def descr_new_allocator(self, w_alloc, w_free, should_clear_after_alloc=1): """\ Return a new allocator, i.e. a function that behaves like ffi.new() but uses the provided low-level 'alloc' and 'free' functions. 'alloc' is called with the size as argument. If it returns NULL, a MemoryError is raised. 'free' is called with the result of 'alloc' as argument. Both can be either Python function or directly C functions. If 'free' is None, then no free function is called. If both 'alloc' and 'free' are None, the default is used. If 'should_clear_after_alloc' is set to False, then the memory returned by 'alloc' is assumed to be already cleared (or you are fine with garbage); otherwise CFFI will clear it. """ # return allocator.new_allocator(self, w_alloc, w_free, should_clear_after_alloc)
def descr_new_allocator(self, w_alloc, w_free, should_clear_after_alloc=1): """\ Return a new allocator, i.e. a function that behaves like ffi.new() but uses the provided low-level 'alloc' and 'free' functions. 'alloc' is called with the size as argument. If it returns NULL, a MemoryError is raised. 'free' is called with the result of 'alloc' as argument. Both can be either Python functions or directly C functions. If 'free' is None, then no free function is called. If both 'alloc' and 'free' are None, the default is used. If 'should_clear_after_alloc' is set to False, then the memory returned by 'alloc' is assumed to be already cleared (or you are fine with garbage); otherwise CFFI will clear it. """ # return allocator.new_allocator(self, w_alloc, w_free, should_clear_after_alloc)