def _nyu_rest_factory(session=1): from pypreprocess.nipype_preproc_spm_utils import SubjectData nyu_data = fetch_nyu_rest(sessions=[session], n_subjects=7) session_func = [x for x in nyu_data.func if "session%i" % session in x] session_anat = [ x for x in nyu_data.anat_skull if "session%i" % session in x] for subject_id in set([os.path.basename(os.path.dirname (os.path.dirname(x))) for x in session_func]): # instantiate subject_data object subject_data = SubjectData() subject_data.subject_id = subject_id subject_data.session_id = session # set func subject_data.func = [x for x in session_func if subject_id in x] assert len(subject_data.func) == 1 subject_data.func = subject_data.func[0] # set anat subject_data.anat = [x for x in session_anat if subject_id in x] assert len(subject_data.anat) == 1 subject_data.anat = subject_data.anat[0] # set subject output directory subject_data.output_dir = "/tmp/%s" % subject_id subject_data.sanitize(deleteorient=True, niigz2nii=False) yield (subject_data.subject_id, subject_data.func[0], subject_data.anat)
def demo_nyu_rest(data_dir="/tmp/nyu_data", output_dir="/tmp/nyu_mrimc_output"): """Demo for FSL Feeds data. Parameters ---------- data_dir: string, optional where the data is located on your disk, where it will be downloaded to output_dir: string, optional where output will be written to """ # fetch data nyu_data = fetch_nyu_rest(data_dir=data_dir) # subject data factory def subject_factory(session=1): session_func = [x for x in nyu_data.func if "session%i" % session in x] for subject_id in set([os.path.basename(os.path.dirname(os.path.dirname(x))) for x in session_func]): # set func func = [x for x in session_func if subject_id in x] assert len(func) == 1 func = func[0] yield SubjectData( subject_id=subject_id, func=func, output_dir=os.path.join(output_dir, "session%i" % session, subject_id) ) # invoke demon to run de demo _demo_runner(subject_factory(), "NYU resting state")
def demo_nyu_rest(data_dir="/tmp/nyu_data", n_subjects=1, output_dir="/tmp/nyu_rest_output", ): """Demo for FSL Feeds data. Parameters ---------- data_dir: string, optional where the data is located on your disk, where it will be downloaded to output_dir: string, optional where output will be written to """ # fetch data nyu_data = fetch_nyu_rest(data_dir=data_dir, n_subjects=1) # subject data factory def subject_factory(session=1): session_func = [x for x in nyu_data.func if "session%i" % session in x] for subject_id in set([os.path.basename( os.path.dirname (os.path.dirname(x))) for x in session_func]): # set func func = [ x for x in session_func if subject_id in x] assert len(func) == 1 func = func[0] yield SubjectData(subject_id=subject_id, func=func, output_dir=os.path.join( output_dir, "session%i" % session, subject_id)) # invoke demon to run de demo _fmri_demo_runner(subject_factory(), "NYU Resting State")
def _nyu_rest_factory(session=1): from pypreprocess.nipype_preproc_spm_utils import SubjectData nyu_data = fetch_nyu_rest(data_dir=os.path.join( os.environ['HOME'], "CODE/datasets/nyu_rest/"), sessions=[session], n_subjects=7) session_func = [x for x in nyu_data.func if "session%i" % session in x] session_anat = [ x for x in nyu_data.anat_skull if "session%i" % session in x ] for subject_id in set([ os.path.basename(os.path.dirname(os.path.dirname(x))) for x in session_func ]): # instantiate subject_data object subject_data = SubjectData() subject_data.subject_id = subject_id subject_data.session_id = session # set func subject_data.func = [x for x in session_func if subject_id in x] assert len(subject_data.func) == 1 subject_data.func = subject_data.func[0] # set anat subject_data.anat = [x for x in session_anat if subject_id in x] assert len(subject_data.anat) == 1 subject_data.anat = subject_data.anat[0] # set subject output directory subject_data.output_dir = "/tmp/%s" % subject_id subject_data.sanitize(do_deleteorient=True, do_niigz2nii=False) yield (subject_data.subject_id, subject_data.func[0], subject_data.anat)
""" # standard imports import sys import os # import API for preprocessing business from pypreprocess.nipype_preproc_spm_utils import do_subjects_preproc # input data-grabber for SPM Auditory (single-subject) data from pypreprocess.datasets import fetch_nyu_rest # file containing configuration for preprocessing the data this_dir = os.path.dirname(os.path.abspath(sys.argv[0])) jobfile = os.path.join(os.path.dirname(sys.argv[0]), "nyu_rest_preproc.ini") # set dataset dir if len(sys.argv) > 1: dataset_dir = sys.argv[1] else: dataset_dir = os.path.join(this_dir, "nyu_rest") # fetch spm auditory data fetch_nyu_rest(data_dir=dataset_dir) # preprocess the data results = do_subjects_preproc(jobfile, dataset_dir=os.path.join(dataset_dir, "nyu_rest")) assert len(results) == 1
""" Preprocessing of NYU rest data. """ # standard imports import sys import os # import API for preprocessing business from pypreprocess.nipype_preproc_spm_utils import do_subjects_preproc # input data-grabber for SPM Auditory (single-subject) data from pypreprocess.datasets import fetch_nyu_rest # file containing configuration for preprocessing the data jobfile = os.path.join(os.path.dirname(sys.argv[0]), "nyu_rest_preproc.ini") # fetch spm auditory data sd = fetch_nyu_rest() # preprocess the data dataset_dir = os.path.dirname( os.path.dirname(os.path.dirname(os.path.dirname( sd.anat_skull[0])))) results = do_subjects_preproc(jobfile, dataset_dir=dataset_dir)