コード例 #1
0
ファイル: example.py プロジェクト: fgregg/pyqpbo
def example_checkerboard():
    # generate a checkerboard
    x = np.ones((10, 12))
    x[::2, ::2] = -1
    x[1::2, 1::2] = -1
    x_noisy = x + np.random.normal(0, 1.5, size=x.shape)
    x_thresh = x_noisy > .0

    # create unaries
    unaries = x_noisy
    # as we convert to int, we need to multipy to get sensible values
    unaries = (10 * np.dstack([unaries, -unaries]).copy("C")).astype(np.int32)
    # create potts pairwise
    pairwise = 100 * np.eye(2, dtype=np.int32)

    # do simple cut
    result_qpbo = binary_grid(unaries, pairwise)
    # make non-labeled zero (instead of negative)
    result_qpbo_vis = result_qpbo.copy()
    result_qpbo_vis[result_qpbo < 0] = 0
    result_qpbo_vis[result_qpbo == 0] = -1

    # plot results
    plt.subplot(231, title="original")
    plt.imshow(x, interpolation='nearest')
    plt.subplot(232, title="noisy version")
    plt.imshow(x_noisy, interpolation='nearest')
    plt.subplot(233, title="rounded to integers")
    plt.imshow(unaries[:, :, 0], interpolation='nearest')
    plt.subplot(234, title="thresholding result")
    plt.imshow(x_thresh, interpolation='nearest')
    plt.subplot(235, title="qpbo")
    plt.imshow(result_qpbo_vis, interpolation='nearest')

    plt.show()
コード例 #2
0
ファイル: test_crfs.py プロジェクト: wqren/pystruct
def test_binary_grid_unaries():
    # test handling on unaries for binary grid CRFs
    for ds in toy.binary:
        X, Y = ds(n_samples=1)
        x, y = X[0], Y[0]
        crf = GridCRF(inference_method="lp")
        w_unaries_only = np.zeros(5)
        w_unaries_only[:2] = 1.0
        # test that inference with unaries only is the
        # same as argmax
        inf_unaries = crf.inference(x, w_unaries_only)

        pw_z = np.zeros((2, 2), dtype=np.int32)
        un = np.ascontiguousarray(-1000 * x).astype(np.int32)
        unaries = binary_grid(un, pw_z)
        assert_array_equal(inf_unaries, unaries)
        assert_array_equal(inf_unaries, np.argmax(x, axis=2))
        try:
            assert np.mean(inf_unaries == y) > 0.5
        except:
            print(ds)

        # check that the right thing happens on noise-free data
        X, Y = ds(n_samples=1, noise=0)
        inf_unaries = crf.inference(X[0], w_unaries_only)
        assert_array_equal(inf_unaries, Y[0])
コード例 #3
0
ファイル: example.py プロジェクト: zilongzhong/pyqpbo
def example_checkerboard():
    # generate a checkerboard
    x = np.ones((10, 12))
    x[::2, ::2] = -1
    x[1::2, 1::2] = -1
    x_noisy = x + np.random.normal(0, 1.5, size=x.shape)
    x_thresh = x_noisy > .0

    # create unaries
    unaries = x_noisy
    # as we convert to int, we need to multipy to get sensible values
    unaries = (10 * np.dstack([unaries, -unaries]).copy("C")).astype(np.int32)
    # create potts pairwise
    pairwise = 100 * np.eye(2, dtype=np.int32)

    # do simple cut
    result_qpbo = binary_grid(unaries, pairwise)
    # make non-labeled zero (instead of negative)
    result_qpbo_vis = result_qpbo.copy()
    result_qpbo_vis[result_qpbo < 0] = 0
    result_qpbo_vis[result_qpbo == 0] = -1

    # plot results
    plt.subplot(231, title="original")
    plt.imshow(x, interpolation='nearest')
    plt.subplot(232, title="noisy version")
    plt.imshow(x_noisy, interpolation='nearest')
    plt.subplot(233, title="rounded to integers")
    plt.imshow(unaries[:, :, 0], interpolation='nearest')
    plt.subplot(234, title="thresholding result")
    plt.imshow(x_thresh, interpolation='nearest')
    plt.subplot(235, title="qpbo")
    plt.imshow(result_qpbo_vis, interpolation='nearest')

    plt.show()
コード例 #4
0
ファイル: crf.py プロジェクト: cshen/pystruct
    def inference(self, x, w):
        if w.shape != (self.size_psi,):
            raise ValueError("Got w of wrong shape. Expected %s, got %s" %
                    (self.size_psi, w.shape))
        self.inference_calls += 1
        unary_param = w[0]
        pairwise_params = np.array([[0, w[1]], [w[1], 0]])
        if (x[:, :, 1] != 0).any():
            raise ValueError("For simplicty, in binary CRFS,"
                    "all entries in the second feature should be 0.")

        unaries = - 1000 * unary_param * x.copy()
        pairwise = -1000 * pairwise_params
        y = binary_grid(unaries.astype(np.int32), pairwise.astype(np.int32))
        return y
コード例 #5
0
def test_multinomial_grid_binary():
    # test handling on unaries for multinomial grid CRFs
    # on binary datasets
    for ds in toy_datasets.binary:
        X, Y = ds(n_samples=1)
        x, y = X[0], Y[0]
        crf = MultinomialGridCRF()
        w_unaries_only = np.zeros(5)
        w_unaries_only[:2] = 1.
        # test that inference with unaries only is the
        # same as argmax
        inf_unaries = crf.inference(x, w_unaries_only)

        pw_z = np.zeros((2, 2), dtype=np.int32)
        un = np.ascontiguousarray(-1000 * x).astype(np.int32)
        unaries = binary_grid(un, pw_z)
        assert_array_equal(inf_unaries, unaries)
        assert_array_equal(inf_unaries, np.argmax(x, axis=2))
コード例 #6
0
ファイル: test_crfs.py プロジェクト: cshen/pystruct
def test_multinomial_grid_binary():
    # test handling on unaries for multinomial grid CRFs
    # on binary datasets
    for ds in toy_datasets.binary:
        X, Y = ds(n_samples=1)
        x, y = X[0], Y[0]
        crf = MultinomialGridCRF()
        w_unaries_only = np.zeros(5)
        w_unaries_only[:2] = 1.
        # test that inference with unaries only is the
        # same as argmax
        inf_unaries = crf.inference(x, w_unaries_only)

        pw_z = np.zeros((2, 2), dtype=np.int32)
        un = np.ascontiguousarray(
                -1000 * x).astype(np.int32)
        unaries = binary_grid(un, pw_z)
        assert_array_equal(inf_unaries, unaries)
        assert_array_equal(inf_unaries, np.argmax(x, axis=2))
コード例 #7
0
ファイル: example.py プロジェクト: fgregg/pyqpbo
def example_binary():
    # generate trivial data
    x = np.ones((10, 12))
    x[:, 6:] = -1
    x_noisy = x + np.random.normal(0, 0.8, size=x.shape)
    x_thresh = x_noisy > .0

    # create unaries
    unaries = x_noisy
    # as we convert to int, we need to multipy to get sensible values
    unaries = (10 * np.dstack([unaries, -unaries]).copy("C")).astype(np.int32)
    # create potts pairwise
    pairwise = -10 * np.eye(2, dtype=np.int32)

    # do simple cut
    result_qpbo = binary_grid(unaries, pairwise)
    #result_qpbo = alpha_expansion_grid(unaries, pairwise)
    #result_gc = cut_simple(unaries, pairwise)

    # use the gerneral graph algorithm
    # first, we construct the grid graph
    inds = np.arange(x.size).reshape(x.shape)
    horz = np.c_[inds[:, :-1].ravel(), inds[:, 1:].ravel()]
    vert = np.c_[inds[:-1, :].ravel(), inds[1:, :].ravel()]
    edges = np.vstack([horz, vert]).astype(np.int32)

    # we flatten the unaries
    result_graph = binary_graph(edges, unaries.reshape(-1, 2), pairwise)

    # plot results
    plt.subplot(231, title="original")
    plt.imshow(x, interpolation='nearest')
    plt.subplot(232, title="noisy version")
    plt.imshow(x_noisy, interpolation='nearest')
    plt.subplot(233, title="rounded to integers")
    plt.imshow(unaries[:, :, 0], interpolation='nearest')
    plt.subplot(234, title="thresholding result")
    plt.imshow(x_thresh, interpolation='nearest')
    plt.subplot(235, title="qpbo")
    plt.imshow(result_qpbo, interpolation='nearest')
    plt.subplot(236, title="qpbo graph")
    plt.imshow(result_graph.reshape(x.shape), interpolation='nearest')
    plt.show()
コード例 #8
0
ファイル: example.py プロジェクト: zilongzhong/pyqpbo
def example_binary():
    # generate trivial data
    x = np.ones((10, 12))
    x[:, 6:] = -1
    x_noisy = x + np.random.normal(0, 0.8, size=x.shape)
    x_thresh = x_noisy > .0

    # create unaries
    unaries = x_noisy
    # as we convert to int, we need to multipy to get sensible values
    unaries = (10 * np.dstack([unaries, -unaries]).copy("C")).astype(np.int32)
    # create potts pairwise
    pairwise = -10 * np.eye(2, dtype=np.int32)

    # do simple cut
    result_qpbo = binary_grid(unaries, pairwise)
    #result_qpbo = alpha_expansion_grid(unaries, pairwise)
    #result_gc = cut_simple(unaries, pairwise)

    # use the gerneral graph algorithm
    # first, we construct the grid graph
    inds = np.arange(x.size).reshape(x.shape)
    horz = np.c_[inds[:, :-1].ravel(), inds[:, 1:].ravel()]
    vert = np.c_[inds[:-1, :].ravel(), inds[1:, :].ravel()]
    edges = np.vstack([horz, vert]).astype(np.int32)

    # we flatten the unaries
    result_graph = binary_graph(edges, unaries.reshape(-1, 2), pairwise)

    # plot results
    plt.subplot(231, title="original")
    plt.imshow(x, interpolation='nearest')
    plt.subplot(232, title="noisy version")
    plt.imshow(x_noisy, interpolation='nearest')
    plt.subplot(233, title="rounded to integers")
    plt.imshow(unaries[:, :, 0], interpolation='nearest')
    plt.subplot(234, title="thresholding result")
    plt.imshow(x_thresh, interpolation='nearest')
    plt.subplot(235, title="qpbo")
    plt.imshow(result_qpbo, interpolation='nearest')
    plt.subplot(236, title="qpbo graph")
    plt.imshow(result_graph.reshape(x.shape), interpolation='nearest')
    plt.show()
コード例 #9
0
def test_binary_grid_unaries():
    # test handling on unaries for binary grid CRFs
    for ds in toy_datasets.binary:
        X, Y = ds(n_samples=1)
        x, y = X[0], Y[0]
        crf = BinaryGridCRF()
        w_unaries_only = np.zeros(2)
        w_unaries_only[0] = 1.
        # test that inference with unaries only is the
        # same as argmax
        inf_unaries = crf.inference(x, w_unaries_only)

        pw_z = np.zeros((2, 2), dtype=np.int32)
        un = np.ascontiguousarray(-1000 * x).astype(np.int32)
        unaries = binary_grid(un, pw_z)
        assert_array_equal(inf_unaries, unaries)
        assert_array_equal(inf_unaries, np.argmax(x, axis=2))
        try:
            assert (np.mean(inf_unaries == y) > 0.5)
        except:
            print(ds)
コード例 #10
0
ファイル: test_crfs.py プロジェクト: cshen/pystruct
def test_binary_grid_unaries():
    # test handling on unaries for binary grid CRFs
    for ds in toy_datasets.binary:
        X, Y = ds(n_samples=1)
        x, y = X[0], Y[0]
        crf = BinaryGridCRF()
        w_unaries_only = np.zeros(2)
        w_unaries_only[0] = 1.
        # test that inference with unaries only is the
        # same as argmax
        inf_unaries = crf.inference(x, w_unaries_only)

        pw_z = np.zeros((2, 2), dtype=np.int32)
        un = np.ascontiguousarray(
                -1000 * x).astype(np.int32)
        unaries = binary_grid(un, pw_z)
        assert_array_equal(inf_unaries, unaries)
        assert_array_equal(inf_unaries, np.argmax(x, axis=2))
        try:
            assert(np.mean(inf_unaries == y) > 0.5)
        except:
            print(ds)