observed = [] observednonoise = [] observedflux = [] scatt = [] # # plt.subplot(2,2,j+1) ## plt.subplot(2,1,j+1) # plt.subplots_adjust(hspace=.2) # for i in range(0, len(taubins)): scat = psr.psrscatter( bins, psr.broadfunc(bins, taubins[i]), psr.pulsetrain(trainlength, bins, profile_intr_norm[i]), taubins[i] ) scatt.append(scat) climb, observed_nonoise, flux = psr.extractpulse(scat, 2, P) peak = np.max(observed_nonoise) noise = np.random.normal(0, peak / snr, P) observedadd = observed_nonoise + noise observed.append(observedadd) observedflux.append(flux) observednonoise.append(observed_nonoise) # # plt.plot(nurange,observedflux,linewidth=2.0,label=r'$\sigma_{x,y} = %d$ mas. $\tau_{max} = %.1f$' % (k1, tauval[0])) ## plt.plot(1000*nurange,observedflux,linewidth=2.0,label=r'$D_s/D = %.1f$, $\tau_{max} = %.1f$' % (Dsval/Dval,tauval[0])) # plt.plot(1000*nurange,observedflux,linewidth=2.0,label=r'$D_s/D = %.1f$' % (Dsval/Dval)) # plt.title('D = %.0f kpc' %Dval) # plt.legend(loc = 'best',fontsize=14) ## plt.xlabel(r'$\nu$ (MHz)',fontsize=16) # plt.ylabel('normalized flux',fontsize=16) # plt.xticks(fontsize=14) # plt.yticks(fontsize=14)
##Create observed pulses by scattering a pulsetrain with an exponential broadening function observed = [] observednonoise = [] observedflux = [] scatt = [] # plt.subplot(2,2,j+1) plt.subplot(2,1,j+1) plt.subplots_adjust(hspace=.2) # for i in range(0,len(taubins)): scat = psr.psrscatter(bins, psr.broadfunc(bins,taubins[i]),psr.pulsetrain(trainlength, bins, profile_intr_norm[i]),taubins[i]) scatt.append(scat) climb, observed_nonoise, flux = psr.extractpulse(scat, 2, P) peak = np.max(observed_nonoise) noise = np.random.normal(0,peak/snr,P) observedadd = observed_nonoise + noise observed.append(observedadd) observedflux.append(flux) observednonoise.append(observed_nonoise) # plt.plot(nurange,observedflux,linewidth=2.0,label=r'$\sigma_{x,y} = %d$ mas. $\tau_{max} = %.1f$' % (k1, tauval[0])) # plt.plot(1000*nurange,observedflux,linewidth=2.0,label=r'$D_s/D = %.1f$, $\tau_{max} = %.1f$' % (Dsval/Dval,tauval[0])) plt.plot(1000*nurange,observedflux,linewidth=2.0,label=r'$D_s/D = %.1f$' % (Dsval/Dval)) plt.title('D = %.0f kpc' %Dval, fontsize=20) plt.legend(loc = 'best',fontsize=16) # plt.xlabel(r'$\nu$ (MHz)',fontsize=16) plt.ylabel('normalized flux',fontsize=20) plt.xticks(fontsize=18) plt.yticks(fontsize=18)