コード例 #1
0
def generate_quaternion_rotations(
    rotation_axis,
    rotating_vector,
    start=0,
    end=360,
    num=360 * 3,
    endpoint=True,
):
    """
    Generate quaternion rotations of a vector around and axis.

    Rotates a `vector` around an `axis` for a series of angles.
    Rotation is performed using `Quaternion rotation <https://en.wikipedia.org/wiki/Quaternions_and_spatial_rotation>`_;
    namely, `pyquaterion.rotate <http://kieranwynn.github.io/pyquaternion/#rotation>`_.
    
    If you use this function you should cite
    `PyQuaternion package <http://kieranwynn.github.io/pyquaternion/>`_.

    Parameters
    ----------
    rotation_axis : tuple, list or array-like
        The XYZ coordinates of the rotation axis. This is the axis
        around which the vector will be rotated.

    rotation_vector : tuple, list or array-like
        The XYZ coordinates of the vector to rotate.

    start : int
        The starting rotation angle in degrees in the series.
        Defaults to ``0``.

    end : int
        The final rotation angle in degrees in the series.
        Defaults to ``360``.

    num : int
        The number of rotation steps in the angle rotation series.
        This is provided by ``np.linspace(start, end, num=num)``.

    Returns
    -------
    list of 2 unit tuples
        Where the list indexes follow the progression along
        ``np.linspace(start, end, num=num)`` and tuple elements
        are the rotation quatertion used to rotate ``rotation_vector``
        and the resulting rotated vector in its unitary form.
    """  # noqa: E501
    vec_u = Q(vector=rotating_vector).unit
    rot_u = Q(vector=rotation_axis).unit

    Q_rotated_tuples = []
    for angle in np.linspace(start, end, num=num, endpoint=endpoint):
        qq = Q(axis=rot_u.vector, degrees=angle)
        Q_rotated_tuples.append((qq, qq.rotate(vec_u)))

    return Q_rotated_tuples
コード例 #2
0
    def interpolate(self, b):
        current_model_state = self.get_model_state(model_name="piano2")
        quat = Q(current_model_state.pose.orientation.x, current_model_state.pose.orientation.y,\
         current_model_state.pose.orientation.z, current_model_state.pose.orientation.w)
        a = SE3(current_model_state.pose.position.x, current_model_state.pose.position.y,\
         current_model_state.pose.position.z, quat)

        x_inc = b.X - a.X
        y_inc = b.Y - a.Y
        z_inc = b.Z - a.Z
        mag = sqrt(x_inc * x_inc + y_inc * y_inc + z_inc * z_inc)
        x_inc = x_inc / mag * inc
        y_inc = y_inc / mag * inc
        z_inc = z_inc / mag * inc

        x = a.X
        y = a.Y
        z = a.Z
        q = a.q
        cur = a
        while SE3.euclid_dist(cur, b) > inc\
        or fabs(Q.sym_distance(q, b.q)) > steering_inc:
            self.set_position(cur)
            self.set_steering_angle(cur.q)
            if SE3.euclid_dist(cur, b) > inc:
                x += x_inc
                y += y_inc
                z += z_inc
            if Q.sym_distance(q, b.q) > steering_inc:
                q = Q.slerp(q, b.q, amount=steering_inc)
            cur = SE3(x, y, z, q)
            sleep(0.05)
        self.set_state(b)
コード例 #3
0
    def rotmat2quat_new(self, RR):
        """function to convert a given rotation matrix to a quaternion """
        trace = np.trace(RR)
        q = np.zeros(4)
        if RR[0][0] > trace and RR[0][0] > RR[1][1] and RR[0][0] > RR[2][2]:
            q[0] = np.sqrt((1 + (2 * RR[0][0]) - trace) / 4)
            q[1] = (1 / (4 * q[0])) * (RR[0][1] + RR[1][0])
            q[2] = (1 / (4 * q[0])) * (RR[0][2] + RR[2][0])
            q[3] = (1 / (4 * q[0])) * (RR[1][2] - RR[2][1])

        elif RR[1][1] >= trace and RR[1][1] >= RR[0][0] and RR[1][1] >= RR[2][
                2]:
            q[1] = np.sqrt((1 + (2 * RR[1][1]) - trace) / 4)
            q[0] = (1 / (4 * q[1])) * (RR[0][1] + RR[1][0])
            q[2] = (1 / (4 * q[1])) * (RR[1][2] + RR[2][1])
            q[3] = (1 / (4 * q[1])) * (RR[2][0] - RR[0][2])

        elif RR[2][2] >= trace and RR[2][2] >= RR[0][0] and RR[2][2] >= RR[1][
                1]:
            q[2] = np.sqrt((1 + (2 * RR[2][2]) - trace) / 4)
            q[0] = (1 / (4 * q[2])) * (RR[0][2] + RR[2][0])
            q[1] = (1 / (4 * q[2])) * (RR[1][2] + RR[2][1])
            q[3] = (1 / (4 * q[2])) * (RR[0][1] - RR[1][0])
        else:
            q[3] = np.sqrt((1 + trace) / 4)
            q[0] = (1 / (4 * q[3])) * (RR[1][2] - RR[2][1])
            q[1] = (1 / (4 * q[3])) * (RR[2][0] - RR[0][2])
            q[2] = (1 / (4 * q[3])) * (RR[0][1] - RR[1][0])
        if q[3] < 0:
            q = -q
        q = q / np.linalg.norm(q)

        return Q(q[3], q[0], q[1], q[2])
コード例 #4
0
    def rotmat2quat(self, RR):
        """function to convert a given rotation matrix to a quaternion """
        trace = np.trace(RR)
        if trace >= 0:
            S = 2.0 * np.sqrt(trace + 1)
            qw = 0.25 * S
            qx = (RR[2][1] - RR[1][2]) / S
            qy = (RR[0][2] - RR[2][0]) / S
            qz = (RR[1][0] - RR[0][1]) / S
        elif RR[0][0] > RR[1][1] and RR[0][0] > RR[2][2]:
            S = 2.0 * np.sqrt(1 + RR[0][0] - RR[1][1] - RR[2][2])
            qw = (RR[2][1] - RR[1][2]) / S
            qx = 0.25 * S
            qy = (RR[1][0] + RR[0][1]) / S
            qz = (RR[0][2] + RR[2][0]) / S
        elif RR[1][1] > RR[2][2]:
            S = 2.0 * np.sqrt(1 + RR[1][1] - RR[0][0] - RR[2][2])
            qw = (RR[0][2] - RR[2][0]) / S
            qx = (RR[1][0] + RR[0][1]) / S
            qy = 0.25 * S
            qz = (RR[2][1] + RR[1][2]) / S
        else:
            S = 2.0 * np.sqrt(1 + RR[2][2] - RR[0][0] - RR[1][1])
            qw = (RR[1][0] - RR[0][1]) / S
            qx = (RR[0][2] + RR[2][0]) / S
            qy = (RR[2][1] + RR[1][2]) / S
            qz = 0.25 * S
        if qw < 0:
            qw = -qw
            qx = -qx
            qy = -qy
            qz = -qz

        return Q(qw, qx, qy, qz)
コード例 #5
0
def sort_by_minimum_Qdistances(rotation_tuples, reference_vector):
    """
    Sort a list of quaternion rotation tuples.

    By its distance to a ``reference_vector``. Designed to receive
    the output of :py:func:`generate_quaternion_rotations`.

    If you use this function you should cite
    `PyQuaternion package <http://kieranwynn.github.io/pyquaternion/>`_.

    Parameters
    ----------
    rotation_tuples : list of tuples
        List of tuples containing Rotation quaternions and resulting
        rotated vector. In other words, the output from
        :py:func:`generate_quaternion_rotations`.

    reference_vector : tuple, list or array-like
        The XYZ 3D coordinates of the reference vector. The quaternion
        distance between vectors in ``rotation_tuples`` and this
        vector will be computed.
    
    Returns
    -------
    list
        The list sorted according to the creterion.
    """
    ref_u = Q(vector=reference_vector).unit

    minimum = sorted(
        rotation_tuples,
        key=lambda x: math.degrees(Q.distance(x[1], ref_u)) % 360,
    )
    return minimum
コード例 #6
0
 def on_disk():
     t = r()
     ab_weight, cd_weight = math.cos(t), math.sin(t)
     t1 = r()
     a, b = ab_weight * math.cos(t1), ab_weight * math.sin(t1)
     t2 = r()
     c, d = cd_weight * math.cos(t2), cd_weight * math.sin(t2)
     return Q(a, b, c, d)
コード例 #7
0
    def odomcallback(self, data):
        """"callback that takes the state estimates from open_vins, all these values are measurements to the UKF
        position velocity are of CoG in world frame, orientation"""

        px = data.pose.pose.position.x
        py = data.pose.pose.position.y
        pz = data.pose.pose.position.z
        self.X = np.array([[px], [py], [pz]])
        vx = data.twist.twist.linear.x
        vy = data.twist.twist.linear.y
        vz = data.twist.twist.linear.z
        self.V = np.array([[vx], [vy], [vz]])
        q = Q(data.pose.pose.orientation.w, data.pose.pose.orientation.x,
              data.pose.pose.orientation.y, data.pose.pose.orientation.z)
        self.R = q.rotation_matrix

        self.fast_propagation = True
コード例 #8
0
 def get_random_state(ground=False):
     minX = 0
     maxX = 8
     minY = 0
     maxY = 10
     minZ = 0.317
     maxZ = 3
     while True:
         x = random.uniform(minX, maxX)
         y = random.uniform(minY, maxY)
         z = random.uniform(minZ, maxZ)
         q = Q.random()
         if ground:
             z = 0.317
             q = tf.transformations.quaternion_from_euler(
                 0, 0, random.uniform(0, 2 * pi))
             q = Q(q.item(0), q.item(1), q.item(2), q.item(3))
         state = SE3(x, y, z, q)
         T, R = state.get_transition_rotation()
         if not pqp_client(T, R).result:
             # no collision
             return state
コード例 #9
0
 def repack(data):
     x = data[0]
     y = data[1]
     z = data[2]
     q = Q(data[3], data[4], data[5], data[6])
     return SE3(x, y, z, Q(q))
コード例 #10
0
ファイル: wire_old.py プロジェクト: matt-ketk/charges-2D
    def draw(self, environment, color, thickness=1):
        l = self.lengthV
        ln = np.sqrt(np.sum(l**2))

        # Form the rotation axis by getting the cross product between the z-axis vector and the normalized length vector
        rotationAxis = np.cross(np.array([0, 0, 1]), l / ln)

        # get the magnitude of rotationAxis ( sin(theta) )
        # normalize rotationAxis
        rotationMag = np.sqrt(np.sum(rotationAxis**2))

        angle = np.math.asin(rotationMag)

        # Create a quaternion
        if l[2] < 0:
            angle = np.pi / 2 - angle
        if rotationMag == 0:
            angle = 0
            rotationAxis_ = np.array([0, 0, 1])
        else:
            rotationAxis_ = rotationAxis / rotationMag
        rotationQ = Q(axis=rotationAxis_, angle=angle)

        # Draw two circles centered around the point and rotate them by the rotation quaternion
        points = [[], []]
        for i in range(20):
            p = rotationQ.rotate(
                np.array([
                    np.sin(i / 20 * 2 * 3.1415) * self.r,
                    np.cos(i / 20 * 2 * 3.1415) * self.r, 0
                ]))
            points[0].append(p + self.start)

            p = rotationQ.rotate(
                np.array([
                    np.sin(i / 20 * 2 * 3.1415) * self.r,
                    np.cos(i / 20 * 2 * 3.1415) * self.r, ln
                ]))
            points[1].append(p + self.start)

        environment.drawMesh(points, color)

        tpoints = environment.transformPoint(np.array([self.start, self.end]))

        if (abs(tpoints[1][0] - tpoints[0][0]) < 0.01):
            offset = np.array([self.r, 0]) * environment.zoom
        elif (abs(tpoints[1][1] - tpoints[0][1]) < 0.01):
            offset = np.array([0, self.r]) * environment.zoom

        else:
            slope = (tpoints[1][1] - tpoints[0][1]) / (tpoints[1][0] -
                                                       tpoints[0][0])
            perp = -1 / slope

            norm = np.sqrt(1 + 1 / slope**2)

            offset = np.array([self.r / norm, perp * self.r / norm
                               ]) * environment.zoom

        l1 = np.array([tpoints[0] + offset, tpoints[1] + offset]).astype(int)
        l2 = np.array([tpoints[0] - offset, tpoints[1] - offset]).astype(int)

        points = [[l1[0], l1[1]], [l2[0], l2[1]]]
        environment.drawMeshRaw(points, color)
コード例 #11
0
The above poses are from an initial viewpoint of the camera.
We now convert to the coordinate frame of the simluated world:
The camera is at x=1, y=0, z=1.5, so it's in front of the wall where the square is,
And it's oriented with:
    camera z along world -x, 
    camera x along y
    camera y along -z
'''

from bimvee.geometry import combineTwoQuaternions
from pyquaternion import Quaternion as Q

# Use pyquaternion library to give us a quaternion starting with a rotation matrix
cameraToWorldRotMat = np.array([[0, 0, -1], [1, 0, 0], [0, -1, 0]],
                               dtype=np.float64)
cameraToWorldQ = Q(matrix=cameraToWorldRotMat).q

rotationNew = np.zeros_like(rotation)

for idx in range(401):
    rotationNew[idx, :] = combineTwoQuaternions(rotation[idx, :],
                                                cameraToWorldQ)

# Same business for the points

pointNew = np.zeros_like(point)
pointNew[:, 0] = -point[:, 2] + 1
pointNew[:, 1] = point[:, 0]
pointNew[:, 2] = -point[:, 1] + 1.5

dataDict['pose6q']['point'] = pointNew
コード例 #12
0
def all_signs_qp(degree):
    all_quats = tuple(Q(x) for x in product((-1, 0, 1), repeat=4))
    return product(all_quats, repeat=degree)
コード例 #13
0
 def on_ball():
     r = lambda: uniform(-1, 1)
     q = Q(r(), r(), r(), r())
     while not (q.norm <= 1):
         q = Q(r(), r(), r(), r())
     return q
コード例 #14
0
def gaussian_random_qp(degree, number):
    r = lambda: gauss(0, 10)
    for _ in range(number):
        yield [Q(r(), r(), r(), r()) for _ in range(degree)]
コード例 #15
0
def uniform_random_qp(degree, smallest, biggest, number):
    r = lambda: uniform(smallest, biggest)
    for _ in range(number):
        yield [Q(r(), r(), r(), r()) for _ in range(degree)]