コード例 #1
0
ファイル: reference.py プロジェクト: adam2392/pyprep
    def perform_reference(self):
        """Estimate the true signal mean and interpolate bad channels.

        This function implements the functionality of the `performReference` function
        as part of the PREP pipeline on mne raw object.

        Notes
        -----
            This function calls robust_reference first
            Currently this function only implements the functionality of default
            settings, i.e., doRobustPost

        """
        # Phase 1: Estimate the true signal mean with robust referencing
        self.robust_reference()
        if self.noisy_channels["bad_all"]:
            self.raw.info["bads"] = self.noisy_channels["bad_all"]
            self.raw.interpolate_bads()
        self.reference_signal = (np.nanmean(
            self.raw.get_data(picks=self.reference_channels), axis=0) * 1e6)
        rereferenced_index = [
            self.ch_names_eeg.index(ch) for ch in self.rereferenced_channels
        ]
        self.EEG = self.remove_reference(self.EEG, self.reference_signal,
                                         rereferenced_index)

        # Phase 2: Find the bad channels and interpolate
        self.raw._data = self.EEG * 1e-6
        noisy_detector = NoisyChannels(self.raw)
        noisy_detector.find_all_bads(ransac=self.ransac)

        # Record Noisy channels and EEG before interpolation
        self.bad_before_interpolation = noisy_detector.get_bads(verbose=True)
        self.EEG_before_interpolation = self.EEG.copy()

        bad_channels = _union(self.bad_before_interpolation,
                              self.unusable_channels)
        self.raw.info["bads"] = bad_channels
        self.raw.interpolate_bads()
        reference_correct = (np.nanmean(
            self.raw.get_data(picks=self.reference_channels), axis=0) * 1e6)
        self.EEG = self.raw.get_data() * 1e6
        self.EEG = self.remove_reference(self.EEG, reference_correct,
                                         rereferenced_index)
        # reference signal after interpolation
        self.reference_signal_new = self.reference_signal + reference_correct
        # MNE Raw object after interpolation
        self.raw._data = self.EEG * 1e-6

        # Still noisy channels after interpolation
        self.interpolated_channels = bad_channels
        noisy_detector = NoisyChannels(self.raw)
        noisy_detector.find_all_bads(ransac=self.ransac)
        self.still_noisy_channels = noisy_detector.get_bads()
        self.raw.info["bads"] = self.still_noisy_channels
        return self
コード例 #2
0
    def robust_reference(self):
        """Detect bad channels and estimate the robust reference signal.

        This function implements the functionality of the `robustReference` function
        as part of the PREP pipeline on mne raw object.

        Parameters
        ----------
            ransac : boolean
                Whether or not to use ransac

        Returns
        -------
            noisy_channels: dictionary
                A dictionary of names of noisy channels detected from all methods
                after referencing
            reference_signal: 1D Array
                Estimation of the 'true' signal mean

        """
        raw = self.raw.copy()
        raw._data = removeTrend(raw.get_data(), sample_rate=self.sfreq)

        # Determine unusable channels and remove them from the reference channels
        noisy_detector = NoisyChannels(raw,
                                       do_detrend=False,
                                       random_state=self.random_state)
        noisy_detector.find_all_bads(ransac=self.ransac)
        self.noisy_channels_original = {
            "bad_by_nan": noisy_detector.bad_by_nan,
            "bad_by_flat": noisy_detector.bad_by_flat,
            "bad_by_deviation": noisy_detector.bad_by_deviation,
            "bad_by_hf_noise": noisy_detector.bad_by_hf_noise,
            "bad_by_correlation": noisy_detector.bad_by_correlation,
            "bad_by_ransac": noisy_detector.bad_by_ransac,
            "bad_all": noisy_detector.get_bads(),
        }
        self.noisy_channels = self.noisy_channels_original.copy()
        logger.info("Bad channels: {}".format(self.noisy_channels))

        self.unusable_channels = _union(noisy_detector.bad_by_nan,
                                        noisy_detector.bad_by_flat)

        # According to the Matlab Implementation (see robustReference.m)
        # self.unusable_channels = _union(self.unusable_channels,
        # noisy_detector.bad_by_SNR)
        # but maybe this makes no difference...

        self.reference_channels = _set_diff(self.reference_channels,
                                            self.unusable_channels)

        # Get initial estimate of the reference by the specified method
        signal = raw.get_data() * 1e6
        self.reference_signal = (
            np.nanmedian(raw.get_data(picks=self.reference_channels), axis=0) *
            1e6)
        reference_index = [
            self.ch_names_eeg.index(ch) for ch in self.reference_channels
        ]
        signal_tmp = self.remove_reference(signal, self.reference_signal,
                                           reference_index)

        # Remove reference from signal, iteratively interpolating bad channels
        raw_tmp = raw.copy()
        iterations = 0
        noisy_channels_old = []
        max_iteration_num = 4

        while True:
            raw_tmp._data = signal_tmp * 1e-6
            noisy_detector = NoisyChannels(raw_tmp,
                                           do_detrend=False,
                                           random_state=self.random_state)
            # Detrend applied at the beginning of the function.
            noisy_detector.find_all_bads(ransac=self.ransac)
            self.noisy_channels["bad_by_nan"] = _union(
                self.noisy_channels["bad_by_nan"], noisy_detector.bad_by_nan)
            self.noisy_channels["bad_by_flat"] = _union(
                self.noisy_channels["bad_by_flat"], noisy_detector.bad_by_flat)
            self.noisy_channels["bad_by_deviation"] = _union(
                self.noisy_channels["bad_by_deviation"],
                noisy_detector.bad_by_deviation)
            self.noisy_channels["bad_by_hf_noise"] = _union(
                self.noisy_channels["bad_by_hf_noise"],
                noisy_detector.bad_by_hf_noise)
            self.noisy_channels["bad_by_correlation"] = _union(
                self.noisy_channels["bad_by_correlation"],
                noisy_detector.bad_by_correlation,
            )
            self.noisy_channels["bad_by_ransac"] = _union(
                self.noisy_channels["bad_by_ransac"],
                noisy_detector.bad_by_ransac)
            self.noisy_channels["bad_all"] = _union(
                self.noisy_channels["bad_all"], noisy_detector.get_bads())
            logger.info("Bad channels: {}".format(self.noisy_channels))

            if (iterations > 1 and (not self.noisy_channels["bad_all"] or set(
                    self.noisy_channels["bad_all"]) == set(noisy_channels_old))
                    or iterations > max_iteration_num):
                break
            noisy_channels_old = self.noisy_channels["bad_all"].copy()

            if raw_tmp.info["nchan"] - len(self.noisy_channels["bad_all"]) < 2:
                raise ValueError(
                    "RobustReference:TooManyBad "
                    "Could not perform a robust reference -- not enough good channels"
                )

            if self.noisy_channels["bad_all"]:
                raw_tmp._data = signal * 1e-6
                raw_tmp.info["bads"] = self.noisy_channels["bad_all"]
                raw_tmp.interpolate_bads()
                signal_tmp = raw_tmp.get_data() * 1e6
            else:
                signal_tmp = signal
            self.reference_signal = (np.nanmean(
                raw_tmp.get_data(picks=self.reference_channels), axis=0) * 1e6)

            signal_tmp = self.remove_reference(signal, self.reference_signal,
                                               reference_index)
            iterations = iterations + 1
            logger.info("Iterations: {}".format(iterations))

        logger.info("Robust reference done")
        return self.noisy_channels, self.reference_signal
コード例 #3
0
ファイル: reference.py プロジェクト: sappelhoff/pyprep
    def robust_reference(self, max_iterations=4):
        """Detect bad channels and estimate the robust reference signal.

        This function implements the functionality of the `robustReference` function
        as part of the PREP pipeline on mne raw object.

        Parameters
        ----------
        max_iterations : int, optional
            The maximum number of iterations of noisy channel removal to perform
            during robust referencing. Defaults to ``4``.

        Returns
        -------
        noisy_channels: dict
            A dictionary of names of noisy channels detected from all methods
            after referencing.
        reference_signal: np.ndarray, shape(n, )
            Estimation of the 'true' signal mean

        """
        raw = self.raw.copy()
        raw._data = removeTrend(raw.get_data(),
                                self.sfreq,
                                matlab_strict=self.matlab_strict)

        # Determine unusable channels and remove them from the reference channels
        noisy_detector = NoisyChannels(
            raw,
            do_detrend=False,
            random_state=self.random_state,
            matlab_strict=self.matlab_strict,
        )
        noisy_detector.find_all_bads(**self.ransac_settings)
        self.noisy_channels_original = noisy_detector.get_bads(as_dict=True)
        self._extra_info["initial_bad"] = noisy_detector._extra_info
        logger.info("Bad channels: {}".format(self.noisy_channels_original))

        # Determine channels to use/exclude from initial reference estimation
        self.unusable_channels = _union(
            noisy_detector.bad_by_nan + noisy_detector.bad_by_flat,
            noisy_detector.bad_by_SNR,
        )
        reference_channels = _set_diff(self.reference_channels,
                                       self.unusable_channels)

        # Initialize channels to permanently flag as bad during referencing
        noisy = {
            "bad_by_nan": noisy_detector.bad_by_nan,
            "bad_by_flat": noisy_detector.bad_by_flat,
            "bad_by_deviation": [],
            "bad_by_hf_noise": [],
            "bad_by_correlation": [],
            "bad_by_SNR": [],
            "bad_by_dropout": [],
            "bad_by_ransac": [],
            "bad_all": [],
        }

        # Get initial estimate of the reference by the specified method
        signal = raw.get_data()
        self.reference_signal = np.nanmedian(
            raw.get_data(picks=reference_channels), axis=0)
        reference_index = [
            self.ch_names_eeg.index(ch) for ch in reference_channels
        ]
        signal_tmp = self.remove_reference(signal, self.reference_signal,
                                           reference_index)

        # Remove reference from signal, iteratively interpolating bad channels
        raw_tmp = raw.copy()
        iterations = 0
        previous_bads = set()

        while True:
            raw_tmp._data = signal_tmp
            noisy_detector = NoisyChannels(
                raw_tmp,
                do_detrend=False,
                random_state=self.random_state,
                matlab_strict=self.matlab_strict,
            )
            # Detrend applied at the beginning of the function.

            # Detect all currently bad channels
            noisy_detector.find_all_bads(**self.ransac_settings)
            noisy_new = noisy_detector.get_bads(as_dict=True)

            # Specify bad channel types to ignore when updating noisy channels
            # NOTE: MATLAB PREP ignores dropout channels, possibly by mistake?
            # see: https://github.com/VisLab/EEG-Clean-Tools/issues/28
            ignore = ["bad_by_SNR", "bad_all"]
            if self.matlab_strict:
                ignore += ["bad_by_dropout"]

            # Update set of all noisy channels detected so far with any new ones
            bad_chans = set()
            for bad_type in noisy_new.keys():
                noisy[bad_type] = _union(noisy[bad_type], noisy_new[bad_type])
                if bad_type not in ignore:
                    bad_chans.update(noisy[bad_type])
            noisy["bad_all"] = list(bad_chans)
            logger.info("Bad channels: {}".format(noisy))

            if (iterations > 1 and
                (len(bad_chans) == 0 or bad_chans == previous_bads)
                    or iterations > max_iterations):
                logger.info("Robust reference done")
                self.noisy_channels = noisy
                break
            previous_bads = bad_chans.copy()

            if raw_tmp.info["nchan"] - len(bad_chans) < 2:
                raise ValueError(
                    "RobustReference:TooManyBad "
                    "Could not perform a robust reference -- not enough good channels"
                )

            if len(bad_chans) > 0:
                raw_tmp._data = signal.copy()
                raw_tmp.info["bads"] = list(bad_chans)
                if self.matlab_strict:
                    _eeglab_interpolate_bads(raw_tmp)
                else:
                    raw_tmp.interpolate_bads()

            self.reference_signal = np.nanmean(
                raw_tmp.get_data(picks=reference_channels), axis=0)

            signal_tmp = self.remove_reference(signal, self.reference_signal,
                                               reference_index)
            iterations = iterations + 1
            logger.info("Iterations: {}".format(iterations))

        return self.noisy_channels, self.reference_signal
コード例 #4
0
ファイル: reference.py プロジェクト: sappelhoff/pyprep
    def perform_reference(self, max_iterations=4):
        """Estimate the true signal mean and interpolate bad channels.

        Parameters
        ----------
        max_iterations : int, optional
            The maximum number of iterations of noisy channel removal to perform
            during robust referencing. Defaults to ``4``.

        This function implements the functionality of the `performReference` function
        as part of the PREP pipeline on mne raw object.

        Notes
        -----
        This function calls ``robust_reference`` first.
        Currently this function only implements the functionality of default
        settings, i.e., ``doRobustPost``.

        """
        # Phase 1: Estimate the true signal mean with robust referencing
        self.robust_reference(max_iterations)
        # If we interpolate the raw here we would be interpolating
        # more than what we later actually account for (in interpolated channels).
        dummy = self.raw.copy()
        dummy.info["bads"] = self.noisy_channels["bad_all"]
        if self.matlab_strict:
            _eeglab_interpolate_bads(dummy)
        else:
            dummy.interpolate_bads()
        self.reference_signal = np.nanmean(
            dummy.get_data(picks=self.reference_channels), axis=0)
        del dummy
        rereferenced_index = [
            self.ch_names_eeg.index(ch) for ch in self.rereferenced_channels
        ]
        self.EEG = self.remove_reference(self.EEG, self.reference_signal,
                                         rereferenced_index)

        # Phase 2: Find the bad channels and interpolate
        self.raw._data = self.EEG
        noisy_detector = NoisyChannels(self.raw,
                                       random_state=self.random_state,
                                       matlab_strict=self.matlab_strict)
        noisy_detector.find_all_bads(**self.ransac_settings)

        # Record Noisy channels and EEG before interpolation
        self.bad_before_interpolation = noisy_detector.get_bads(verbose=True)
        self.EEG_before_interpolation = self.EEG.copy()
        self.noisy_channels_before_interpolation = noisy_detector.get_bads(
            as_dict=True)
        self._extra_info["interpolated"] = noisy_detector._extra_info

        bad_channels = _union(self.bad_before_interpolation,
                              self.unusable_channels)
        self.raw.info["bads"] = bad_channels
        if self.matlab_strict:
            _eeglab_interpolate_bads(self.raw)
        else:
            self.raw.interpolate_bads()
        reference_correct = np.nanmean(
            self.raw.get_data(picks=self.reference_channels), axis=0)
        self.EEG = self.raw.get_data()
        self.EEG = self.remove_reference(self.EEG, reference_correct,
                                         rereferenced_index)
        # reference signal after interpolation
        self.reference_signal_new = self.reference_signal + reference_correct
        # MNE Raw object after interpolation
        self.raw._data = self.EEG

        # Still noisy channels after interpolation
        self.interpolated_channels = bad_channels
        noisy_detector = NoisyChannels(self.raw,
                                       random_state=self.random_state,
                                       matlab_strict=self.matlab_strict)
        noisy_detector.find_all_bads(**self.ransac_settings)
        self.still_noisy_channels = noisy_detector.get_bads()
        self.raw.info["bads"] = self.still_noisy_channels
        self.noisy_channels_after_interpolation = noisy_detector.get_bads(
            as_dict=True)
        self._extra_info["remaining_bad"] = noisy_detector._extra_info

        return self
コード例 #5
0
ファイル: reference.py プロジェクト: yjmantilla/pyprep
    def perform_reference(self):
        """Estimate the true signal mean and interpolate bad channels.

        This function implements the functionality of the `performReference` function
        as part of the PREP pipeline on mne raw object.

        Notes
        -----
        This function calls ``robust_reference`` first.
        Currently this function only implements the functionality of default
        settings, i.e., ``doRobustPost``.

        """
        # Phase 1: Estimate the true signal mean with robust referencing
        self.robust_reference()
        # If we interpolate the raw here we would be interpolating
        # more than what we later actually account for (in interpolated channels).
        dummy = self.raw.copy()
        dummy.info["bads"] = self.noisy_channels["bad_all"]
        dummy.interpolate_bads()
        self.reference_signal = (
            np.nanmean(dummy.get_data(picks=self.reference_channels), axis=0) * 1e6
        )
        del dummy
        rereferenced_index = [
            self.ch_names_eeg.index(ch) for ch in self.rereferenced_channels
        ]
        self.EEG = self.remove_reference(
            self.EEG, self.reference_signal, rereferenced_index
        )

        # Phase 2: Find the bad channels and interpolate
        self.raw._data = self.EEG * 1e-6
        noisy_detector = NoisyChannels(self.raw, random_state=self.random_state)
        noisy_detector.find_all_bads(ransac=self.ransac)

        # Record Noisy channels and EEG before interpolation
        self.bad_before_interpolation = noisy_detector.get_bads(verbose=True)
        self.EEG_before_interpolation = self.EEG.copy()
        self.noisy_channels_before_interpolation = {
            "bad_by_nan": noisy_detector.bad_by_nan,
            "bad_by_flat": noisy_detector.bad_by_flat,
            "bad_by_deviation": noisy_detector.bad_by_deviation,
            "bad_by_hf_noise": noisy_detector.bad_by_hf_noise,
            "bad_by_correlation": noisy_detector.bad_by_correlation,
            "bad_by_SNR": noisy_detector.bad_by_SNR,
            "bad_by_dropout": noisy_detector.bad_by_dropout,
            "bad_by_ransac": noisy_detector.bad_by_ransac,
            "bad_all": noisy_detector.get_bads(),
        }

        bad_channels = _union(self.bad_before_interpolation, self.unusable_channels)
        self.raw.info["bads"] = bad_channels
        self.raw.interpolate_bads()
        reference_correct = (
            np.nanmean(self.raw.get_data(picks=self.reference_channels), axis=0) * 1e6
        )
        self.EEG = self.raw.get_data() * 1e6
        self.EEG = self.remove_reference(
            self.EEG, reference_correct, rereferenced_index
        )
        # reference signal after interpolation
        self.reference_signal_new = self.reference_signal + reference_correct
        # MNE Raw object after interpolation
        self.raw._data = self.EEG * 1e-6

        # Still noisy channels after interpolation
        self.interpolated_channels = bad_channels
        noisy_detector = NoisyChannels(self.raw, random_state=self.random_state)
        noisy_detector.find_all_bads(ransac=self.ransac)
        self.still_noisy_channels = noisy_detector.get_bads()
        self.raw.info["bads"] = self.still_noisy_channels
        self.noisy_channels_after_interpolation = {
            "bad_by_nan": noisy_detector.bad_by_nan,
            "bad_by_flat": noisy_detector.bad_by_flat,
            "bad_by_deviation": noisy_detector.bad_by_deviation,
            "bad_by_hf_noise": noisy_detector.bad_by_hf_noise,
            "bad_by_correlation": noisy_detector.bad_by_correlation,
            "bad_by_SNR": noisy_detector.bad_by_SNR,
            "bad_by_dropout": noisy_detector.bad_by_dropout,
            "bad_by_ransac": noisy_detector.bad_by_ransac,
            "bad_all": noisy_detector.get_bads(),
        }

        return self