コード例 #1
0
    def add_to_index(self, file, zoomlvl=-2):
        tree, bw = self.get_file_btree(file, zoomlvl)
        df = self.get_leaf_nodes(tree, bw, zoomlvl)
        chrmTree = self.get_file_chr(bw)

        self.file_mapping[file] = self.file_counter
        self.file_counter += 1
        self.file_objects[file] = bw

        for chrm in chrmTree.keys():
            chromLength = self.genome[chrm]
            dims = 2
            hlevel = math.ceil(math.log2(chromLength) / dims)
            # print("hlevel", hlevel)
            x_y_dim = math.ceil(math.pow(2, hlevel))
            # print("max x|y =", x_y_dim)
            tree = Index(bbox=(0, 0, x_y_dim, x_y_dim),
                         disk=base_path + "quadtree." + chrm + ".index")

            chrmId = chrmTree[chrm]
            df = df[df["rStartChromIx"] == chrmId]
            # print("\t df shape - ", df.shape)
            for i, row in df.iterrows():
                x, y, _ = hcoords(row["rStartBase"], chromLength)
                tree.insert(
                    (row["rStartBase"], row["rEndBase"], row["rdataOffset"],
                     row["rDataSize"], fileIds[file]), (x, y, x + 1, y + 1))
コード例 #2
0
    def fit_transform(self, X):

        self.check_data(X)

        max_x, max_y = X.max(axis=0)
        quadtree = Index(bbox=[0, 0, max_x + 10, max_y + 10])

        for i, x in enumerate(X):
            bbox = (x[0], x[1], x[0], x[1])
            quadtree.insert(item={
                'point': x,
                'bbox': bbox,
                'id': i
            },
                            bbox=bbox)

        maxy = int(max_x / self.size + 50)
        maxx = int(max_y / self.size + 50)

        cells = []

        for i in range(1, maxy + 1):
            for j in range(1, maxx + 1):
                bbox = ((i - 1) * self.size, (j - 1) * self.size,
                        i * self.size, j * self.size)
                d = quadtree.intersect(bbox)
                if len(d) != 0:
                    cells.append({'x': (i - 1), 'y': (j - 1), 'points': d})

        samples = self._sample(quadtree, cells, self.size, self.alpha,
                               self.size_search, maxx, maxy, 1)

        return np.array([u['id'] for u in samples])
コード例 #3
0
def nearest(main_points, aux_points, radius=1):
    """
    Objective is to find the nearest point to the points in the aux_points set.
    The nearest point is to be identified among the points in the main_points
    set.
    """
    xmin, ymin = np.min(np.array(list(main_points.values())), axis=0)
    xmax, ymax = np.max(np.array(list(main_points.values())), axis=0)
    bbox = (xmin, ymin, xmax, ymax)
    idx = Index(bbox)

    # keep track of points so we can recover them later
    points = []

    # create bounding box around each point in main_points set
    for i, p in enumerate(main_points):
        pt_main = Point(main_points[p])
        pt_bounds_main = pt_main.x-radius, pt_main.y-radius, \
            pt_main.x+radius, pt_main.y+radius
        idx.insert(i, pt_bounds_main)
        points.append((pt_main, pt_bounds_main, p))

    # find intersection with bounding box around aux point set
    for n in aux_points:
        pt_aux = Point(aux_points[n])
        pt_bounds_aux = pt_aux.x-radius, pt_aux.y-radius, \
            pt_aux.x+radius, pt_aux.y+radius
        matches = idx.intersect(pt_bounds_aux)
        ind_closest = min(matches, key=lambda i: geodist(points[i][0], pt_aux))
        print(points[ind_closest][-1])
    return
コード例 #4
0
def find_nearest_node(center_cord, node_cord):
    """
    Computes the nearest node in the dictionary 'node_cord' to the point denoted
    by the 'center_cord'
    
    center_cord: 
        TYPE: list of two entries
        DESCRIPTION: geographical coordinates of the center denoted by a list
                     of two entries
    
    node_cord: 
        TYPE: dictionary 
        DESCRIPTION: dictionary of nodelist with values as the geographical 
                     coordinate
    """
    xmin, ymin = np.min(np.array(list(node_cord.values())), axis=0)
    xmax, ymax = np.max(np.array(list(node_cord.values())), axis=0)
    bbox = (xmin, ymin, xmax, ymax)
    idx = Index(bbox)

    nodes = []
    for i, n in enumerate(list(node_cord.keys())):
        node_geom = Point(node_cord[n])
        node_bound = bounds(node_geom, 0.0)
        idx.insert(i, node_bound)
        nodes.append((node_geom, node_bound, n))

    pt_center = Point(center_cord)
    center_bd = bounds(pt_center, 0.1)
    matches = idx.intersect(center_bd)
    closest_node = min(matches, key=lambda i: geodist(nodes[i][0], pt_center))
    return nodes[closest_node][-1]
コード例 #5
0
def produce_fov_ids(lookers,
                    viewed,
                    count,
                    fov_dilation=[-0.1, -0.1, 0.1, 0.1]):
    """
    Produce ids of bboxes each of lookers can 'see' (intersect) in the viewed wordbox.
    bbox = l, t, r, b
    """
    xs = [item[0] for item in viewed] + [item[2] for item in viewed]
    ys = [item[1] for item in viewed] + [item[3] for item in viewed]
    l = min(xs)
    t = min(ys)
    r = max(xs)
    b = max(ys)
    spindex = Index(bbox=(l, t, r, b))
    # this example assumes you have a list of items with bbox attribute
    for i, bbox in enumerate(viewed):
        spindex.insert(i, bbox)

    ids_r = np.full((len(lookers), count), -1)

    for i, bbox in enumerate(lookers):
        matches = spindex.intersect(fov_dilate(bbox, fov_dilation))
        # now find the closest to the center of the original:
        center = bb_center(bbox)
        matches.sort(
            key=lambda j: ss_to_center(center, viewed[j]))  # ascending
        cnt = min(len(matches), count)
        ids_r[i, :cnt] = matches[:cnt]

    return ids_r
コード例 #6
0
ファイル: pyqtree_test.py プロジェクト: EvanYangAB/FIQTI
def test_should_empty_index_after_removing_multiple_added_nodes_in_all_quad_nodes():
    index = Index(INDEX_BBOX, max_items=1)
    index.insert(ITEM1, BBOX1)
    index.insert(ITEM2, INDEX_BBOX)
    index.remove(ITEM1, BBOX1)
    index.remove(ITEM2, INDEX_BBOX)
    assert len(index) == 0
    assert index.intersect(INDEX_BBOX) == []
コード例 #7
0
ファイル: pyqtree_test.py プロジェクト: wzugang/Pyqtree
def test_should_add_multiple_nodes_and_find_them():
    index = Index(INDEX_BBOX)
    index.insert(ITEM1, BBOX1)
    index.insert(ITEM2, BBOX2)
    assert len(index) == 2
    assert index.intersect(BBOX1) == {ITEM1}
    assert index.intersect(BBOX2) == {ITEM2}
    assert index.intersect(INDEX_BBOX) == {ITEM1, ITEM2}
コード例 #8
0
def combine_osm_components(road,radius = 0.01):
    """
    Combines network components by finding nearest nodes
    based on a QD Tree Approach.

    Parameters
    ----------
    graph : TYPE
        DESCRIPTION.

    Returns
    -------
    None.

    """
    # Initialize QD Tree
    longitudes = [road.nodes[n]['x'] for n in road.nodes()]
    latitudes = [road.nodes[n]['y'] for n in road.nodes()]
    xmin = min(longitudes); xmax = max(longitudes)
    ymin = min(latitudes); ymax = max(latitudes)
    bbox = (xmin,ymin,xmax,ymax)
    idx = Index(bbox)
    
    # Differentiate large and small components
    comps = [c for c in list(nx.connected_components(road))]
    lencomps = [len(c) for c in list(nx.connected_components(road))]
    indlarge = lencomps.index(max(lencomps))
    node_main = list(road.subgraph(comps[indlarge]).nodes())
    del(comps[indlarge])
    
    # keep track of nodes so we can recover them later
    nodes = []
    
    # create bounding box around each point in large component
    for i,node in enumerate(node_main):
        pt = Point([road.nodes[node]['x'],road.nodes[node]['y']])
        pt_bounds = pt.x-radius, pt.y-radius, pt.x+radius, pt.y+radius
        idx.insert(i, pt_bounds)
        nodes.append((pt, pt_bounds, node))
        
    # find intersection and add edges
    edgelist = []
    for c in comps:
        node_comp = list(road.subgraph(c).nodes())
        nodepairs = []
        for n in node_comp:
            pt = Point([road.nodes[n]['x'],road.nodes[n]['y']])
            pt_bounds = pt.x-radius, pt.y-radius, pt.x+radius, pt.y+radius
            matches = idx.intersect(pt_bounds)
            closest_pt = min(matches,key=lambda i: nodes[i][0].distance(pt))
            nodepairs.append((n,nodes[closest_pt][-1]))
        
        # Get the geodesic distance
        dist = [MeasureDistance([road.nodes[p[0]]['x'],road.nodes[p[0]]['y']],
                                [road.nodes[p[1]]['x'],road.nodes[p[1]]['y']]) \
                for p in nodepairs]
        edgelist.append(nodepairs[np.argmin(dist)]+tuple([0]))
    return edgelist
コード例 #9
0
ファイル: pyqtree_test.py プロジェクト: EvanYangAB/FIQTI
def test_should_empty_index_after_removing_multiple_added_nodes_in_multiple_horizontal_quad_nodes():
    index = Index(INDEX_BBOX, max_items=1)
    bbox2 = (0, 0, INDEX_BBOX[2], 1)
    index.insert(ITEM1, BBOX1)
    index.insert(ITEM2, bbox2)
    index.remove(ITEM1, BBOX1)
    index.remove(ITEM2, bbox2)
    assert len(index) == 0
    assert index.intersect(INDEX_BBOX) == []
コード例 #10
0
ファイル: pyqtree_test.py プロジェクト: EvanYangAB/FIQTI
def test_should_add_multiple_nodes_and_find_them():
    index = Index(INDEX_BBOX)
    index.insert(ITEM1, BBOX1)
    index.insert(ITEM2, BBOX2)
    assert len(index) == 2
    assert index.intersect(BBOX1) == [ITEM1]
    assert index.intersect(BBOX2) == [ITEM2]
    res = index.intersect(INDEX_BBOX)
    assert ITEM1 in res
    assert ITEM2 in res
コード例 #11
0
def remove_overlapping_points(missed_points_coord):
    missed_points_qtree = Index(bbox=(np.amin(missed_points_coord[:, 0]), np.amin(missed_points_coord[:,1]), np.amax(missed_points_coord[:,0]), np.amax(missed_points_coord[:, 1])))
    d_y = 1/444444.0 ## 0.25 meters
    d_x = np.cos(missed_points_coord[0][1] / (180 / np.pi))/444444.0 ## 0.25 meters
    for i in trange(len(missed_points_coord), desc='check for double points'):
        mp = missed_points_coord[i]
        if not missed_points_qtree.intersect((mp[0] - d_x, mp[1] - d_y, mp[0] + d_x, mp[1] + d_y)):
            missed_points_qtree.insert(mp, (mp[0] - d_x, mp[1] - d_y, mp[0] + d_x, mp[1] + d_y))
    
    missed_points_coord = missed_points_qtree.intersect(bbox=(np.amin(missed_points_coord[:, 0]), np.amin(missed_points_coord[:,1]), np.amax(missed_points_coord[:,0]), np.amax(missed_points_coord[:, 1])))
    return missed_points_coord
コード例 #12
0
def combine_components(graph,cords,radius = 0.01):
    """
    Combines network components by finding nearest nodes
    based on a QD Tree Approach.

    Parameters
    ----------
    graph : TYPE
        DESCRIPTION.

    Returns
    -------
    None.

    """
    # Initialize QD Tree
    xmin,ymin = np.min(np.array(list(cords.values())),axis=0)
    xmax,ymax = np.max(np.array(list(cords.values())),axis=0)
    bbox = (xmin,ymin,xmax,ymax)
    idx = Index(bbox)
    
    # Differentiate large and small components
    comps = [c for c in list(nx.connected_components(graph))]
    lencomps = [len(c) for c in list(nx.connected_components(graph))]
    indlarge = lencomps.index(max(lencomps))
    node_main = list(graph.subgraph(comps[indlarge]).nodes())
    del(comps[indlarge])
    
    # keep track of lines so we can recover them later
    nodes = []
    
    # create bounding box around each point in large component
    for i,node in enumerate(node_main):
        pt = Point(cords[node])
        pt_bounds = pt.x-radius, pt.y-radius, pt.x+radius, pt.y+radius
        idx.insert(i, pt_bounds)
        nodes.append((pt, pt_bounds, node))
        
    # find intersection and add edges
    edgelist = []
    for c in comps:
        node_comp = list(graph.subgraph(c).nodes())
        nodepairs = []
        for n in node_comp:
            pt = Point(cords[n])
            pt_bounds = pt.x-radius, pt.y-radius, pt.x+radius, pt.y+radius
            matches = idx.intersect(pt_bounds)
            closest_pt = min(matches,key=lambda i: nodes[i][0].distance(pt))
            nodepairs.append((n,nodes[closest_pt][-1]))
        dist = [MeasureDistance(cords[p[0]],cords[p[1]]) for p in nodepairs]
        edgelist.append(nodepairs[np.argmin(dist)])
    return edgelist
コード例 #13
0
 def build_qtree(self):
     bounds_prep = prep(self.bounds)
     bbox = []
     for val in self.bounds.bounds:
         bbox.append(val * 2)
     #ret = Index(bbox=bbox, maxdepth=100000)
     ret = Index(bbox=bbox)
     for segment in self.parentage.nodes():
         if segment.abs_polygon:
             seg_poly = segment.abs_polygon
             if not bounds_prep.disjoint(seg_poly):
                 ret.insert(segment, segment.abs_polygon.bounds)
     return ret
コード例 #14
0
    def update(self):
        collisionIndex = Index((0, 0, 800, 600))
        for o in self.gameObjects:
            o.update()
            if o.collidable:
                collisionIndex.insert(
                    o, (o.rect.left, o.rect.top, o.rect.right, o.rect.bottom))

        for i in self.collidableObjects:
            collisions = collisionIndex.intersect(
                (i.rect.left, i.rect.top, i.rect.right, i.rect.bottom))

            if (len(collisions) > 1):  # Intersecting more than self
                # logging.info("Collision!")
                CollisionHandler(collisions)
コード例 #15
0
def create_quadtree(file):
    # go through the file and create a dot object for each line and add it to a list
    dot_list = []

    for line in file:
        line = line.split()
        x = float(line[0])
        y = float(line[1])
        label = line[2]
        dot_list.append(Dot(label, (x, y, x, y)))
    file.close()

    # add all dots to the quadtree
    spindex = Index(bbox=(0, 0, 1, 1))
    for dot in dot_list:
        spindex.insert(dot, dot.bbox)

    return spindex
コード例 #16
0
def remove_overlapping_points(new_points, missed_points_coord):
    d_y = 1/222222.0 ## 0.5 meters
    d_x = np.cos(missed_points_coord[0][1] / (180 / np.pi))/222222.0 ## 0.5 meters
    missed_new_points_qtree = Index(bbox=(np.amin(new_points[:,0]), np.amin(new_points[:,1]), np.amax(new_points[:,0]), np.amax(new_points[:,1])))
    for n in new_points:
        if not missed_new_points_qtree.intersect((n[0] - d_x, n[1] - d_y, n[0] + d_x, n[1] + d_y)):
            missed_new_points_qtree.insert(n, bbox=(n[0], n[1], n[0], n[1]))
    new_points = missed_new_points_qtree.intersect((np.amin(new_points[:,0]), np.amin(new_points[:,1]), np.amax(new_points[:,0]), np.amax(new_points[:,1])))
    missed_points_qtree = Index(bbox=(np.amin(missed_points_coord[:, 0]), np.amin(missed_points_coord[:,1]), np.amax(missed_points_coord[:,0]), np.amax(missed_points_coord[:, 1])))
    checked_points = []
    
    for p in missed_points_coord:
        missed_points_qtree.insert(p, (p[0], p[1], p[0], p[1]))
    for i in trange(len(new_points), desc='check for double points'):
        mp = new_points[i]
        if not missed_points_qtree.intersect((mp[0] - d_x, mp[1] - d_y, mp[0] + d_x, mp[1] + d_y)):
            checked_points.append(mp)
    
    return checked_points
コード例 #17
0
    def update(self):
        qt = Index(bbox=(0, 0, self.w, self.h), max_items=5)

        for i in range(len(self.people)):
            s = self.people[i]
            qt.insert(i, (s.x, s.y, s.x, s.y))
            s.update(self.peopleSpeed)

        for s in self.people:
            if self.distanceRadius > 0:  # 사회적 거리두기
                distance = self.distanceRadius

                for i in qt.intersect((s.x - distance, s.y - distance,
                                       s.x + distance, s.y + distance)):
                    other = self.people[i]
                    if np.sqrt((s.x - other.x) * (s.x - other.x) +
                               (s.y - other.y) * (s.y - other.y)) > distance:
                        continue

                    if s != self.people[i]:
                        direct = np.arctan2(s.y - self.people[i].y,
                                            s.x - self.people[i].x)
                        s.dx += np.cos(direct) * 2
                        s.dy += np.sin(direct) * 2

                mag = np.sqrt(s.dx * s.dx + s.dy * s.dy)
                s.dx /= mag
                s.dy /= mag

            for i in qt.intersect(
                (s.x - self.infectionRadius, s.y - self.infectionRadius,
                 s.x + self.infectionRadius, s.y + self.infectionRadius)):
                other = self.people[i]
                if np.sqrt((s.x - other.x) * (s.x - other.x) +
                           (s.y - other.y) *
                           (s.y - other.y)) > self.infectionRadius:
                    continue

                if s.status == 1 and np.random.rand() < self.infectionPercent:
                    self.people[i].GetInfection(self.recoverTime,
                                                self.reinfectionPercent)

        self.setLogData()
コード例 #18
0
    def __apply_quadtree_pyqtree(self, ntwk, ltype):
        ntwk_w_data_ltype = ntwk[ntwk['LinkID_ptv'].isin(
            self._links_with_data)]
        print 'ltype', ltype, '# of links w/ data =', ntwk_w_data_ltype.shape[
            0]
        spindex = Index(bbox=self._bbox,
                        max_items=int(
                            min(ntwk_w_data_ltype.shape[0] * PCT_LINKS_IN_CELL,
                                MAX_CROWD)),
                        max_depth=MAX_DEPTH)
        for i in xrange(ntwk_w_data_ltype.shape[0]):
            #print ltype, i, '/ ', ntwk_w_data_ltype.shape[0], '(', float(i)/ntwk_w_data_ltype.shape[0]*100, '%)'
            link = ntwk_w_data_ltype.iloc[i]
            spindex.insert(link['LinkID_ptv'], bbox=(link['centroid'] * 2))

        link_cellid_map = self.__get_link_cube_tuple(spindex, ltype)
        assert len(link_cellid_map) == ntwk_w_data_ltype.shape[0]
        #now assign cell id;s to the links without data by looking at their nearest neighboring link's cell_id
        link_cellid_map = self.__find_cellid_neighbors(spindex, ntwk,
                                                       link_cellid_map, ltype)
        return link_cellid_map
コード例 #19
0
class BlockSearch(object):
    def __init__(self, blocks):
        bboxs = [block.bounding_box for block in blocks]
        xmax = max([bb.x + bb.width for bb in bboxs])
        ymax = max([bb.y + bb.height for bb in bboxs])
        self.spindex = PqtreeIndex(bbox=(0, 0, xmax, ymax))
        self.wrapper_map = {}
        for block in blocks:
            wrapper = DeletableWrapper(block)
            self.wrapper_map[block] = wrapper
            self.spindex.insert(wrapper, _to_bbox(block.bounding_box))

    def find_intersection_with(self, search_bounding_box):
        return [
            wrapper.data for wrapper in self.spindex.intersect(
                _to_bbox(search_bounding_box)) if not wrapper.deleted
        ]

    def remove(self, block):
        wrapper = self.wrapper_map.get(block)
        if wrapper is not None:
            wrapper.deleted = True
コード例 #20
0
ファイル: WindowQuery.py プロジェクト: Benthem/FDGPT
class TreeStruct:
    bbox = (-10000, -10000, 10000, 10000)

    ##
    # Maintain link from points to rectangle objects?
    def __init__(self):
        self.index = Index(bbox=self.bbox, max_items=40, max_depth=15)

    def addRect(self, rect):
        if (bboxoutside(rect.bbox, self.bbox)):
            print('outside')
            pass  # TODO

        self.index.insert(rect, rect.bbox)

    def removeRect(self, rect):
        self.index.remove(rect, rect.bbox)

    def query(self, rect):
        candidates = self.index.intersect(rect.bbox)
        # return candidates
        # TBD if we want to make the check both ways or are okay with overlaps only being detected on one end
        return [candidate for candidate in candidates if rect.overlaps(candidate) or candidate.overlaps(rect)]
コード例 #21
0
def create_quadTree(chr):
    print("processing ", chr)
    chromLength = chromosomes[chr]
    dims = 2
    hlevel = math.ceil(math.log2(chromLength) / dims)
    print("hlevel", hlevel)
    x_y_dim = math.ceil(math.pow(2, hlevel))
    print("max x|y =", x_y_dim)

    # f = open("quadtree/chrmids.json")
    # chromIndexes = json.loads(f)

    # tree = Index(bbox=(0, 0, x_y_dim, x_y_dim), disk="quadtree/indexes/roadmap." + chr + ".quadtree.index", first_run=True)
    tree = Index(bbox=(0, 0, x_y_dim, x_y_dim),
                 disk="./roadmap." + chr + ".quadtree.index")

    for file in chromIndexes.keys():
        print("\t file - ", file)
        if chr in chromIndexes[file]:
            chrmId = chromIndexes[file][chr]
            df = pandas.read_csv("quadtree/processed/" + file + ".leaves",
                                 header=0)
            df = df[df["rStartChromIx"] == chrmId]
            print("\t df shape - ", df.shape)
            for i, row in df.iterrows():
                # print(row)
                x_start, y_start, _ = hcoords(row["rStartBase"], chromLength)
                x_end, y_end, hlevel = hcoords(row["rEndBase"], chromLength)
                bbox = range2bbox(hlevel, {
                    "start": row["rStartBase"],
                    "end": row["rEndBase"]
                })
                tree.insert(
                    (row["rStartBase"], row["rEndBase"], row["rdataOffset"],
                     row["rDataSize"], fileIds[file]), bbox)
        else:
            print("\t !!!!!!! chrm doesn't exist - ", file)
コード例 #22
0
ファイル: pyqtree_test.py プロジェクト: karimbahgat/Pyqtree
def test_should_empty_index_after_removing_added_node():
    index = Index(INDEX_BBOX)
    index.insert(ITEM1, BBOX1)
    index.remove(ITEM1, BBOX1)
    assert len(index) == 0
    assert index.intersect(BBOX1) == []
コード例 #23
0
    multiple=True)
plants_path = filedialog.askopenfilename(
    initialdir=r"Z:\800 Operational\c07_hollandbean\Joke visser",
    title="Select plant file",
    parent=root)
root.destroy()
plants = geopandas.read_file(plants_path)
plants = plants.to_crs({'init': 'epsg:28992'})

spindex = Index(
    Polygon([(p.x, p.y) for p in plants.loc[:, 'geometry']]).bounds)
for i in plants.index:
    spindex.insert(
        {
            'index': i,
            'plant': list(plants.loc[i, 'geometry'].coords)[0]
        }, (list(plants.loc[i, 'geometry'].coords)[0][0],
            list(plants.loc[i, 'geometry'].coords)[0][1],
            list(plants.loc[i, 'geometry'].coords)[0][0],
            list(plants.loc[i, 'geometry'].coords)[0][1]))

pbar = tqdm(total=len(polys_paths), desc="Computing areas", position=0)
for path in polys_paths:
    polys = geopandas.read_file(path)
    polys = polys.to_crs({'init': 'epsg:28992'})
    key = 'area' + re.findall(r'\d+', path)[-1]
    pbar2 = tqdm(total=len(polys.index), desc="computing areas", position=0)
    for poly in polys.loc[:, 'geometry']:
        if poly.is_valid:
            plants_i = spindex.intersect(poly.bounds)
            if isinstance(plants_i, list):
                n = sum([
コード例 #24
0
ファイル: quadT.py プロジェクト: EvanYangAB/FIQTI
hlevel = math.ceil(math.log2(chromLength) / dims)
print("hlevel", hlevel)
x_y_dim = math.ceil(math.pow(2, hlevel))
print("max x|y =", x_y_dim)

tree = Index(bbox=(0, 0, x_y_dim, x_y_dim))

data = pickle.load(open("result1.p", "rb"))
print(len(data))
for entry in data:
    print(entry)
    (start, end, offset, length, fileName) = (entry[0], entry[1], entry[2],
                                              entry[3], 1)
    x, y, _ = hcoords(start, chromLength)
    print("x,y", x, y)
    tree.insert((start, end, offset, length, fileName), (x, y, x + 1, y + 1))

data = pickle.load(open("result2.p", "rb"))
print(len(data))
for entry in data:
    print(entry)
    (start, end, offset, length, fileName) = (entry[1], entry[3], entry[4],
                                              entry[5], 2)
    x, y, _ = hcoords(start, chromLength)
    print("x,y", x, y)
    tree.insert((start, end, offset, length, fileName), (x, y, x + 1, y + 1))

# repeating to see overhead
data = pickle.load(open("result1.p", "rb"))
print(len(data))
for entry in data:
コード例 #25
0
    #         index_c += [key for _ in range(len(contained_vor_polys))]
    #         vor_polys = list(filter(lambda p : not prepped.contains(p), vor_polys))
    #         intersecting_vor_polys = list(filter(lambda p : prepped.intersects(p), vor_polys))
    #         ordered_intersecting_vor_polys += intersecting_vor_polys
    #         index_i += [key for _ in range(len(intersecting_vor_polys))]
    #         vor_polys = list(filter(lambda p: not prepped.intersects(p), vor_polys))
    #         ordered[key]['vor_polys_i'] = intersecting_vor_polys
    #         pbar2.update(len(contained_vor_polys)+len(intersecting_vor_polys))
    #     pbar2.close()
    # =============================================================================
    points_list = [[] for _ in range(len(polys))]

    spindex = Index(
        Polygon(utilv.readable_values_inv(vor.points, mx, my)).bounds)
    for i, p in enumerate(utilv.readable_values_inv(vor.points, mx, my)):
        spindex.insert({'index': i, 'coord': p}, (p[0], p[1], p[0], p[1]))

    pbar15 = tqdm(total=len(ordered), desc="sorting", position=0)
    ints = []
    for i, key in enumerate(ordered.keys()):
        if (isinstance(ordered[key]['boundary'], Polygon)
                and ordered[key]['boundary'].exterior) or isinstance(
                    ordered[key]['boundary'], MultiPolygon):
            prepped = prep(ordered[key]['boundary'])
            filtered = list(
                filter(
                    lambda a: prepped.contains(
                        Point(a['coord'][0], a['coord'][1])),
                    spindex.intersect(ordered[key]['boundary'].bounds)))
            points_list[i].extend([p['index'] for p in filtered])
        pbar15.update(1)
コード例 #26
0
class Tiler:

    def set_extent(self, tags):
        self.max_x = max((tag.x for tag in tags)) + SHIFT
        self.min_x = min((tag.x for tag in tags)) - SHIFT

        self.max_y = max((tag.y for tag in tags)) + SHIFT
        self.min_y = min((tag.y for tag in tags)) - SHIFT

        self.origin = Point(self.min_x, self.min_y)
        max_size = max(self.max_x - self.min_x, self.max_y - self.min_y)
        self.map_size = max_size

        self.tile_size = [self.map_size / (1 << i) * METATILE_SIZE for i in range(20)]

        self.tag_to_normpos = dict()
        for tag in tags:
            x, y = tag.x, tag.y
            rel_x, rel_y = x - self.origin.x, y - self.origin.y
            norm_x, norm_y = rel_x / self.map_size, rel_y / self.map_size
            self.tag_to_normpos[tag.name] = (norm_x, norm_y)


    def set_bbox(self, tags):
        self.tag_spatial_index = Index(bbox=(self.min_x, self.min_y, self.max_x, self.max_y))
        for tag in tags:
            bbox = (tag.x, tag.y, tag.x, tag.y)
            self.tag_spatial_index.insert(tag, bbox)


    def set_postcount(self, tags):
        for tag in tags:
            tag.PostCount = int(getattr(tag, 'PostCount', -1))
        self.max_post_count = max(int(tag.PostCount) for tag in tags)


    def set_fonts(self):
        path_to_font = os.path.join(os.path.dirname(os.path.abspath(__file__)), './Verdana.ttf')
        self.fonts = [ImageFont.truetype(path_to_font, ANTIALIASING_SCALE * (25 - zoom * 2)) for zoom in range(8 + 1)]


    def __init__(self, tags):
        self.set_extent(tags)
        self.set_bbox(tags)
        self.set_postcount(tags)
        self.set_fonts()


    def search(self, name):
        return self.tag_to_normpos.get(name, '')


    def get_postcount_measure(self, tag):
        tag_count = tag.PostCount
        max_post_count = self.max_post_count
        return tag_count / max_post_count


    def get_tags_in_tile(self, meta_x, meta_y, zoom, with_shift):
        tile_size = self.tile_size[zoom]
        lower_left_corner = Point(self.origin.x + meta_x * tile_size,
                                  self.origin.y + meta_y * tile_size)

        shift = SHIFT if with_shift else 0
        tags_inside_tile = self.tag_spatial_index.intersect((lower_left_corner.x - shift, 
                                                             lower_left_corner.y - shift,
                                                             lower_left_corner.x + tile_size + shift, 
                                                             lower_left_corner.y + tile_size + shift))

        return tags_inside_tile


    def get_names_of_shown_tags(self, meta_x, meta_y, zoom):
        """
        Return the names of tags that we will show on the map.

        On low zoom levels, not all names are shown. 
        """
        if zoom >= ZOOM_TEXT_SHOW:
            # We know that all tag names will be shown anyway, so just return.
            return []

        tags_inside_tile = self.get_tags_in_tile(meta_x, meta_y, zoom, False)

        all_postcounts = sorted([(tag.PostCount, tag.name) for tag in tags_inside_tile])
        largest_tags = heapq.nlargest(TAGS_ANNOTATED_PER_TILE, all_postcounts)
        return {x[1] for x in largest_tags if x[0] > 0}


    def get_metatile(self, meta_x, meta_y, zoom):
        ''' 
        Get 8x8 rectangle of tiles, compute them at once. 
        This is faster than computing them one-by-one.

        `meta_x` and `meta_y` are coordinates of upper-left tile of the 
        generated metatile.
        '''
        meta_x /= METATILE_SIZE
        meta_y /= METATILE_SIZE

        img = Image.new('RGB', (TILE_DIM * METATILE_SIZE, 
            TILE_DIM * METATILE_SIZE), (240, 240, 240))
        draw = ImageDraw.Draw(img)

        tile_size = self.tile_size[zoom]
        lower_left_corner = Point(self.origin.x + meta_x * tile_size,
                                  self.origin.y + meta_y * tile_size)
        max_circle_rad = zoom * 1
        cnt_points = 0

        names_of_shown_tags = set()
        for dx in (-1, 0, 1):
            for dy in (-1, 0, 1):
                names_of_shown_tags.update(self.get_names_of_shown_tags(meta_x + dx, meta_y + dy, zoom))

        # Match slightly more tags, so that circles from neighbouring tiles can be drawn partially.
        tags_inside_tile = self.get_tags_in_tile(meta_x, meta_y, zoom, True)


        def get_point_from_tag(tag):
            x, y = tag.x, tag.y

            # Get coordinates from tile origin.
            point_coords = Point(x - lower_left_corner.x, y - lower_left_corner.y)
            # Now scale to TILE_DIM.
            pnt = Point(point_coords.x / tile_size * TILE_DIM * METATILE_SIZE,
                        point_coords.y / tile_size * TILE_DIM * METATILE_SIZE)
            return pnt


        for tag in tags_inside_tile:
            pnt = get_point_from_tag(tag)

            # Heuristic formula for showing post counts by circle sizes.
            post_count_measure = self.get_postcount_measure(tag)
            circle_rad = max(0.5, max_circle_rad * post_count_measure)

            draw.ellipse([pnt.x - circle_rad, pnt.y - circle_rad,
                   pnt.x + circle_rad, pnt.y + circle_rad],
                   fill=(122, 176, 42))

            cnt_points += 1

        # Draw text after all circles, so that it is not overwritten.
        # (because I did not find any kind of z-index feature in PIL)
        for tag in tags_inside_tile:
            pnt = get_point_from_tag(tag)
            fill = (0, 0, 0)
            if zoom >= ZOOM_TEXT_SHOW or tag.name in names_of_shown_tags:
                draw.text(pnt, tag.name, fill=fill, font=self.fonts[zoom])

        del draw

        return img, cnt_points
コード例 #27
0
class MapLink:
    """
    This class consists of attributes and methods to evaluate the nearest road
    network link to a point. The point may be a home location or a substation.
    The algorithm uses a QD-Tree approach to evaluate a bounding box for each
    point and link then finds the nearest link to each point.
    """
    def __init__(self,road,radius=0.01):
        '''
        '''
        longitudes = [road.nodes[n]['x'] for n in road.nodes()]
        latitudes = [road.nodes[n]['y'] for n in road.nodes()]
        xmin = min(longitudes); xmax = max(longitudes)
        ymin = min(latitudes); ymax = max(latitudes)
        bbox = (xmin,ymin,xmax,ymax)
    
        # keep track of lines so we can recover them later
        all_link = list(road.edges())
        self.lines = []
    
        # initialize the quadtree index
        self.idx = Index(bbox)
        
        # add edge bounding boxes to the index
        for i, link in enumerate(all_link):
            # create line geometry
            link_geom = road.edges[link]['geometry']
        
            # bounding boxes, with padding
            x1, y1, x2, y2 = link_geom.bounds
            bounds = x1-radius, y1-radius, x2+radius, y2+radius
        
            # add to quadtree
            self.idx.insert(i, bounds)
        
            # save the line for later use
            self.lines.append((link_geom, bounds, link))
        return
    
    
    def map_point(self,points,path=os.getcwd(),fiscode='121',
                  radius=0.01):
        '''
        Finds the nearest link to the point under consideration and saves the
        map as a csv file in the specified location.
        '''
        Map2Link = {}
        for h in points.cord:
            pt = Point(points.cord[h])
            pt_bounds = pt.x-radius, pt.y-radius, pt.x+radius, pt.y+radius
            matches = self.idx.intersect(pt_bounds)
            
            # find closest path
            try:
                closest_path = min(matches, 
                                   key=lambda i: self.lines[i][0].distance(pt))
                Map2Link[h] = self.lines[closest_path][-1]
            except:
                Map2Link[h] = None
        
        # Delete unmapped points
        unmapped = [p for p in Map2Link if Map2Link[p]==None]
        for p in unmapped:
            del Map2Link[p]
        
        # Save as a csv file
        df_map = pd.DataFrame.from_dict(Map2Link,orient='index',
                                        columns=['source','target'])
        df_map.index.names = ['hid']
        df_map.to_csv(path+fiscode+'-home2link.csv')
        return Map2Link
コード例 #28
0
class MapOSM:
    """
    Class consisting of attributes and methods to map OSM links to the residences
    """
    def __init__(self,road,radius=0.01):
        """
        Initializes the class object by creating a bounding box of known radius
        around each OSM road link.

        Parameters
        ----------
        road : networkx Multigraph
            The Open Street Map multigraph with node and edge attributes.
        radius : float, optional
            The radius of the bounding box around each road link. 
            The default is 0.01.

        Returns
        -------
        None.

        """
        longitudes = [road.nodes[n]['x'] for n in road.nodes()]
        latitudes = [road.nodes[n]['y'] for n in road.nodes()]
        xmin = min(longitudes); xmax = max(longitudes)
        ymin = min(latitudes); ymax = max(latitudes)
        bbox = (xmin,ymin,xmax,ymax)
        
        # keep track of edges so we can recover them later
        all_link = list(road.edges(keys=True))
        self.links = []
    
        # initialize the quadtree index
        self.idx = Index(bbox)
        
        # add edge bounding boxes to the index
        for i, link in enumerate(all_link):
            # create line geometry
            link_geom = road.edges[link]['geometry']
        
            # bounding boxes, with padding
            x1, y1, x2, y2 = link_geom.bounds
            bounds = x1-radius, y1-radius, x2+radius, y2+radius
        
            # add to quadtree
            self.idx.insert(i, bounds)
        
            # save the line for later use
            self.links.append((link_geom, bounds, link))
        return
    
    def map_point(self,points,path=os.getcwd(),fiscode='121',
                  radius=0.01):
        '''
        Finds the nearest link to the residence under consideration and saves the
        map as a csv file in the specified location.
        '''
        Map2Link = {}
        for h in points.cord:
            pt = Point(points.cord[h])
            pt_bounds = pt.x-radius, pt.y-radius, pt.x+radius, pt.y+radius
            matches = self.idx.intersect(pt_bounds)
            
            # find closest path
            try:
                closest_path = min(matches, 
                                   key=lambda i: self.links[i][0].distance(pt))
                Map2Link[h] = self.links[closest_path][-1]
            except:
                Map2Link[h] = None
        
        # Delete unmapped points
        unmapped = [p for p in Map2Link if Map2Link[p]==None]
        for p in unmapped:
            del Map2Link[p]
        
        # Save as a csv file
        df_map = pd.DataFrame.from_dict(Map2Link,orient='index',
                                        columns=['source','target','key'])
        df_map.index.names = ['hid']
        df_map.to_csv(path+fiscode+'-home2OSM.csv')
        return Map2Link
コード例 #29
0
ファイル: run_.py プロジェクト: MichaelReel/pyxamples
import csv
from pyqtree import Index
from pcpoint import PostCodePoint

pcFile = "postcodes.csv"

# Latitudes: 54.596553 to 54.603728
# Longitudes: -5.937032 to -5.922495
pcBounds = (54.596552, -5.937033, 54.603729, -5.922494)

pcIndex = Index(bbox = pcBounds)

with open(pcFile) as csvfile:
    pcReader = csv.DictReader(csvfile)

    print "populating qtree"

    for row in pcReader:
        postcode = PostCodePoint(row['Postcode'])
        lat = row['Latitude']
        lon = row['Longitude']

        pcIndex.insert(postcode, (lat, lon, lat, lon))

    print "qtree populated"
    print "attempt delaunay?"

コード例 #30
0
rural_blocks = data_blocks.loc[data_blocks.UR10 == 'R']["geometry"].values
urban_blocks = data_blocks.loc[data_blocks.UR10 == 'U']["geometry"].values

#%% Using QDTree
subx = [subs.iloc[i]["geometry"].coords[0][0] for i in range(len(subs))]
suby = [subs.iloc[i]["geometry"].coords[0][1] for i in range(len(subs))]
xmax = max(subx)
xmin = min(subx)
ymax = max(suby)
ymin = min(suby)
bbox = (xmin, ymin, xmax, ymax)

# Urban substations
idx = Index(bbox)
for pos, poly in enumerate(urban_blocks):
    idx.insert(pos, poly.bounds)

#iterate through points
urban_subs = []
for i in range(len(subs)):
    point = subs.iloc[i]["geometry"]
    # iterate through spatial index
    for j in idx.intersect(point.coords[0]):
        if point.within(urban_blocks[j]):
            urban_subs.append(subs.iloc[i]["ID"])

# Rural substations
idx = Index(bbox)
for pos, poly in enumerate(rural_blocks):
    idx.insert(pos, poly.bounds)
コード例 #31
0
ファイル: areas_df.py プロジェクト: nevobnav/PreparingDEMS
    df['area' + re.findall(r'\d+', p)[-1]] = None
    keys.append('area' + re.findall(r'\d+', p)[-1])
    f = gpd.read_file(p)
    f = f.to_crs({'init': 'epsg:28992'})
    #    f = gpd.GeoDataFrame(f)
    f['isvalid'] = f.geometry.apply(lambda x: x.is_valid)
    f = f[(f['isvalid'] == True)]
    f = f.drop(columns='isvalid')
    polys_list.append(f.loc[:, 'geometry'])
    areas.append([0 for _ in range(len(plants))])
    pbar0.update(1)
pbar0.close()

pyq = Index(bbox=bbox)
for i, p in enumerate(plants):
    pyq.insert(i, p.bounds)

convex_hull = Polygon([(p.x, p.y) for p in plants]).convex_hull

pbar = tqdm(total=len(voronoi_paths), position=0)
for j, f in enumerate(polys_list):
    pbar1 = tqdm(total=len(polys_list[j]), position=0)
    for p in f:
        if (p.is_valid and p.within(convex_hull)) or (
                not p.is_valid and p.buffer(0).within(convex_hull)):
            bbox = p.bounds
            intersected = pyq.intersect(bbox)
            if intersected:
                for k in intersected:
                    areas[j][k] = p.area / len(intersected)
        pbar1.update(1)
コード例 #32
0
ファイル: quadT.py プロジェクト: EvanYangAB/Pyqtree
        self.fileName = fileName

    def __repr__(self):
        return str((self.start, self.end, self.offset, self.fileName))


tree = Index(bbox=(0, 0, 16001, 16001))

data = pickle.load(open("result1.p", "rb"))
print(len(data))
for entry in data:
    # print(entry)
    (start, end, offset, length, fileName) = (entry[0], entry[1], entry[2],
                                              entry[3], 1)
    tree.insert(
        (start, end, offset, length, fileName),
        (start // 16000, start % 16000, start // 16000 + 1, start % 16000 + 1))

# data = pickle.load(open( "result2.p", "rb"))
# print(len(data))
# for entry in data:
#     # print(entry)
#     (start, end, offset, length, fileName) = (entry[1], entry[3], entry[4], entry[5], "39031")
#     tree.insert((start, end, offset, length, fileName), (start//16000, start%16000, start//16000 + 1, start%16000 + 1))

overlapbbox = (1, 1, 860, 860)
matches = tree.intersect(overlapbbox)

print(matches[0])
for item in matches:
    print(sys.getsizeof(item))
コード例 #33
0
ファイル: pyqtree_test.py プロジェクト: karimbahgat/Pyqtree
def test_should_add_single_node_and_find_its_intersection():
    index = Index(INDEX_BBOX)
    index.insert(ITEM1, BBOX1)
    assert len(index) == 1
    assert index.intersect(BBOX1) == [ITEM1]