [t, 'gen dispatch']) t_is(rp['branch'][:, ibr_flow], r['branch'][:, ibr_flow], 3, [t, 'branch flow']) ## run with DC lines t = ''.join([t0, 'AC OPF (with DC lines + poly cost) : ']) ppc = loadcase(casefile) ppc = toggle_dcline(ppc, 'on') r = runopf(ppc, ppopt) success = r['success'] t_ok(success, [t, 'success']) expected1 = array([[10, 8.9, -10, 10, 1.0663, 1.0936], [7.8429, 7.8429, 0, 0, 1.0809, 1.0667], [0, 0, 0, 0, 1.0000, 1.0000], [6.0549, 5.7522, -0.5897, -10, 1.0778, 1.0667]]) t_is(r['dcline'][:, c.PF:c.VT + 1], expected1, 4, [t, 'P Q V']) expected2 = array([[0, 0.7605, 0.6226, 0, 0, 0.2980], [0, 0, 0, 0.4275, 0.0792, 0], [0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0.0792, 0]]) t_is(r['dcline'][:, c.MU_PMIN:c.MU_QMAXT + 1], expected2, 3, [t, 'mu']) ppc['dclinecost'][3, :8] = array([2, 0, 0, 4, 0, 0, 7.3, 0]) r = runopf(ppc, ppopt) success = r['success'] t_ok(success, [t, 'success']) t_is(r['dcline'][:, c.PF:c.VT + 1], expected1, 4, [t, 'P Q V']) t_is(r['dcline'][:, c.MU_PMIN:c.MU_QMAXT + 1], expected2, 3, [t, 'mu']) t = ''.join([t0, 'AC OPF (with DC lines + pwl cost) : ']) ppc['dclinecost'][3, :8] = array([1, 0, 0, 2, 0, 0, 10, 73]) r = runopf(ppc, ppopt) success = r['success'] t_ok(success, [t, 'success']) t_is(r['dcline'][:, c.PF:c.VT + 1], expected1, 4, [t, 'P Q V']) t_is(r['dcline'][:, c.MU_PMIN:c.MU_QMAXT + 1], expected2, 3, [t, 'mu']) t_end()
def t_dcline(quiet=False): """Tests for DC line extension in L{{toggle_dcline}. @author: Ray Zimmerman (PSERC Cornell) @author: Richard Lincoln """ num_tests = 50 t_begin(num_tests, quiet) tdir = dirname(__file__) casefile = join(tdir, 't_case9_dcline') if quiet: verbose = False else: verbose = False t0 = '' ppopt = ppoption(OPF_VIOLATION=1e-6, PDIPM_GRADTOL=1e-8, PDIPM_COMPTOL=1e-8, PDIPM_COSTTOL=1e-9) ppopt = ppoption(ppopt, OPF_ALG=560, OPF_ALG_DC=200) ppopt = ppoption(ppopt, OUT_ALL=0, VERBOSE=verbose) ## set up indices ib_data = r_[arange(BUS_AREA + 1), arange(BASE_KV, VMIN + 1)] ib_voltage = arange(VM, VA + 1) ib_lam = arange(LAM_P, LAM_Q + 1) ib_mu = arange(MU_VMAX, MU_VMIN + 1) ig_data = r_[[GEN_BUS, QMAX, QMIN], arange(MBASE, APF + 1)] ig_disp = array([PG, QG, VG]) ig_mu = arange(MU_PMAX, MU_QMIN + 1) ibr_data = arange(ANGMAX + 1) ibr_flow = arange(PF, QT + 1) ibr_mu = array([MU_SF, MU_ST]) ibr_angmu = array([MU_ANGMIN, MU_ANGMAX]) ## load case ppc0 = loadcase(casefile) del ppc0['dclinecost'] ppc = ppc0 ppc = toggle_dcline(ppc, 'on') ppc = toggle_dcline(ppc, 'off') ndc = ppc['dcline'].shape[0] ## run AC OPF w/o DC lines t = ''.join([t0, 'AC OPF (no DC lines) : ']) r0 = runopf(ppc0, ppopt) success = r0['success'] t_ok(success, [t, 'success']) r = runopf(ppc, ppopt) success = r['success'] t_ok(success, [t, 'success']) t_is(r['f'], r0['f'], 8, [t, 'f']) t_is( r['bus'][:,ib_data ], r0['bus'][:,ib_data ], 10, [t, 'bus data']) t_is( r['bus'][:,ib_voltage], r0['bus'][:,ib_voltage], 3, [t, 'bus voltage']) t_is( r['bus'][:,ib_lam ], r0['bus'][:,ib_lam ], 3, [t, 'bus lambda']) t_is( r['bus'][:,ib_mu ], r0['bus'][:,ib_mu ], 2, [t, 'bus mu']) t_is( r['gen'][:,ig_data ], r0['gen'][:,ig_data ], 10, [t, 'gen data']) t_is( r['gen'][:,ig_disp ], r0['gen'][:,ig_disp ], 3, [t, 'gen dispatch']) t_is( r['gen'][:,ig_mu ], r0['gen'][:,ig_mu ], 3, [t, 'gen mu']) t_is(r['branch'][:,ibr_data ], r0['branch'][:,ibr_data ], 10, [t, 'branch data']) t_is(r['branch'][:,ibr_flow ], r0['branch'][:,ibr_flow ], 3, [t, 'branch flow']) t_is(r['branch'][:,ibr_mu ], r0['branch'][:,ibr_mu ], 2, [t, 'branch mu']) t = ''.join([t0, 'AC PF (no DC lines) : ']) ppc1 = {'baseMVA': r['baseMVA'], 'bus': r['bus'][:, :VMIN + 1].copy(), 'gen': r['gen'][:, :APF + 1].copy(), 'branch': r['branch'][:, :ANGMAX + 1].copy(), 'gencost': r['gencost'].copy(), 'dcline': r['dcline'][:, :c.LOSS1 + 1].copy()} ppc1['bus'][:, VM] = 1 ppc1['bus'][:, VA] = 0 rp = runpf(ppc1, ppopt) success = rp['success'] t_ok(success, [t, 'success']) t_is( rp['bus'][:,ib_voltage], r['bus'][:,ib_voltage], 3, [t, 'bus voltage']) t_is( rp['gen'][:,ig_disp ], r['gen'][:,ig_disp ], 3, [t, 'gen dispatch']) t_is(rp['branch'][:,ibr_flow ], r['branch'][:,ibr_flow ], 3, [t, 'branch flow']) ## run with DC lines t = ''.join([t0, 'AC OPF (with DC lines) : ']) ppc = toggle_dcline(ppc, 'on') r = runopf(ppc, ppopt) success = r['success'] t_ok(success, [t, 'success']) expected = array([ [10, 8.9, -10, 10, 1.0674, 1.0935], [2.2776, 2.2776, 0, 0, 1.0818, 1.0665], [0, 0, 0, 0, 1.0000, 1.0000], [10, 9.5, 0.0563, -10, 1.0778, 1.0665] ]) t_is(r['dcline'][:, c.PF:c.VT + 1], expected, 4, [t, 'P Q V']) expected = array([ [0, 0.8490, 0.6165, 0, 0, 0.2938], [0, 0, 0, 0.4290, 0.0739, 0], [0, 0, 0, 0, 0, 0], [0, 7.2209, 0, 0, 0.0739, 0] ]) t_is(r['dcline'][:, c.MU_PMIN:c.MU_QMAXT + 1], expected, 3, [t, 'mu']) t = ''.join([t0, 'AC PF (with DC lines) : ']) ppc1 = {'baseMVA': r['baseMVA'], 'bus': r['bus'][:, :VMIN + 1].copy(), 'gen': r['gen'][:, :APF + 1].copy(), 'branch': r['branch'][:, :ANGMAX + 1].copy(), 'gencost': r['gencost'].copy(), 'dcline': r['dcline'][:, :c.LOSS1 + 1].copy()} ppc1 = toggle_dcline(ppc1, 'on') ppc1['bus'][:, VM] = 1 ppc1['bus'][:, VA] = 0 rp = runpf(ppc1, ppopt) success = rp['success'] t_ok(success, [t, 'success']) t_is( rp['bus'][:,ib_voltage], r['bus'][:,ib_voltage], 3, [t, 'bus voltage']) #t_is( rp['gen'][:,ig_disp ], r['gen'][:,ig_disp ], 3, [t, 'gen dispatch']) t_is( rp['gen'][:2,ig_disp ], r['gen'][:2,ig_disp ], 3, [t, 'gen dispatch']) t_is( rp['gen'][2,PG ], r['gen'][2,PG ], 3, [t, 'gen dispatch']) t_is( rp['gen'][2,QG]+rp['dcline'][0,c.QF], r['gen'][2,QG]+r['dcline'][0,c.QF], 3, [t, 'gen dispatch']) t_is(rp['branch'][:,ibr_flow ], r['branch'][:,ibr_flow ], 3, [t, 'branch flow']) ## add appropriate P and Q injections and check angles and generation when running PF t = ''.join([t0, 'AC PF (with equivalent injections) : ']) ppc1 = {'baseMVA': r['baseMVA'], 'bus': r['bus'][:, :VMIN + 1].copy(), 'gen': r['gen'][:, :APF + 1].copy(), 'branch': r['branch'][:, :ANGMAX + 1].copy(), 'gencost': r['gencost'].copy(), 'dcline': r['dcline'][:, :c.LOSS1 + 1].copy()} ppc1['bus'][:, VM] = 1 ppc1['bus'][:, VA] = 0 for k in range(ndc): if ppc1['dcline'][k, c.BR_STATUS]: ff = find(ppc1['bus'][:, BUS_I] == ppc1['dcline'][k, c.F_BUS]) tt = find(ppc1['bus'][:, BUS_I] == ppc1['dcline'][k, c.T_BUS]) ppc1['bus'][ff, PD] = ppc1['bus'][ff, PD] + r['dcline'][k, c.PF] ppc1['bus'][ff, QD] = ppc1['bus'][ff, QD] - r['dcline'][k, c.QF] ppc1['bus'][tt, PD] = ppc1['bus'][tt, PD] - r['dcline'][k, c.PT] ppc1['bus'][tt, QD] = ppc1['bus'][tt, QD] - r['dcline'][k, c.QT] ppc1['bus'][ff, VM] = r['dcline'][k, c.VF] ppc1['bus'][tt, VM] = r['dcline'][k, c.VT] ppc1['bus'][ff, BUS_TYPE] = PV ppc1['bus'][tt, BUS_TYPE] = PV rp = runpf(ppc1, ppopt) success = rp['success'] t_ok(success, [t, 'success']) t_is( rp['bus'][:,ib_voltage], r['bus'][:,ib_voltage], 3, [t, 'bus voltage']) t_is( rp['gen'][:,ig_disp ], r['gen'][:,ig_disp ], 3, [t, 'gen dispatch']) t_is(rp['branch'][:,ibr_flow ], r['branch'][:,ibr_flow ], 3, [t, 'branch flow']) ## test DC OPF t = ''.join([t0, 'DC OPF (with DC lines) : ']) ppc = ppc0.copy() ppc['gen'][0, PMIN] = 10 ppc['branch'][4, RATE_A] = 100 ppc = toggle_dcline(ppc, 'on') r = rundcopf(ppc, ppopt) success = r['success'] t_ok(success, [t, 'success']) expected = array([ [10, 8.9, 0, 0, 1.01, 1], [2, 2, 0, 0, 1, 1], [0, 0, 0, 0, 1, 1], [10, 9.5, 0, 0, 1, 0.98] ]) t_is(r['dcline'][:, c.PF:c.VT + 1], expected, 4, [t, 'P Q V']) expected = array([ [0, 1.8602, 0, 0, 0, 0], [1.8507, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0], [0, 0.2681, 0, 0, 0, 0] ]) t_is(r['dcline'][:, c.MU_PMIN:c.MU_QMAXT + 1], expected, 3, [t, 'mu']) t = ''.join([t0, 'DC PF (with DC lines) : ']) ppc1 = {'baseMVA': r['baseMVA'], 'bus': r['bus'][:, :VMIN + 1].copy(), 'gen': r['gen'][:, :APF + 1].copy(), 'branch': r['branch'][:, :ANGMAX + 1].copy(), 'gencost': r['gencost'].copy(), 'dcline': r['dcline'][:, :c.LOSS1 + 1].copy()} ppc1 = toggle_dcline(ppc1, 'on') ppc1['bus'][:, VA] = 0 rp = rundcpf(ppc1, ppopt) success = rp['success'] t_ok(success, [t, 'success']) t_is( rp['bus'][:,ib_voltage], r['bus'][:,ib_voltage], 3, [t, 'bus voltage']) t_is( rp['gen'][:,ig_disp ], r['gen'][:,ig_disp ], 3, [t, 'gen dispatch']) t_is(rp['branch'][:,ibr_flow ], r['branch'][:,ibr_flow ], 3, [t, 'branch flow']) ## add appropriate P injections and check angles and generation when running PF t = ''.join([t0, 'DC PF (with equivalent injections) : ']) ppc1 = {'baseMVA': r['baseMVA'], 'bus': r['bus'][:, :VMIN + 1].copy(), 'gen': r['gen'][:, :APF + 1].copy(), 'branch': r['branch'][:, :ANGMAX + 1].copy(), 'gencost': r['gencost'].copy(), 'dcline': r['dcline'][:, :c.LOSS1 + 1].copy()} ppc1['bus'][:, VA] = 0 for k in range(ndc): if ppc1['dcline'][k, c.BR_STATUS]: ff = find(ppc1['bus'][:, BUS_I] == ppc1['dcline'][k, c.F_BUS]) tt = find(ppc1['bus'][:, BUS_I] == ppc1['dcline'][k, c.T_BUS]) ppc1['bus'][ff, PD] = ppc1['bus'][ff, PD] + r['dcline'][k, c.PF] ppc1['bus'][tt, PD] = ppc1['bus'][tt, PD] - r['dcline'][k, c.PT] ppc1['bus'][ff, BUS_TYPE] = PV ppc1['bus'][tt, BUS_TYPE] = PV rp = rundcpf(ppc1, ppopt) success = rp['success'] t_ok(success, [t, 'success']) t_is( rp['bus'][:,ib_voltage], r['bus'][:,ib_voltage], 3, [t, 'bus voltage']) t_is( rp['gen'][:,ig_disp ], r['gen'][:,ig_disp ], 3, [t, 'gen dispatch']) t_is(rp['branch'][:,ibr_flow ], r['branch'][:,ibr_flow ], 3, [t, 'branch flow']) ## run with DC lines t = ''.join([t0, 'AC OPF (with DC lines + poly cost) : ']) ppc = loadcase(casefile) ppc = toggle_dcline(ppc, 'on') r = runopf(ppc, ppopt) success = r['success'] t_ok(success, [t, 'success']) expected1 = array([ [10, 8.9, -10, 10, 1.0663, 1.0936], [7.8429, 7.8429, 0, 0, 1.0809, 1.0667], [0, 0, 0, 0, 1.0000, 1.0000], [6.0549, 5.7522, -0.5897, -10, 1.0778, 1.0667] ]) t_is(r['dcline'][:, c.PF:c.VT + 1], expected1, 4, [t, 'P Q V']) expected2 = array([ [0, 0.7605, 0.6226, 0, 0, 0.2980], [0, 0, 0, 0.4275, 0.0792, 0], [0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0.0792, 0] ]) t_is(r['dcline'][:, c.MU_PMIN:c.MU_QMAXT + 1], expected2, 3, [t, 'mu']) ppc['dclinecost'][3, :8] = array([2, 0, 0, 4, 0, 0, 7.3, 0]) r = runopf(ppc, ppopt) success = r['success'] t_ok(success, [t, 'success']) t_is(r['dcline'][:, c.PF:c.VT + 1], expected1, 4, [t, 'P Q V']) t_is(r['dcline'][:, c.MU_PMIN:c.MU_QMAXT + 1], expected2, 3, [t, 'mu']) t = ''.join([t0, 'AC OPF (with DC lines + pwl cost) : ']) ppc['dclinecost'][3, :8] = array([1, 0, 0, 2, 0, 0, 10, 73]) r = runopf(ppc, ppopt) success = r['success'] t_ok(success, [t, 'success']) t_is(r['dcline'][:, c.PF:c.VT + 1], expected1, 4, [t, 'P Q V']) t_is(r['dcline'][:, c.MU_PMIN:c.MU_QMAXT + 1], expected2, 3, [t, 'mu']) t_end()
def t_makePTDF(quiet=False): """Tests for C{makePTDF}. @author: Ray Zimmerman (PSERC Cornell) @author: Richard Lincoln """ ntests = 24 t_begin(ntests, quiet) tdir = dirname(__file__) casefile = join(tdir, 't_case9_opf') verbose = 0 #not quiet ## load case ppopt = ppoption(VERBOSE=verbose, OUT_ALL=0) r = rundcopf(casefile, ppopt) baseMVA, bus, gen, branch = r['baseMVA'], r['bus'], r['gen'], r['branch'] _, bus, gen, branch = ext2int1(bus, gen, branch) nb = bus.shape[0] nbr = branch.shape[0] ng = gen.shape[0] ## compute injections and flows Cg = sparse((ones(ng), (gen[:, GEN_BUS], arange(ng))), (nb, ng)) Pg = Cg * gen[:, PG] Pd = bus[:, PD] P = Pg - Pd ig = find(P > 0) il = find(P <= 0) F = branch[:, PF] ## create corresponding slack distribution matrices e1 = zeros((nb, 1)) e1[0] = 1 e4 = zeros((nb, 1)) e4[3] = 1 D1 = eye(nb, nb) - dot(e1, ones((1, nb))) D4 = eye(nb, nb) - dot(e4, ones((1, nb))) Deq = eye(nb, nb) - ones((nb, 1)) / nb * ones((1, nb)) Dg = eye(nb) - matrix(Pd / sum(Pd)).T * ones(nb) Dd = eye(nb) - matrix(Pg / sum(Pg)).T * ones(nb) ## create some PTDF matrices H1 = makePTDF(baseMVA, bus, branch, 0) H4 = makePTDF(baseMVA, bus, branch, 3) Heq = makePTDF(baseMVA, bus, branch, ones(nb)) Hg = makePTDF(baseMVA, bus, branch, Pd) Hd = makePTDF(baseMVA, bus, branch, Pg) ## matrices get properly transformed by slack dist matrices t_is(H1, dot(H1, D1), 8, 'H1 == H1 * D1') t_is(H4, dot(H1, D4), 8, 'H4 == H1 * D4') t_is(Heq, dot(H1, Deq), 8, 'Heq == H1 * Deq') t_is(Hg, dot(H1, Dg), 8, 'Hg == H1 * Dg') t_is(Hd, dot(H1, Dd), 8, 'Hd == H1 * Dd') t_is(H1, dot(Heq, D1), 8, 'H1 == Heq * D1') t_is(H4, dot(Heq, D4), 8, 'H4 == Heq * D4') t_is(Heq, dot(Heq, Deq), 8, 'Heq == Heq * Deq') t_is(Hg, dot(Heq, Dg), 8, 'Hg == Heq * Dg') t_is(Hd, dot(Heq, Dd), 8, 'Hd == Heq * Dd') t_is(H1, dot(Hg, D1), 8, 'H1 == Hg * D1') t_is(H4, dot(Hg, D4), 8, 'H4 == Hg * D4') t_is(Heq, dot(Hg, Deq), 8, 'Heq == Hg * Deq') t_is(Hg, dot(Hg, Dg), 8, 'Hg == Hg * Dg') t_is(Hd, dot(Hg, Dd), 8, 'Hd == Hg * Dd') ## PTDFs can reconstruct flows t_is(F, dot(H1, P), 3, 'Flow == H1 * P') t_is(F, dot(H4, P), 3, 'Flow == H4 * P') t_is(F, dot(Heq, P), 3, 'Flow == Heq * P') t_is(F, dot(Hg, P), 3, 'Flow == Hg * P') t_is(F, dot(Hd, P), 3, 'Flow == Hd * P') ## other t_is(F, dot(Hg, Pg), 3, 'Flow == Hg * Pg') t_is(F, dot(Hd, (-Pd)), 3, 'Flow == Hd * (-Pd)') t_is(zeros(nbr), dot(Hg, (-Pd)), 3, 'zeros == Hg * (-Pd)') t_is(zeros(nbr), dot(Hd, Pg), 3, 'zeros == Hd * Pg') t_end()
def t_opf_dc_pips(quiet=False): """Tests for DC optimal power flow using PIPS solver. @author: Ray Zimmerman (PSERC Cornell) @author: Richard Lincoln """ num_tests = 23 t_begin(num_tests, quiet) tdir = dirname(__file__) casefile = join(tdir, 't_case9_opf') verbose = 0#not quiet t0 = 'DC OPF (PIPS): ' ppopt = ppoption(VERBOSE=verbose, OUT_ALL=0, OPF_ALG_DC=200) ## run DC OPF ## set up indices ib_data = r_[arange(BUS_AREA + 1), arange(BASE_KV, VMIN + 1)] ib_voltage = arange(VM, VA + 1) ib_lam = arange(LAM_P, LAM_Q + 1) ib_mu = arange(MU_VMAX, MU_VMIN + 1) ig_data = r_[[GEN_BUS, QMAX, QMIN], arange(MBASE, APF + 1)] ig_disp = array([PG, QG, VG]) ig_mu = arange(MU_PMAX, MU_QMIN + 1) ibr_data = arange(ANGMAX + 1) ibr_flow = arange(PF, QT + 1) ibr_mu = array([MU_SF, MU_ST]) #ibr_angmu = array([MU_ANGMIN, MU_ANGMAX]) ## get solved DC power flow case from MAT-file soln9_dcopf = loadmat(join(tdir, 'soln9_dcopf.mat'), struct_as_record=True) ## defines bus_soln, gen_soln, branch_soln, f_soln bus_soln = soln9_dcopf['bus_soln'] gen_soln = soln9_dcopf['gen_soln'] branch_soln = soln9_dcopf['branch_soln'] f_soln = soln9_dcopf['f_soln'][0] ## run OPF t = t0 r = rundcopf(casefile, ppopt) bus, gen, branch, f, success = \ r['bus'], r['gen'], r['branch'], r['f'], r['success'] t_ok(success, [t, 'success']) t_is(f, f_soln, 3, [t, 'f']) t_is( bus[:, ib_data ], bus_soln[:, ib_data ], 10, [t, 'bus data']) t_is( bus[:, ib_voltage], bus_soln[:, ib_voltage], 3, [t, 'bus voltage']) t_is( bus[:, ib_lam ], bus_soln[:, ib_lam ], 3, [t, 'bus lambda']) t_is( bus[:, ib_mu ], bus_soln[:, ib_mu ], 2, [t, 'bus mu']) t_is( gen[:, ig_data ], gen_soln[:, ig_data ], 10, [t, 'gen data']) t_is( gen[:, ig_disp ], gen_soln[:, ig_disp ], 3, [t, 'gen dispatch']) t_is( gen[:, ig_mu ], gen_soln[:, ig_mu ], 3, [t, 'gen mu']) t_is(branch[:, ibr_data ], branch_soln[:, ibr_data ], 10, [t, 'branch data']) t_is(branch[:, ibr_flow ], branch_soln[:, ibr_flow ], 3, [t, 'branch flow']) t_is(branch[:, ibr_mu ], branch_soln[:, ibr_mu ], 2, [t, 'branch mu']) ##----- run OPF with extra linear user constraints & costs ----- ## two new z variables ## 0 <= z1, P2 - P1 <= z1 ## 0 <= z2, P2 - P3 <= z2 ## with A and N sized for DC opf ppc = loadcase(casefile) row = [0, 0, 0, 1, 1, 1] col = [9, 10, 12, 10, 11, 13] ppc['A'] = sparse(([-1, 1, -1, 1, -1, -1], (row, col)), (2, 14)) ppc['u'] = array([0, 0]) ppc['l'] = array([-Inf, -Inf]) ppc['zl'] = array([0, 0]) ppc['N'] = sparse(([1, 1], ([0, 1], [12, 13])), (2, 14)) ## new z variables only ppc['fparm'] = ones((2, 1)) * array([[1, 0, 0, 1]]) ## w = r = z ppc['H'] = sparse((2, 2)) ## no quadratic term ppc['Cw'] = array([1000, 1]) t = ''.join([t0, 'w/extra constraints & costs 1 : ']) r = rundcopf(ppc, ppopt) t_ok(r['success'], [t, 'success']) t_is(r['gen'][0, PG], 116.15974, 4, [t, 'Pg1 = 116.15974']) t_is(r['gen'][1, PG], 116.15974, 4, [t, 'Pg2 = 116.15974']) t_is(r['var']['val']['z'], [0, 0.3348], 4, [t, 'user vars']) t_is(r['cost']['usr'], 0.3348, 3, [t, 'user costs']) ## with A and N sized for AC opf ppc = loadcase(casefile) row = [0, 0, 0, 1, 1, 1] col = [18, 19, 24, 19, 20, 25] ppc['A'] = sparse(([-1, 1, -1, 1, -1, -1], (row, col)), (2, 26)) ppc['u'] = array([0, 0]) ppc['l'] = array([-Inf, -Inf]) ppc['zl'] = array([0, 0]) ppc['N'] = sparse(([1, 1], ([0, 1], [24, 25])), (2, 26)) ## new z variables only ppc['fparm'] = ones((2, 1)) * array([[1, 0, 0, 1]]) ## w = r = z ppc['H'] = sparse((2, 2)) ## no quadratic term ppc['Cw'] = array([1000, 1]) t = ''.join([t0, 'w/extra constraints & costs 2 : ']) r = rundcopf(ppc, ppopt) t_ok(r['success'], [t, 'success']) t_is(r['gen'][0, PG], 116.15974, 4, [t, 'Pg1 = 116.15974']) t_is(r['gen'][1, PG], 116.15974, 4, [t, 'Pg2 = 116.15974']) t_is(r['var']['val']['z'], [0, 0.3348], 4, [t, 'user vars']) t_is(r['cost']['usr'], 0.3348, 3, [t, 'user costs']) t = ''.join([t0, 'infeasible : ']) ## with A and N sized for DC opf ppc = loadcase(casefile) ppc['A'] = sparse(([1, 1], ([0, 0], [9, 10])), (1, 14)) ## Pg1 + Pg2 ppc['u'] = array([Inf]) ppc['l'] = array([600]) r = rundcopf(ppc, ppopt) t_ok(not r['success'], [t, 'no success']) t_end()
def t_opf_dc_gurobi(quiet=False): """Tests for DC optimal power flow using Gurobi solver. """ algs = [0, 1, 2, 3, 4] num_tests = 23 * len(algs) t_begin(num_tests, quiet) tdir = dirname(__file__) casefile = join(tdir, 't_case9_opf') if quiet: verbose = False else: verbose = False ppopt = ppoption('OUT_ALL', 0, 'VERBOSE', verbose) ppopt = ppoption(ppopt, 'OPF_ALG_DC', 700) ## run DC OPF if have_fcn('gurobipy'): for k in range(len(algs)): ppopt = ppoption(ppopt, 'GRB_METHOD', algs[k]) methods = [ 'automatic', 'primal simplex', 'dual simplex', 'barrier', 'concurrent', 'deterministic concurrent', ] t0 = 'DC OPF (Gurobi %s): ' % methods[k] ## set up indices ib_data = r_[arange(BUS_AREA + 1), arange(BASE_KV, VMIN + 1)] ib_voltage = arange(VM, VA + 1) ib_lam = arange(LAM_P, LAM_Q + 1) ib_mu = arange(MU_VMAX, MU_VMIN + 1) ig_data = r_[[GEN_BUS, QMAX, QMIN], arange(MBASE, APF + 1)] ig_disp = array([PG, QG, VG]) ig_mu = arange(MU_PMAX, MU_QMIN + 1) ibr_data = arange(ANGMAX + 1) ibr_flow = arange(PF, QT + 1) ibr_mu = array([MU_SF, MU_ST]) #ibr_angmu = array([MU_ANGMIN, MU_ANGMAX]) ## get solved DC power flow case from MAT-file ## defines bus_soln, gen_soln, branch_soln, f_soln soln9_dcopf = loadmat(join(tdir, 'soln9_dcopf.mat'), struct_as_record=True) bus_soln, gen_soln, branch_soln, f_soln = \ soln9_dcopf['bus_soln'], soln9_dcopf['gen_soln'], \ soln9_dcopf['branch_soln'], soln9_dcopf['f_soln'] ## run OPF t = t0 r = rundcopf(casefile, ppopt) bus, gen, branch, f, success = \ r['bus'], r['gen'], r['branch'], r['f'], r['success'] t_ok(success, [t, 'success']) t_is(f, f_soln, 3, [t, 'f']) t_is(bus[:, ib_data], bus_soln[:, ib_data], 10, [t, 'bus data']) t_is(bus[:, ib_voltage], bus_soln[:, ib_voltage], 3, [t, 'bus voltage']) t_is(bus[:, ib_lam], bus_soln[:, ib_lam], 3, [t, 'bus lambda']) t_is(bus[:, ib_mu], bus_soln[:, ib_mu], 2, [t, 'bus mu']) t_is(gen[:, ig_data], gen_soln[:, ig_data], 10, [t, 'gen data']) t_is(gen[:, ig_disp], gen_soln[:, ig_disp], 3, [t, 'gen dispatch']) t_is(gen[:, ig_mu], gen_soln[:, ig_mu], 3, [t, 'gen mu']) t_is(branch[:, ibr_data], branch_soln[:, ibr_data], 10, [t, 'branch data']) t_is(branch[:, ibr_flow], branch_soln[:, ibr_flow], 3, [t, 'branch flow']) t_is(branch[:, ibr_mu], branch_soln[:, ibr_mu], 2, [t, 'branch mu']) ##----- run OPF with extra linear user constraints & costs ----- ## two new z variables ## 0 <= z1, P2 - P1 <= z1 ## 0 <= z2, P2 - P3 <= z2 ## with A and N sized for DC opf ppc = loadcase(casefile) row = [0, 0, 0, 1, 1, 1] col = [9, 10, 12, 10, 11, 13] ppc['A'] = sparse(([-1, 1, -1, 1, -1, -1], (row, col)), (2, 14)) ppc['u'] = array([0, 0]) ppc['l'] = array([-Inf, -Inf]) ppc['zl'] = array([0, 0]) ppc['N'] = sparse(([1, 1], ([0, 1], [12, 13])), (2, 14)) ## new z variables only ppc['fparm'] = ones((2, 1)) * array([[1, 0, 0, 1]]) ## w = r = z ppc['H'] = sparse((2, 2)) ## no quadratic term ppc['Cw'] = array([1000, 1]) t = ''.join([t0, 'w/extra constraints & costs 1 : ']) r = rundcopf(ppc, ppopt) t_ok(r['success'], [t, 'success']) t_is(r['gen'][0, PG], 116.15974, 4, [t, 'Pg1 = 116.15974']) t_is(r['gen'][1, PG], 116.15974, 4, [t, 'Pg2 = 116.15974']) t_is(r['var']['val']['z'], [0, 0.3348], 4, [t, 'user vars']) t_is(r['cost']['usr'], 0.3348, 3, [t, 'user costs']) ## with A and N sized for AC opf ppc = loadcase(casefile) row = [0, 0, 0, 1, 1, 1] col = [18, 19, 24, 19, 20, 25] ppc['A'] = sparse(([-1, 1, -1, 1, -1, -1], (row, col)), (2, 26)) ppc['u'] = array([0, 0]) ppc['l'] = array([-Inf, -Inf]) ppc['zl'] = array([0, 0]) ppc['N'] = sparse(([1, 1], ([0, 1], [24, 25])), (2, 26)) ## new z variables only ppc['fparm'] = ones((2, 1)) * array([[1, 0, 0, 1]]) ## w = r = z ppc['H'] = sparse((2, 2)) ## no quadratic term ppc['Cw'] = array([1000, 1]) t = ''.join([t0, 'w/extra constraints & costs 2 : ']) r = rundcopf(ppc, ppopt) t_ok(r['success'], [t, 'success']) t_is(r['gen'][0, PG], 116.15974, 4, [t, 'Pg1 = 116.15974']) t_is(r['gen'][1, PG], 116.15974, 4, [t, 'Pg2 = 116.15974']) t_is(r['var']['val']['z'], [0, 0.3348], 4, [t, 'user vars']) t_is(r['cost']['usr'], 0.3348, 3, [t, 'user costs']) t = ''.join([t0, 'infeasible : ']) ## with A and N sized for DC opf ppc = loadcase(casefile) ppc['A'] = sparse(([1, 1], ([0, 0], [9, 10])), (1, 14)) ## Pg1 + Pg2 ppc['u'] = array([Inf]) ppc['l'] = array([600]) r = rundcopf(ppc, ppopt) t_ok(not r['success'], [t, 'no success']) else: t_skip(num_tests, 'Gurobi not available') t_end()
def t_opf_userfcns(quiet=False): """Tests for userfcn callbacks (reserves/iflims) w/OPF. Includes high-level tests of reserves and iflims implementations. @author: Ray Zimmerman (PSERC Cornell) @author: Richard Lincoln """ t_begin(38, quiet) tdir = dirname(__file__) casefile = join(tdir, 't_case30_userfcns') verbose = 0#not quiet ppopt = ppoption(OPF_VIOLATION=1e-6, PDIPM_GRADTOL=1e-8, PDIPM_COMPTOL=1e-8, PDIPM_COSTTOL=1e-9) ppopt = ppoption(ppopt, OUT_ALL=0, VERBOSE=verbose, OPF_ALG=560, OPF_ALG_DC=200) #ppopt = ppoption(ppopt, OUT_ALL=-1, VERBOSE=2, OUT_GEN=1) ## run the OPF with fixed reserves t = 'fixed reserves : ' ppc = loadcase(casefile) ppc = toggle_reserves(ppc, 'on') r = runopf(ppc, ppopt) t_ok(r['success'], [t, 'success']) t_is(r['reserves']['R'], [25, 15, 0, 0, 19.3906, 0.6094], 4, [t, 'reserves.R']) t_is(r['reserves']['prc'], [2, 2, 2, 2, 5.5, 5.5], 4, [t, 'reserves.prc']) t_is(r['reserves']['mu']['Pmax'], [0, 0, 0, 0, 0.5, 0], 4, [t, 'reserves.mu.Pmax']) t_is(r['reserves']['mu']['l'], [0, 0, 1, 2, 0, 0], 4, [t, 'reserves.mu.l']) t_is(r['reserves']['mu']['u'], [0.1, 0, 0, 0, 0, 0], 4, [t, 'reserves.mu.u']) t_ok('P' not in r['if'], [t, 'no iflims']) t_is(r['reserves']['totalcost'], 177.8047, 4, [t, 'totalcost']) t = 'toggle_reserves(ppc, \'off\') : '; ppc = toggle_reserves(ppc, 'off') r = runopf(ppc, ppopt) t_ok(r['success'], [t, 'success']) t_ok('R' not in r['reserves'], [t, 'no reserves']) t_ok('P' not in r['if'], [t, 'no iflims']) t = 'interface flow lims (DC) : ' ppc = loadcase(casefile) ppc = toggle_iflims(ppc, 'on') r = rundcopf(ppc, ppopt) t_ok(r['success'], [t, 'success']) t_is(r['if']['P'], [-15, 20], 4, [t, 'if.P']) t_is(r['if']['mu']['l'], [4.8427, 0], 4, [t, 'if.mu.l']) t_is(r['if']['mu']['u'], [0, 13.2573], 4, [t, 'if.mu.u']) t_is(r['branch'][13, PF], 8.244, 3, [t, 'flow in branch 14']) t_ok('R' not in r['reserves'], [t, 'no reserves']) t = 'reserves + interface flow lims (DC) : ' ppc = loadcase(casefile) ppc = toggle_reserves(ppc, 'on') ppc = toggle_iflims(ppc, 'on') r = rundcopf(ppc, ppopt) t_ok(r['success'], [t, 'success']) t_is(r['if']['P'], [-15, 20], 4, [t, 'if.P']) t_is(r['if']['mu']['l'], [4.8427, 0], 4, [t, 'if.mu.l']) t_is(r['if']['mu']['u'], [0, 38.2573], 4, [t, 'if.mu.u']) t_is(r['reserves']['R'], [25, 15, 0, 0, 16.9, 3.1], 4, [t, 'reserves.R']) t_is(r['reserves']['prc'], [2, 2, 2, 2, 5.5, 5.5], 4, [t, 'reserves.prc']) t_is(r['reserves']['mu']['Pmax'], [0, 0, 0, 0, 0.5, 0], 4, [t, 'reserves.mu.Pmax']) t_is(r['reserves']['mu']['l'], [0, 0, 1, 2, 0, 0], 4, [t, 'reserves.mu.l']) t_is(r['reserves']['mu']['u'], [0.1, 0, 0, 0, 0, 0], 4, [t, 'reserves.mu.u']) t_is(r['reserves']['totalcost'], 179.05, 4, [t, 'totalcost']) t = 'interface flow lims (AC) : ' ppc = toggle_reserves(ppc, 'off') r = runopf(ppc, ppopt) t_ok(r['success'], [t, 'success']) t_is(r['if']['P'], [-9.101, 21.432], 3, [t, 'if.P']) t_is(r['if']['mu']['l'], [0, 0], 4, [t, 'if.mu.l']) t_is(r['if']['mu']['u'], [0, 10.198], 3, [t, 'if.mu.u']) t_ok('R' not in r['reserves'], [t, 'no reserves']) t = 'interface flow lims (line out) : ' ppc = loadcase(casefile) ppc = toggle_iflims(ppc, 'on') ppc['branch'][11, BR_STATUS] = 0 ## take out line 6-10 r = rundcopf(ppc, ppopt) t_ok(r['success'], [t, 'success']) t_is(r['if']['P'], [-15, 20], 4, [t, 'if.P']) t_is(r['if']['mu']['l'], [4.8427, 0], 4, [t, 'if.mu.l']) t_is(r['if']['mu']['u'], [0, 13.2573], 4, [t, 'if.mu.u']) t_is(r['branch'][13, PF], 10.814, 3, [t, 'flow in branch 14']) t_ok('R' not in r['reserves'], [t, 'no reserves']) # r['reserves']['R'] # r['reserves']['prc'] # r['reserves']['mu.Pmax'] # r['reserves']['mu']['l'] # r['reserves']['mu']['u'] # r['reserves']['totalcost'] # # r['if']['P'] # r['if']['mu']['l'] # r['if']['mu']['u'] t_end()
def t_opf_userfcns(quiet=False): """Tests for userfcn callbacks (reserves/iflims) w/OPF. Includes high-level tests of reserves and iflims implementations. @author: Ray Zimmerman (PSERC Cornell) @author: Richard Lincoln """ t_begin(38, quiet) tdir = dirname(__file__) casefile = join(tdir, 't_case30_userfcns') verbose = 0 #not quiet ppopt = ppoption(OPF_VIOLATION=1e-6, PDIPM_GRADTOL=1e-8, PDIPM_COMPTOL=1e-8, PDIPM_COSTTOL=1e-9) ppopt = ppoption(ppopt, OUT_ALL=0, VERBOSE=verbose, OPF_ALG=560, OPF_ALG_DC=200) #ppopt = ppoption(ppopt, OUT_ALL=-1, VERBOSE=2, OUT_GEN=1) ## run the OPF with fixed reserves t = 'fixed reserves : ' ppc = loadcase(casefile) ppc = toggle_reserves(ppc, 'on') r = runopf(ppc, ppopt) t_ok(r['success'], [t, 'success']) t_is(r['reserves']['R'], [25, 15, 0, 0, 19.3906, 0.6094], 4, [t, 'reserves.R']) t_is(r['reserves']['prc'], [2, 2, 2, 2, 5.5, 5.5], 4, [t, 'reserves.prc']) t_is(r['reserves']['mu']['Pmax'], [0, 0, 0, 0, 0.5, 0], 4, [t, 'reserves.mu.Pmax']) t_is(r['reserves']['mu']['l'], [0, 0, 1, 2, 0, 0], 4, [t, 'reserves.mu.l']) t_is(r['reserves']['mu']['u'], [0.1, 0, 0, 0, 0, 0], 4, [t, 'reserves.mu.u']) t_ok('P' not in r['if'], [t, 'no iflims']) t_is(r['reserves']['totalcost'], 177.8047, 4, [t, 'totalcost']) t = 'toggle_reserves(ppc, \'off\') : ' ppc = toggle_reserves(ppc, 'off') r = runopf(ppc, ppopt) t_ok(r['success'], [t, 'success']) t_ok('R' not in r['reserves'], [t, 'no reserves']) t_ok('P' not in r['if'], [t, 'no iflims']) t = 'interface flow lims (DC) : ' ppc = loadcase(casefile) ppc = toggle_iflims(ppc, 'on') r = rundcopf(ppc, ppopt) t_ok(r['success'], [t, 'success']) t_is(r['if']['P'], [-15, 20], 4, [t, 'if.P']) t_is(r['if']['mu']['l'], [4.8427, 0], 4, [t, 'if.mu.l']) t_is(r['if']['mu']['u'], [0, 13.2573], 4, [t, 'if.mu.u']) t_is(r['branch'][13, PF], 8.244, 3, [t, 'flow in branch 14']) t_ok('R' not in r['reserves'], [t, 'no reserves']) t = 'reserves + interface flow lims (DC) : ' ppc = loadcase(casefile) ppc = toggle_reserves(ppc, 'on') ppc = toggle_iflims(ppc, 'on') r = rundcopf(ppc, ppopt) t_ok(r['success'], [t, 'success']) t_is(r['if']['P'], [-15, 20], 4, [t, 'if.P']) t_is(r['if']['mu']['l'], [4.8427, 0], 4, [t, 'if.mu.l']) t_is(r['if']['mu']['u'], [0, 38.2573], 4, [t, 'if.mu.u']) t_is(r['reserves']['R'], [25, 15, 0, 0, 16.9, 3.1], 4, [t, 'reserves.R']) t_is(r['reserves']['prc'], [2, 2, 2, 2, 5.5, 5.5], 4, [t, 'reserves.prc']) t_is(r['reserves']['mu']['Pmax'], [0, 0, 0, 0, 0.5, 0], 4, [t, 'reserves.mu.Pmax']) t_is(r['reserves']['mu']['l'], [0, 0, 1, 2, 0, 0], 4, [t, 'reserves.mu.l']) t_is(r['reserves']['mu']['u'], [0.1, 0, 0, 0, 0, 0], 4, [t, 'reserves.mu.u']) t_is(r['reserves']['totalcost'], 179.05, 4, [t, 'totalcost']) t = 'interface flow lims (AC) : ' ppc = toggle_reserves(ppc, 'off') r = runopf(ppc, ppopt) t_ok(r['success'], [t, 'success']) t_is(r['if']['P'], [-9.101, 21.432], 3, [t, 'if.P']) t_is(r['if']['mu']['l'], [0, 0], 4, [t, 'if.mu.l']) t_is(r['if']['mu']['u'], [0, 10.198], 3, [t, 'if.mu.u']) t_ok('R' not in r['reserves'], [t, 'no reserves']) t = 'interface flow lims (line out) : ' ppc = loadcase(casefile) ppc = toggle_iflims(ppc, 'on') ppc['branch'][11, BR_STATUS] = 0 ## take out line 6-10 r = rundcopf(ppc, ppopt) t_ok(r['success'], [t, 'success']) t_is(r['if']['P'], [-15, 20], 4, [t, 'if.P']) t_is(r['if']['mu']['l'], [4.8427, 0], 4, [t, 'if.mu.l']) t_is(r['if']['mu']['u'], [0, 13.2573], 4, [t, 'if.mu.u']) t_is(r['branch'][13, PF], 10.814, 3, [t, 'flow in branch 14']) t_ok('R' not in r['reserves'], [t, 'no reserves']) # r['reserves']['R'] # r['reserves']['prc'] # r['reserves']['mu.Pmax'] # r['reserves']['mu']['l'] # r['reserves']['mu']['u'] # r['reserves']['totalcost'] # # r['if']['P'] # r['if']['mu']['l'] # r['if']['mu']['u'] t_end()
def t_makePTDF(quiet=False): """Tests for C{makePTDF}. @author: Ray Zimmerman (PSERC Cornell) """ ntests = 24 t_begin(ntests, quiet) tdir = dirname(__file__) casefile = join(tdir, 't_case9_opf') verbose = 0#not quiet ## load case ppopt = ppoption(VERBOSE=verbose, OUT_ALL=0) r = rundcopf(casefile, ppopt) baseMVA, bus, gen, branch = r['baseMVA'], r['bus'], r['gen'], r['branch'] _, bus, gen, branch = ext2int1(bus, gen, branch) nb = bus.shape[0] nbr = branch.shape[0] ng = gen.shape[0] ## compute injections and flows Cg = sparse((ones(ng), (gen[:, GEN_BUS], arange(ng))), (nb, ng)) Pg = Cg * gen[:, PG] Pd = bus[:, PD] P = Pg - Pd ig = find(P > 0) il = find(P <= 0) F = branch[:, PF] ## create corresponding slack distribution matrices e1 = zeros((nb, 1)); e1[0] = 1 e4 = zeros((nb, 1)); e4[3] = 1 D1 = eye(nb, nb) - dot(e1, ones((1, nb))) D4 = eye(nb, nb) - dot(e4, ones((1, nb))) Deq = eye(nb, nb) - ones((nb, 1)) / nb * ones((1, nb)) Dg = eye(nb) - matrix( Pd / sum(Pd) ).T * ones(nb) Dd = eye(nb) - matrix( Pg / sum(Pg) ).T * ones(nb) ## create some PTDF matrices H1 = makePTDF(baseMVA, bus, branch, 0) H4 = makePTDF(baseMVA, bus, branch, 3) Heq = makePTDF(baseMVA, bus, branch, ones(nb)) Hg = makePTDF(baseMVA, bus, branch, Pd) Hd = makePTDF(baseMVA, bus, branch, Pg) ## matrices get properly transformed by slack dist matrices t_is(H1, dot(H1, D1), 8, 'H1 == H1 * D1') t_is(H4, dot(H1, D4), 8, 'H4 == H1 * D4') t_is(Heq, dot(H1, Deq), 8, 'Heq == H1 * Deq') t_is(Hg, dot(H1, Dg), 8, 'Hg == H1 * Dg') t_is(Hd, dot(H1, Dd), 8, 'Hd == H1 * Dd') t_is(H1, dot(Heq, D1), 8, 'H1 == Heq * D1') t_is(H4, dot(Heq, D4), 8, 'H4 == Heq * D4') t_is(Heq, dot(Heq, Deq), 8, 'Heq == Heq * Deq') t_is(Hg, dot(Heq, Dg), 8, 'Hg == Heq * Dg') t_is(Hd, dot(Heq, Dd), 8, 'Hd == Heq * Dd') t_is(H1, dot(Hg, D1), 8, 'H1 == Hg * D1') t_is(H4, dot(Hg, D4), 8, 'H4 == Hg * D4') t_is(Heq, dot(Hg, Deq), 8, 'Heq == Hg * Deq') t_is(Hg, dot(Hg, Dg), 8, 'Hg == Hg * Dg') t_is(Hd, dot(Hg, Dd), 8, 'Hd == Hg * Dd') ## PTDFs can reconstruct flows t_is(F, dot(H1, P), 3, 'Flow == H1 * P') t_is(F, dot(H4, P), 3, 'Flow == H4 * P') t_is(F, dot(Heq, P), 3, 'Flow == Heq * P') t_is(F, dot(Hg, P), 3, 'Flow == Hg * P') t_is(F, dot(Hd, P), 3, 'Flow == Hd * P') ## other t_is(F, dot(Hg, Pg), 3, 'Flow == Hg * Pg') t_is(F, dot(Hd, (-Pd)), 3, 'Flow == Hd * (-Pd)') t_is(zeros(nbr), dot(Hg, (-Pd)), 3, 'zeros == Hg * (-Pd)') t_is(zeros(nbr), dot(Hd, Pg), 3, 'zeros == Hd * Pg') t_end()
def validate_from_ppc( ppc_net, net, pf_type="runpp", max_diff_values={ "bus_vm_pu": 1e-6, "bus_va_degree": 1e-5, "branch_p_mw": 1e-6, "branch_q_mvar": 1e-6, "gen_p_mw": 1e-6, "gen_q_mvar": 1e-6 }, run=True): """ This function validates the pypower case files to pandapower net structure conversion via a \ comparison of loadflow calculation results. (Hence the opf cost conversion is not validated.) INPUT: **ppc_net** - The pypower case file, which must already contain the pypower powerflow results or pypower must be importable. **net** - The pandapower network. OPTIONAL: **pf_type** ("runpp", string) - Type of validated power flow. Possible are ("runpp", "rundcpp", "runopp", "rundcopp") **max_diff_values** - Dict of maximal allowed difference values. The keys must be 'vm_pu', 'va_degree', 'p_branch_mw', 'q_branch_mvar', 'p_gen_mw' and 'q_gen_mvar' and the values floats. **run** (True, bool or list of two bools) - changing the value to False avoids trying to run (optimal) loadflows. Giving a list of two bools addresses first pypower and second pandapower. OUTPUT: **conversion_success** - conversion_success is returned as False if pypower or pandapower cannot calculate a powerflow or if the maximum difference values (max_diff_values ) cannot be hold. EXAMPLE: import pandapower.converter as pc net = cv.from_ppc(ppc_net, f_hz=50) conversion_success = cv.validate_from_ppc(ppc_net, net) NOTE: The user has to take care that the loadflow results already are included in the provided \ ppc_net or pypower is importable. """ # check in case of optimal powerflow comparison whether cost information exist if "opp" in pf_type: if not (len(net.polynomial_cost) | len(net.piecewise_linear_cost)): if "gencost" in ppc_net: if not len(ppc_net["gencost"]): logger.debug( 'ppc and pandapower net do not include cost information.' ) return True else: logger.error( 'The pandapower net does not include cost information.' ) return False else: logger.debug( 'ppc and pandapower net do not include cost information.') return True # guarantee run parameter as list, for pypower and pandapower (optimal) powerflow run run = [run, run] if isinstance(run, bool) else run # --- check pypower powerflow success, if possible if pypower_import and run[0]: try: if pf_type == "runpp": ppc_net = runpf.runpf(ppc_net, ppopt)[0] elif pf_type == "rundcpp": ppc_net = rundcpf.rundcpf(ppc_net, ppopt)[0] elif pf_type == "runopp": ppc_net = runopf.runopf(ppc_net, ppopt) elif pf_type == "rundcopp": ppc_net = rundcopf.rundcopf(ppc_net, ppopt) else: raise ValueError("The pf_type %s is unknown" % pf_type) except: logger.debug("The pypower run did not work.") ppc_success = True if 'success' in ppc_net.keys(): if ppc_net['success'] != 1: ppc_success = False logger.error( "The given ppc data indicates an unsuccessful pypower powerflow: " + "'ppc_net['success'] != 1'") if (ppc_net['branch'].shape[1] < 17): ppc_success = False logger.error( "The shape of given ppc data indicates missing pypower powerflow results." ) # --- try to run a pandapower powerflow if run[1]: if pf_type == "runpp": try: pp.runpp(net, init="dc", calculate_voltage_angles=True, trafo_model="pi") except pp.LoadflowNotConverged: try: pp.runpp(net, calculate_voltage_angles=True, init="flat", trafo_model="pi") except pp.LoadflowNotConverged: try: pp.runpp(net, trafo_model="pi", calculate_voltage_angles=False) if "bus_va_degree" in max_diff_values.keys(): max_diff_values[ "bus_va_degree"] = 1e2 if max_diff_values[ "bus_va_degree"] < 1e2 else max_diff_values[ "bus_va_degree"] logger.info("voltage_angles could be calculated.") except pp.LoadflowNotConverged: logger.error( 'The pandapower powerflow does not converge.') elif pf_type == "rundcpp": try: pp.rundcpp(net, trafo_model="pi") except pp.LoadflowNotConverged: logger.error('The pandapower dc powerflow does not converge.') elif pf_type == "runopp": try: pp.runopp(net, init="flat", calculate_voltage_angles=True) except pp.OPFNotConverged: try: pp.runopp(net, init="pf", calculate_voltage_angles=True) except (pp.OPFNotConverged, pp.LoadflowNotConverged, KeyError): try: pp.runopp(net, init="flat", calculate_voltage_angles=False) logger.info("voltage_angles could be calculated.") if "bus_va_degree" in max_diff_values.keys(): max_diff_values[ "bus_va_degree"] = 1e2 if max_diff_values[ "bus_va_degree"] < 1e2 else max_diff_values[ "bus_va_degree"] except pp.OPFNotConverged: try: pp.runopp(net, init="pf", calculate_voltage_angles=False) if "bus_va_degree" in max_diff_values.keys(): max_diff_values[ "bus_va_degree"] = 1e2 if max_diff_values[ "bus_va_degree"] < 1e2 else max_diff_values[ "bus_va_degree"] logger.info("voltage_angles could be calculated.") except (pp.OPFNotConverged, pp.LoadflowNotConverged, KeyError): logger.error( 'The pandapower optimal powerflow does not converge.' ) elif pf_type == "rundcopp": try: pp.rundcopp(net) except pp.LoadflowNotConverged: logger.error( 'The pandapower dc optimal powerflow does not converge.') else: raise ValueError("The pf_type %s is unknown" % pf_type) # --- prepare powerflow result comparison by reordering pp results as they are in ppc results if not ppc_success: return False if "opp" in pf_type: if not net.OPF_converged: return elif not net.converged: return False # --- store pypower powerflow results ppc_res = dict.fromkeys(ppc_elms) ppc_res["branch"] = ppc_net['branch'][:, 13:17] ppc_res["bus"] = ppc_net['bus'][:, 7:9] ppc_res["gen"] = ppc_net['gen'][:, 1:3] # --- pandapower bus result table pp_res = dict.fromkeys(ppc_elms) pp_res["bus"] = array(net.res_bus.sort_index()[['vm_pu', 'va_degree']]) # --- pandapower gen result table pp_res["gen"] = zeros([1, 2]) # consideration of parallel generators via storing how much generators have been considered # each node # if in ppc is only one gen -> numpy initially uses one dim array -> change to two dim array if len(ppc_net["gen"].shape) == 1: ppc_net["gen"] = array(ppc_net["gen"], ndmin=2) GENS = DataFrame(ppc_net['gen'][:, [0]].astype(int)) GEN_uniq = GENS.drop_duplicates() already_used_gen = Series(zeros(GEN_uniq.shape[0]).astype(int), index=[int(v) for v in GEN_uniq.values]) change_q_compare = [] for i, j in GENS.iterrows(): current_bus_type, current_bus_idx, same_bus_gen_idx, first_same_bus_in_service_gen_idx, \ last_same_bus_in_service_gen_idx = _gen_bus_info(ppc_net, i) if current_bus_type == 3 and i == first_same_bus_in_service_gen_idx: pp_res["gen"] = append( pp_res["gen"], array(net.res_ext_grid[net.ext_grid.bus == current_bus_idx][[ 'p_mw', 'q_mvar' ]]).reshape((1, 2)), 0) elif current_bus_type == 2 and i == first_same_bus_in_service_gen_idx: pp_res["gen"] = append( pp_res["gen"], array(net.res_gen[net.gen.bus == current_bus_idx][[ 'p_mw', 'q_mvar' ]]).reshape((1, 2)), 0) else: pp_res["gen"] = append( pp_res["gen"], array(net.res_sgen[net.sgen.bus == current_bus_idx][[ 'p_mw', 'q_mvar' ]])[already_used_gen.at[int(j)]].reshape((1, 2)), 0) already_used_gen.at[int(j)] += 1 change_q_compare += [int(j)] pp_res["gen"] = pp_res["gen"][1:, :] # delete initial zero row # --- pandapower branch result table pp_res["branch"] = zeros([1, 4]) # consideration of parallel branches via storing how often branches were considered # each node-to-node-connection try: init1 = concat([net.line.from_bus, net.line.to_bus], axis=1, sort=True).drop_duplicates() init2 = concat([net.trafo.hv_bus, net.trafo.lv_bus], axis=1, sort=True).drop_duplicates() except TypeError: # legacy pandas < 0.21 init1 = concat([net.line.from_bus, net.line.to_bus], axis=1).drop_duplicates() init2 = concat([net.trafo.hv_bus, net.trafo.lv_bus], axis=1).drop_duplicates() init1['hv_bus'] = nan init1['lv_bus'] = nan init2['from_bus'] = nan init2['to_bus'] = nan try: already_used_branches = concat([init1, init2], axis=0, sort=True) except TypeError: # pandas < 0.21 legacy already_used_branches = concat([init1, init2], axis=0) already_used_branches['number'] = zeros( [already_used_branches.shape[0], 1]).astype(int) BRANCHES = DataFrame(ppc_net['branch'][:, [0, 1, 8, 9]]) for i in BRANCHES.index: from_bus = pp.get_element_index(net, 'bus', name=int(ppc_net['branch'][i, 0])) to_bus = pp.get_element_index(net, 'bus', name=int(ppc_net['branch'][i, 1])) from_vn_kv = ppc_net['bus'][from_bus, 9] to_vn_kv = ppc_net['bus'][to_bus, 9] ratio = BRANCHES[2].at[i] angle = BRANCHES[3].at[i] # from line results if (from_vn_kv == to_vn_kv) & ((ratio == 0) | (ratio == 1)) & (angle == 0): pp_res["branch"] = append( pp_res["branch"], array(net.res_line[(net.line.from_bus == from_bus) & (net.line.to_bus == to_bus)][[ 'p_from_mw', 'q_from_mvar', 'p_to_mw', 'q_to_mvar' ]]) [int(already_used_branches.number.loc[ (already_used_branches.from_bus == from_bus) & (already_used_branches.to_bus == to_bus)].values)].reshape( 1, 4), 0) already_used_branches.number.loc[ (already_used_branches.from_bus == from_bus) & (already_used_branches.to_bus == to_bus)] += 1 # from trafo results else: if from_vn_kv >= to_vn_kv: pp_res["branch"] = append( pp_res["branch"], array(net.res_trafo[(net.trafo.hv_bus == from_bus) & (net.trafo.lv_bus == to_bus)] [['p_hv_mw', 'q_hv_mvar', 'p_lv_mw', 'q_lv_mvar' ]])[int(already_used_branches.number.loc[ (already_used_branches.hv_bus == from_bus) & (already_used_branches.lv_bus == to_bus)]. values)].reshape(1, 4), 0) already_used_branches.number.loc[ (already_used_branches.hv_bus == from_bus) & (already_used_branches.lv_bus == to_bus)] += 1 else: # switch hv-lv-connection of pypower connection buses pp_res["branch"] = append( pp_res["branch"], array(net.res_trafo[(net.trafo.hv_bus == to_bus) & (net.trafo.lv_bus == from_bus)] [['p_lv_mw', 'q_lv_mvar', 'p_hv_mw', 'q_hv_mvar' ]])[int(already_used_branches.number.loc[ (already_used_branches.hv_bus == to_bus) & (already_used_branches.lv_bus == from_bus)]. values)].reshape(1, 4), 0) already_used_branches.number.loc[ (already_used_branches.hv_bus == to_bus) & (already_used_branches.lv_bus == from_bus)] += 1 pp_res["branch"] = pp_res["branch"][1:, :] # delete initial zero row # --- do the powerflow result comparison diff_res = dict.fromkeys(ppc_elms) diff_res["bus"] = ppc_res["bus"] - pp_res["bus"] diff_res["bus"][:, 1] -= diff_res["bus"][0, 1] # remove va_degree offset diff_res["branch"] = ppc_res["branch"] - pp_res["branch"] diff_res["gen"] = ppc_res["gen"] - pp_res["gen"] # comparison of buses with several generator units only as q sum for i in GEN_uniq.loc[GEN_uniq[0].isin(change_q_compare)].index: next_is = GEN_uniq.index[GEN_uniq.index > i] if len(next_is) > 0: next_i = next_is[0] else: next_i = GENS.index[-1] + 1 if (next_i - i) > 1: diff_res["gen"][i:next_i, 1] = sum(diff_res["gen"][i:next_i, 1]) # logger info logger.debug( "Maximum voltage magnitude difference between pypower and pandapower: " "%.2e pu" % max_(abs(diff_res["bus"][:, 0]))) logger.debug( "Maximum voltage angle difference between pypower and pandapower: " "%.2e degree" % max_(abs(diff_res["bus"][:, 1]))) logger.debug( "Maximum branch flow active power difference between pypower and pandapower: " "%.2e MW" % max_(abs(diff_res["branch"][:, [0, 2]]))) logger.debug( "Maximum branch flow reactive power difference between pypower and " "pandapower: %.2e MVAr" % max_(abs(diff_res["branch"][:, [1, 3]]))) logger.debug( "Maximum active power generation difference between pypower and pandapower: " "%.2e MW" % max_(abs(diff_res["gen"][:, 0]))) logger.debug( "Maximum reactive power generation difference between pypower and pandapower: " "%.2e MVAr" % max_(abs(diff_res["gen"][:, 1]))) if _validate_diff_res(diff_res, {"bus_vm_pu": 1e-3, "bus_va_degree": 1e-3, "branch_p_mw": 1e-6, "branch_q_mvar": 1e-6}) and \ (max_(abs(diff_res["gen"])) > 1e-1).any(): logger.debug( "The active/reactive power generation difference possibly results " "because of a pypower error. Please validate " "the results via pypower loadflow." ) # this occurs e.g. at ppc case9 # give a return if isinstance(max_diff_values, dict): return _validate_diff_res(diff_res, max_diff_values) else: logger.debug("'max_diff_values' must be a dict.")
def t_opf_dc_gurobi(quiet=False): """Tests for DC optimal power flow using Gurobi solver. """ algs = [0, 1, 2, 3, 4] num_tests = 23 * len(algs) t_begin(num_tests, quiet) tdir = dirname(__file__) casefile = join(tdir, 't_case9_opf') if quiet: verbose = False else: verbose = False ppopt = ppoption('OUT_ALL', 0, 'VERBOSE', verbose); ppopt = ppoption(ppopt, 'OPF_ALG_DC', 700); ## run DC OPF if have_fcn('gurobipy'): for k in range(len(algs)): ppopt = ppoption(ppopt, 'GRB_METHOD', algs[k]) methods = [ 'automatic', 'primal simplex', 'dual simplex', 'barrier', 'concurrent', 'deterministic concurrent', ] t0 = 'DC OPF (Gurobi %s): ' % methods[k] ## set up indices ib_data = r_[arange(BUS_AREA + 1), arange(BASE_KV, VMIN + 1)] ib_voltage = arange(VM, VA + 1) ib_lam = arange(LAM_P, LAM_Q + 1) ib_mu = arange(MU_VMAX, MU_VMIN + 1) ig_data = r_[[GEN_BUS, QMAX, QMIN], arange(MBASE, APF + 1)] ig_disp = array([PG, QG, VG]) ig_mu = arange(MU_PMAX, MU_QMIN + 1) ibr_data = arange(ANGMAX + 1) ibr_flow = arange(PF, QT + 1) ibr_mu = array([MU_SF, MU_ST]) #ibr_angmu = array([MU_ANGMIN, MU_ANGMAX]) ## get solved DC power flow case from MAT-file ## defines bus_soln, gen_soln, branch_soln, f_soln soln9_dcopf = loadmat(join(tdir, 'soln9_dcopf.mat'), struct_as_record=True) bus_soln, gen_soln, branch_soln, f_soln = \ soln9_dcopf['bus_soln'], soln9_dcopf['gen_soln'], \ soln9_dcopf['branch_soln'], soln9_dcopf['f_soln'] ## run OPF t = t0 r = rundcopf(casefile, ppopt) bus, gen, branch, f, success = \ r['bus'], r['gen'], r['branch'], r['f'], r['success'] t_ok(success, [t, 'success']) t_is(f, f_soln, 3, [t, 'f']) t_is( bus[:, ib_data ], bus_soln[:, ib_data ], 10, [t, 'bus data']) t_is( bus[:, ib_voltage], bus_soln[:, ib_voltage], 3, [t, 'bus voltage']) t_is( bus[:, ib_lam ], bus_soln[:, ib_lam ], 3, [t, 'bus lambda']) t_is( bus[:, ib_mu ], bus_soln[:, ib_mu ], 2, [t, 'bus mu']) t_is( gen[:, ig_data ], gen_soln[:, ig_data ], 10, [t, 'gen data']) t_is( gen[:, ig_disp ], gen_soln[:, ig_disp ], 3, [t, 'gen dispatch']) t_is( gen[:, ig_mu ], gen_soln[:, ig_mu ], 3, [t, 'gen mu']) t_is(branch[:, ibr_data ], branch_soln[:, ibr_data ], 10, [t, 'branch data']) t_is(branch[:, ibr_flow ], branch_soln[:, ibr_flow ], 3, [t, 'branch flow']) t_is(branch[:, ibr_mu ], branch_soln[:, ibr_mu ], 2, [t, 'branch mu']) ##----- run OPF with extra linear user constraints & costs ----- ## two new z variables ## 0 <= z1, P2 - P1 <= z1 ## 0 <= z2, P2 - P3 <= z2 ## with A and N sized for DC opf ppc = loadcase(casefile) row = [0, 0, 0, 1, 1, 1] col = [9, 10, 12, 10, 11, 13] ppc['A'] = sparse(([-1, 1, -1, 1, -1, -1], (row, col)), (2, 14)) ppc['u'] = array([0, 0]) ppc['l'] = array([-Inf, -Inf]) ppc['zl'] = array([0, 0]) ppc['N'] = sparse(([1, 1], ([0, 1], [12, 13])), (2, 14)) ## new z variables only ppc['fparm'] = ones((2, 1)) * array([[1, 0, 0, 1]]) ## w = r = z ppc['H'] = sparse((2, 2)) ## no quadratic term ppc['Cw'] = array([1000, 1]) t = ''.join([t0, 'w/extra constraints & costs 1 : ']) r = rundcopf(ppc, ppopt) t_ok(r['success'], [t, 'success']) t_is(r['gen'][0, PG], 116.15974, 4, [t, 'Pg1 = 116.15974']) t_is(r['gen'][1, PG], 116.15974, 4, [t, 'Pg2 = 116.15974']) t_is(r['var']['val']['z'], [0, 0.3348], 4, [t, 'user vars']) t_is(r['cost']['usr'], 0.3348, 3, [t, 'user costs']) ## with A and N sized for AC opf ppc = loadcase(casefile) row = [0, 0, 0, 1, 1, 1] col = [18, 19, 24, 19, 20, 25] ppc['A'] = sparse(([-1, 1, -1, 1, -1, -1], (row, col)), (2, 26)) ppc['u'] = array([0, 0]) ppc['l'] = array([-Inf, -Inf]) ppc['zl'] = array([0, 0]) ppc['N'] = sparse(([1, 1], ([0, 1], [24, 25])), (2, 26)) ## new z variables only ppc['fparm'] = ones((2, 1)) * array([[1, 0, 0, 1]]) ## w = r = z ppc['H'] = sparse((2, 2)) ## no quadratic term ppc['Cw'] = array([1000, 1]) t = ''.join([t0, 'w/extra constraints & costs 2 : ']) r = rundcopf(ppc, ppopt) t_ok(r['success'], [t, 'success']) t_is(r['gen'][0, PG], 116.15974, 4, [t, 'Pg1 = 116.15974']) t_is(r['gen'][1, PG], 116.15974, 4, [t, 'Pg2 = 116.15974']) t_is(r['var']['val']['z'], [0, 0.3348], 4, [t, 'user vars']) t_is(r['cost']['usr'], 0.3348, 3, [t, 'user costs']) t = ''.join([t0, 'infeasible : ']) ## with A and N sized for DC opf ppc = loadcase(casefile) ppc['A'] = sparse(([1, 1], ([0, 0], [9, 10])), (1, 14)) ## Pg1 + Pg2 ppc['u'] = array([Inf]) ppc['l'] = array([600]) r = rundcopf(ppc, ppopt) t_ok(not r['success'], [t, 'no success']) else: t_skip(num_tests, 'Gurobi not available') t_end()
def t_opf_dc_pips_sc(quiet=False): """Tests for DC optimal power flow using PIPS-sc solver. @author: Ray Zimmerman (PSERC Cornell) @author: Richard Lincoln """ num_tests = 23 t_begin(num_tests, quiet) tdir = dirname(__file__) casefile = join(tdir, 't_case9_opf') verbose = 0 #not quiet t0 = 'DC OPF (PIPS-sc): ' ppopt = ppoption(VERBOSE=verbose, OUT_ALL=0, OPF_ALG_DC=250) ## run DC OPF ## set up indices ib_data = r_[arange(BUS_AREA + 1), arange(BASE_KV, VMIN + 1)] ib_voltage = arange(VM, VA + 1) ib_lam = arange(LAM_P, LAM_Q + 1) ib_mu = arange(MU_VMAX, MU_VMIN + 1) ig_data = r_[[GEN_BUS, QMAX, QMIN], arange(MBASE, APF + 1)] ig_disp = array([PG, QG, VG]) ig_mu = arange(MU_PMAX, MU_QMIN + 1) ibr_data = arange(ANGMAX + 1) ibr_flow = arange(PF, QT + 1) ibr_mu = array([MU_SF, MU_ST]) #ibr_angmu = array([MU_ANGMIN, MU_ANGMAX]) ## get solved DC power flow case from MAT-file soln9_dcopf = loadmat(join(tdir, 'soln9_dcopf.mat'), struct_as_record=True) ## defines bus_soln, gen_soln, branch_soln, f_soln bus_soln = soln9_dcopf['bus_soln'] gen_soln = soln9_dcopf['gen_soln'] branch_soln = soln9_dcopf['branch_soln'] f_soln = soln9_dcopf['f_soln'][0] ## run OPF t = t0 r = rundcopf(casefile, ppopt) bus, gen, branch, f, success = \ r['bus'], r['gen'], r['branch'], r['f'], r['success'] t_ok(success, [t, 'success']) t_is(f, f_soln, 3, [t, 'f']) t_is(bus[:, ib_data], bus_soln[:, ib_data], 10, [t, 'bus data']) t_is(bus[:, ib_voltage], bus_soln[:, ib_voltage], 3, [t, 'bus voltage']) t_is(bus[:, ib_lam], bus_soln[:, ib_lam], 3, [t, 'bus lambda']) t_is(bus[:, ib_mu], bus_soln[:, ib_mu], 2, [t, 'bus mu']) t_is(gen[:, ig_data], gen_soln[:, ig_data], 10, [t, 'gen data']) t_is(gen[:, ig_disp], gen_soln[:, ig_disp], 3, [t, 'gen dispatch']) t_is(gen[:, ig_mu], gen_soln[:, ig_mu], 3, [t, 'gen mu']) t_is(branch[:, ibr_data], branch_soln[:, ibr_data], 10, [t, 'branch data']) t_is(branch[:, ibr_flow], branch_soln[:, ibr_flow], 3, [t, 'branch flow']) t_is(branch[:, ibr_mu], branch_soln[:, ibr_mu], 2, [t, 'branch mu']) ##----- run OPF with extra linear user constraints & costs ----- ## two new z variables ## 0 <= z1, P2 - P1 <= z1 ## 0 <= z2, P2 - P3 <= z2 ## with A and N sized for DC opf ppc = loadcase(casefile) row = [0, 0, 0, 1, 1, 1] col = [9, 10, 12, 10, 11, 13] ppc['A'] = sparse(([-1, 1, -1, 1, -1, -1], (row, col)), (2, 14)) ppc['u'] = array([0, 0]) ppc['l'] = array([-Inf, -Inf]) ppc['zl'] = array([0, 0]) ppc['N'] = sparse(([1, 1], ([0, 1], [12, 13])), (2, 14)) ## new z variables only ppc['fparm'] = ones((2, 1)) * array([[1, 0, 0, 1]]) ## w = r = z ppc['H'] = sparse((2, 2)) ## no quadratic term ppc['Cw'] = array([1000, 1]) t = ''.join([t0, 'w/extra constraints & costs 1 : ']) r = rundcopf(ppc, ppopt) t_ok(r['success'], [t, 'success']) t_is(r['gen'][0, PG], 116.15974, 4, [t, 'Pg1 = 116.15974']) t_is(r['gen'][1, PG], 116.15974, 4, [t, 'Pg2 = 116.15974']) t_is(r['var']['val']['z'], [0, 0.3348], 4, [t, 'user vars']) t_is(r['cost']['usr'], 0.3348, 3, [t, 'user costs']) ## with A and N sized for AC opf ppc = loadcase(casefile) row = [0, 0, 0, 1, 1, 1] col = [18, 19, 24, 19, 20, 25] ppc['A'] = sparse(([-1, 1, -1, 1, -1, -1], (row, col)), (2, 26)) ppc['u'] = array([0, 0]) ppc['l'] = array([-Inf, -Inf]) ppc['zl'] = array([0, 0]) ppc['N'] = sparse(([1, 1], ([0, 1], [24, 25])), (2, 26)) ## new z variables only ppc['fparm'] = ones((2, 1)) * array([[1, 0, 0, 1]]) ## w = r = z ppc['H'] = sparse((2, 2)) ## no quadratic term ppc['Cw'] = array([1000, 1]) t = ''.join([t0, 'w/extra constraints & costs 2 : ']) r = rundcopf(ppc, ppopt) t_ok(r['success'], [t, 'success']) t_is(r['gen'][0, PG], 116.15974, 4, [t, 'Pg1 = 116.15974']) t_is(r['gen'][1, PG], 116.15974, 4, [t, 'Pg2 = 116.15974']) t_is(r['var']['val']['z'], [0, 0.3348], 4, [t, 'user vars']) t_is(r['cost']['usr'], 0.3348, 3, [t, 'user costs']) t = ''.join([t0, 'infeasible : ']) ## with A and N sized for DC opf ppc = loadcase(casefile) ppc['A'] = sparse(([1, 1], ([0, 0], [9, 10])), (1, 14)) ## Pg1 + Pg2 ppc['u'] = array([Inf]) ppc['l'] = array([600]) r = rundcopf(ppc, ppopt) t_ok(not r['success'], [t, 'no success']) t_end()