def get_nth(n): ''' This will print out n primes ''' p = pyprimes.nprimes(n) p_list = [] for prime in p: p_list.append(prime) for prime in p_list: if not prime == p_list[-1]: print str(prime) + ',', else: print p_list[-1]
def generate_keypair(): primes =list(pyprimes.nprimes(10000)) first_index = random.randrange(0, len(primes)) second_index = random.randrange(0, len(primes)) if second_index == first_index: second_index = second_index + 1 p = primes[first_index] q = primes[second_index] K = p * q e = 65537 phi = (p-1) * (q-1) k = inverse(e, phi) return ((e, K), (k, K))
def concat_n_primes(n): """ concat_n_primes(n) -> int(number) Concatenating the first n primes from zero into a number. :@param n(int) - An index number. :@return concat_n_primes(int) - A number formed by concatenating the n first primes. """ # Verbose. print("Concatenating first {0} primes together".format(n)) # Initialize. num_len = 0 result = Mod(0, MOD) # Concatenating the first n primes. for prime_num in pyprimes.nprimes(n): result += prime_num num_len += len(str(prime_num)) return result, num_len
import sys import pyprimes arg = int(sys.argv[1]) p = pyprimes.nprimes(arg) ans = 0 for i in p: ans = i print('Answer: ', ans)
from random import randint from pyprimes import nprimes N = 32 J = 500 jamcoins = set() somePrimes = list(nprimes(47))[1:] def findDiv(val): for p in somePrimes: if val % p == 0: return p return None def getDivisors(coin): divs = [] for base in range(2, 11): val = int(coin, base) div = findDiv(val) if not div: return None divs.append(div) return tuple(divs) while len(jamcoins) < J: coin = '' for i in range(N - 2): coin += str(randint(0, 1)) coin = '1' + coin + '1'
def test_nprimes(self): it = pyprimes.nprimes(100) self.assertTrue(it is iter(it)) self.assertEqual(list(it), PRIMES)
def main(): primes = list(nprimes(10001)) print primes[10000]
from pyprimes import nprimes from functools import reduce primelist = list(nprimes(1000001)) # [2, 3, 5, ...] def primorial(n): return reduce(int.__mul__, primelist[:n], 1) if __name__ == '__main__': print('First ten primorals:', [primorial(n) for n in range(10)]) for e in range(7): n = 10**e print('primorial(%i) has %i digits' % (n, len(str(primorial(n)))))
def prime_generator(): return pyprimes.nprimes(2000)
#!/usr/bin/python from pyprimes import nprimes primos = list(nprimes(1000000)) print "int primos[] = {" for p in primos: print "%d, " % p, print "};\n"
from multiprocessing import Process, Queue import hashlib import sys import os import warnings if sys.version_info < (3, 6): import sha3 # Python 2.7 compatibility try: range = xrange except NameError: pass prime_list = list(nprimes(30)) def _first_prime_check(p): for prime in prime_list: if p % prime == 0: return False return True def _multiplicative_inverse(num, modulo): """ Return the multiplicative inverse of the given number in given modulo or raises a ValueError if no inverse exists. :param num: Number to be inverted :type num: int :param modulo: