コード例 #1
0
ファイル: test_api.py プロジェクト: qfizik/pyquil
def test_sync_expectation_mock(qvm: QVMConnection):
    mock_qvm = qvm
    mock_endpoint = mock_qvm.sync_endpoint

    def mock_response(request, context):
        assert json.loads(request.text) == {
            "type": "expectation",
            "state-preparation": BELL_STATE.out(),
            "operators": ["Z 0\n", "Z 1\n", "Z 0\nZ 1\n"],
            "rng-seed": 52,
        }
        return b"[0.0, 0.0, 1.0]"

    with requests_mock.Mocker() as m:
        m.post(mock_endpoint + "/qvm", content=mock_response)
        result = mock_qvm.expectation(
            BELL_STATE,
            [Program(Z(0)), Program(Z(1)),
             Program(Z(0), Z(1))])
        exp_expected = [0.0, 0.0, 1.0]
        np.testing.assert_allclose(exp_expected, result)

    with requests_mock.Mocker() as m:
        m.post(mock_endpoint + "/qvm", content=mock_response)
        z0 = PauliTerm("Z", 0)
        z1 = PauliTerm("Z", 1)
        z01 = z0 * z1
        result = mock_qvm.pauli_expectation(BELL_STATE, [z0, z1, z01])
        exp_expected = [0.0, 0.0, 1.0]
        np.testing.assert_allclose(exp_expected, result)
コード例 #2
0
ファイル: qss.py プロジェクト: yhindy/quantum_secrets
def orig_decode(qubits, indices=None, measure=True):

    ## indices are qubits you recover secret from, need 3
    ## measure asks whether or not to measure result at end
    if indices is None:
        indices = np.random.choice(len(qubits), 3, replace=False)
    new_qubits = [qubits[index] for index in indices]
    pq = Program()
    ro = pq.declare('ro', 'BIT', 3)

    # first hadamard qubit 0
    pq += H(new_qubits[0])

    # bell state measurement on 1,2
    pq += X(new_qubits[2])
    pq += CNOT(new_qubits[2], new_qubits[1])
    pq += H(new_qubits[2])
    pq += MEASURE(new_qubits[1], ro[0])
    pq += MEASURE(new_qubits[2], ro[1])
    case1 = Program()
    case2 = Program()
    case1.if_then(ro[1], Program(Z(new_qubits[0]), X(new_qubits[0])),
                  Z(new_qubits[0]))
    case2.if_then(ro[1], X(new_qubits[0]), I(new_qubits[0]))
    pq.if_then(ro[0], case1, case2)
    if measure:
        pq += MEASURE(new_qubits[0], ro[2])
    return pq, new_qubits
コード例 #3
0
ファイル: test_api.py プロジェクト: qfizik/pyquil
def test_sync_expectation(qvm):
    result = qvm.expectation(
        BELL_STATE,
        [Program(Z(0)), Program(Z(1)),
         Program(Z(0), Z(1))])
    exp_expected = [0.0, 0.0, 1.0]
    np.testing.assert_allclose(exp_expected, result)
コード例 #4
0
def test_sync_expectation():
    def mock_response(request, context):
        assert json.loads(request.text) == {
            "type": "expectation",
            "state-preparation": BELL_STATE.out(),
            "operators": ["Z 0\n", "Z 1\n", "Z 0\nZ 1\n"]
        }
        return b'[0.0, 0.0, 1.0]'

    with requests_mock.Mocker() as m:
        m.post('https://api.rigetti.com/qvm', content=mock_response)
        result = qvm.expectation(
            BELL_STATE,
            [Program(Z(0)), Program(Z(1)),
             Program(Z(0), Z(1))])
        exp_expected = [0.0, 0.0, 1.0]
        assert np.allclose(result, exp_expected)

    with requests_mock.Mocker() as m:
        m.post('https://api.rigetti.com/qvm', content=mock_response)
        z0 = PauliTerm("Z", 0)
        z1 = PauliTerm("Z", 1)
        z01 = z0 * z1
        result = qvm.pauli_expectation(BELL_STATE, [z0, z1, z01])
        exp_expected = [0.0, 0.0, 1.0]
        assert np.allclose(result, exp_expected)
コード例 #5
0
ファイル: test_qaoa.py プロジェクト: stevenheidel/grove
def test_ref_program_pass():
    ref_prog = Program().inst([X(0), Y(1), Z(2)])
    fakeQVM = Mock(spec=qvm_module.SyncConnection())
    inst = QAOA(fakeQVM, 2, driver_ref=ref_prog)
    param_prog = inst.get_parameterized_program()
    test_prog = param_prog([0, 0])
    compare_progs(ref_prog, test_prog)
コード例 #6
0
ファイル: amplification.py プロジェクト: sycomix/grove
def decomposed_diffusion_program(qubits):
    """
    Constructs the diffusion operator used in Grover's Algorithm, acted on both sides by an
    a Hadamard gate on each qubit. Note that this means that the matrix representation of this
    operator is diag(1, -1, ..., -1). In particular, this decomposes the diffusion operator, which
    is a :math:`2**{len(qubits)}\times2**{len(qubits)}` sparse matrix, into
     :math:`\mathcal{O}(len(qubits)**2) single and two qubit gates.

    See C. Lavor, L.R.U. Manssur, and R. Portugal (2003) `Grover's Algorithm: Quantum Database
    Search`_ for more information.

    .. _`Grover's Algorithm: Quantum Database Search`: https://arxiv.org/abs/quant-ph/0301079

    :param qubits: A list of ints corresponding to the qubits to operate on.
                   The operator operates on bistrings of the form
                   ``|qubits[0], ..., qubits[-1]>``.
    """
    program = pq.Program()
    if len(qubits) == 1:
        program.inst(Z(qubits[0]))
    else:
        program.inst([X(q) for q in qubits])
        program.inst(H(qubits[-1]))
        program.inst(RZ(-np.pi, qubits[0]))
        program += (ControlledProgramBuilder().with_controls(
            qubits[:-1]).with_target(qubits[-1]).with_operation(
                X_GATE).with_gate_name(X_GATE_LABEL).build())
        program.inst(RZ(-np.pi, qubits[0]))
        program.inst(H(qubits[-1]))
        program.inst([X(q) for q in qubits])
    return program
コード例 #7
0
ファイル: test_quil.py プロジェクト: tocheng/pyquil
def test_dagger():
    p = Program(X(0), H(0))
    assert p.dagger().out() == "DAGGER H 0\nDAGGER X 0\n"

    p = Program(X(0), MEASURE(0, MemoryReference("ro", 0)))
    with pytest.raises(ValueError):
        p.dagger().out()

    # ensure that modifiers are preserved https://github.com/rigetti/pyquil/pull/914
    p = Program()
    control = 0
    target = 1
    cnot_control = 2
    p += X(target).controlled(control)
    p += Y(target).controlled(control)
    p += Z(target).controlled(control)
    p += H(target).controlled(control)
    p += S(target).controlled(control)
    p += T(target).controlled(control)
    p += PHASE(pi, target).controlled(control)
    p += CNOT(cnot_control, target).controlled(control)

    for instr, instr_dagger in zip(reversed(p._instructions),
                                   p.dagger()._instructions):
        assert "DAGGER " + instr.out() == instr_dagger.out()
コード例 #8
0
ファイル: test_quil.py プロジェクト: riccardomanenti/pyquil
def test_construction_syntax():
    p = Program().inst(X(0), Y(1), Z(0)).measure(0, 1)
    assert p.out() == 'X 0\nY 1\nZ 0\nMEASURE 0 [1]\n'
    p = Program().inst(X(0)).inst(Y(1)).measure(0, 1).inst(MEASURE(1, 2))
    assert p.out() == 'X 0\nY 1\nMEASURE 0 [1]\nMEASURE 1 [2]\n'
    p = Program().inst(X(0)).measure(0, 1).inst(Y(1), X(0)).measure(0, 0)
    assert p.out() == 'X 0\nMEASURE 0 [1]\nY 1\nX 0\nMEASURE 0 [0]\n'
コード例 #9
0
ファイル: amplification.py プロジェクト: kareem1925/grove
def diffusion_program(qubits):
    """Constructs the diffusion operator used in Grover's Algorithm, acted on both sides by an
     a Hadamard gate on each qubit. Note that this means that the matrix representation of this
     operator is diag(1, -1, ..., -1).

    See C. Lavor, L.R.U. Manssur, and R. Portugal (2003) `Grover's Algorithm: Quantum Database
    Search`_ for more information.

    .. _`Grover's Algorithm: Quantum Database Search`: https://arxiv.org/abs/quant-ph/0301079

    :param qubits: A list of ints corresponding to the qubits to operate on.
                   The operator operates on bistrings of the form
                   |qubits[0], ..., qubits[-1]>.
    """
    diffusion_program = pq.Program()

    if len(qubits) == 1:
        diffusion_program.inst(Z(qubits[0]))
    else:
        diffusion_program.inst([X(q) for q in qubits])
        diffusion_program.inst(H(qubits[-1]))
        diffusion_program.inst(RZ(-np.pi)(qubits[0]))
        diffusion_program += (ControlledProgramBuilder()
                              .with_controls(qubits[:-1])
                              .with_target(qubits[-1])
                              .with_operation(X_GATE)
                              .with_gate_name("NOT").build())
        diffusion_program.inst(RZ(-np.pi)(qubits[0]))
        diffusion_program.inst(H(qubits[-1]))
        diffusion_program.inst([X(q) for q in qubits])
    return diffusion_program
コード例 #10
0
ファイル: grover.py プロジェクト: Powerpin-org/grove
def diffusion_operator(qubits):
    """Constructs the (Grover) diffusion operator on qubits, assuming they are ordered from most
    significant qubit to least significant qubit.

    The diffusion operator is the diagonal operator given by(1, -1, -1, ..., -1).

    :param qubits: A list of ints corresponding to the qubits to operate on. The operator
                   operates on bistrings of the form |qubits[0], ..., qubits[-1]>.
    """
    p = pq.Program()

    if len(qubits) == 1:
        p.inst(H(qubits[0]))
        p.inst(Z(qubits[0]))
        p.inst(H(qubits[0]))

    else:
        p.inst(map(X, qubits))
        p.inst(H(qubits[-1]))
        p.inst(RZ(-np.pi)(qubits[0]))
        p += n_qubit_control(qubits[:-1], qubits[-1], np.array([[0, 1], [1, 0]]), "NOT")
        p.inst(RZ(-np.pi)(qubits[0]))
        p.inst(H(qubits[-1]))
        p.inst(map(X, qubits))
    return p
コード例 #11
0
def transformcionDeAlice(mensajeDeAlice):

    #Entrelazamiento de los qubits
    program = estadoDeBell()

    #Alice aplica la compuerta apropiada
    if (mensajeDeAlice == "11"):
        program += Program(X(0), Z(0))

    elif (mensajeDeAlice == "01"):
        program += Program(X(0))

    elif (mensajeDeAlice == "10"):
        program += Program(Z(0))

    return program
コード例 #12
0
def test_to_pyquil_from_pyquil_simple():
    p = Program()
    p += X(0)
    p += Y(1)
    p += Z(2)
    p += CNOT(0, 1)
    p += CZ(1, 2)
    assert p.out() == to_pyquil(from_pyquil(p)).out()
コード例 #13
0
def test_ref_program_pass():
    ref_prog = Program().inst([X(0), Y(1), Z(2)])
    fakeQVM = Mock(QuantumComputer)
    inst = QAOA(fakeQVM, list(range(2)), driver_ref=ref_prog)

    param_prog = inst.get_parameterized_program()
    test_prog = param_prog([0, 0])
    assert ref_prog == test_prog
コード例 #14
0
def test_ref_program_pass():
    ref_prog = Program().inst([X(0), Y(1), Z(2)])
    fakeQVM = Mock(spec=qvm_module.QVMConnection())
    inst = QAOA(fakeQVM, range(2), driver_ref=ref_prog)

    param_prog = inst.get_parameterized_program()
    test_prog = param_prog([0, 0])
    assert ref_prog == test_prog
コード例 #15
0
def test_to_pyquil_from_pyquil_not_starting_at_zero():
    p = Program()
    p += X(10)
    p += Y(11)
    p += Z(12)
    p += CNOT(10, 11)
    p += CZ(11, 12)
    assert p.out() == to_pyquil(from_pyquil(p)).out()
コード例 #16
0
ファイル: test_quil.py プロジェクト: syedm101/pyquil
def test_dagger():
    # these gates are their own inverses
    p = Program().inst(I(0), X(0), Y(0), Z(0),
                       H(0), CNOT(0, 1), CCNOT(0, 1, 2),
                       SWAP(0, 1), CSWAP(0, 1, 2))
    assert p.dagger().out() == 'CSWAP 0 1 2\nSWAP 0 1\n' \
                               'CCNOT 0 1 2\nCNOT 0 1\nH 0\n' \
                               'Z 0\nY 0\nX 0\nI 0\n'

    # these gates require negating a parameter
    p = Program().inst(PHASE(pi, 0), RX(pi, 0), RY(pi, 0),
                       RZ(pi, 0), CPHASE(pi, 0, 1),
                       CPHASE00(pi, 0, 1), CPHASE01(pi, 0, 1),
                       CPHASE10(pi, 0, 1), PSWAP(pi, 0, 1))
    assert p.dagger().out() == 'PSWAP(-pi) 0 1\n' \
                               'CPHASE10(-pi) 0 1\n' \
                               'CPHASE01(-pi) 0 1\n' \
                               'CPHASE00(-pi) 0 1\n' \
                               'CPHASE(-pi) 0 1\n' \
                               'RZ(-pi) 0\n' \
                               'RY(-pi) 0\n' \
                               'RX(-pi) 0\n' \
                               'PHASE(-pi) 0\n'

    # these gates are special cases
    p = Program().inst(S(0), T(0), ISWAP(0, 1))
    assert p.dagger().out() == 'PSWAP(pi/2) 0 1\n' \
                               'RZ(pi/4) 0\n' \
                               'PHASE(-pi/2) 0\n'

    # must invert defined gates
    G = np.array([[0, 1], [0 + 1j, 0]])
    p = Program().defgate("G", G).inst(("G", 0))
    assert p.dagger().out() == 'DEFGATE G-INV:\n' \
                               '    0.0, -i\n' \
                               '    1.0, 0.0\n\n' \
                               'G-INV 0\n'

    # can also pass in a list of inverses
    inv_dict = {"G": "J"}
    p = Program().defgate("G", G).inst(("G", 0))
    assert p.dagger(inv_dict=inv_dict).out() == 'J 0\n'

    # defined parameterized gates cannot auto generate daggered version https://github.com/rigetticomputing/pyquil/issues/304
    theta = Parameter('theta')
    gparam_matrix = np.array([[quil_cos(theta / 2), -1j * quil_sin(theta / 2)],
                             [-1j * quil_sin(theta / 2), quil_cos(theta / 2)]])
    g_param_def = DefGate('GPARAM', gparam_matrix, [theta])
    p = Program(g_param_def)
    with pytest.raises(TypeError):
        p.dagger()

    # defined parameterized gates should passback parameters https://github.com/rigetticomputing/pyquil/issues/304
    GPARAM = g_param_def.get_constructor()
    p = Program(GPARAM(pi)(1, 2))
    assert p.dagger().out() == 'GPARAM-INV(pi) 1 2\n'
コード例 #17
0
def random_identity_circuit(depth=None):
    """Returns a single-qubit identity circuit based on Pauli gates."""

    # initialize a quantum circuit
    prog = Program()

    # index of the (inverting) final gate: 0=I, 1=X, 2=Y, 3=Z
    k_inv = 0

    # apply a random sequence of Pauli gates
    for _ in range(depth):
        # random index for the next gate: 1=X, 2=Y, 3=Z
        k = np.random.choice([1, 2, 3])
        # apply the Pauli gate "k"
        if k == 1:
            prog += X(0)
        elif k == 2:
            prog += Y(0)
        elif k == 3:
            prog += Z(0)

        # update the inverse index according to
        # the product rules of Pauli matrices k and k_inv
        if k_inv == 0:
            k_inv = k
        elif k_inv == k:
            k_inv = 0
        else:
            _ = [1, 2, 3]
            _.remove(k_inv)
            _.remove(k)
            k_inv = _[0]

    # apply the final inverse gate
    if k_inv == 1:
        prog += X(0)
    elif k_inv == 2:
        prog += Y(0)
    elif k_inv == 3:
        prog += Z(0)

    return prog
コード例 #18
0
ファイル: test_group.py プロジェクト: vishalbelsare/pyquil
def test_merge_disjoint_experiments():
    sett1 = ExperimentSetting(TensorProductState(), sX(0) * sY(1))
    sett2 = ExperimentSetting(plusZ(1), sY(1))
    sett3 = ExperimentSetting(plusZ(0), sX(0))
    sett4 = ExperimentSetting(minusX(1), sY(1))
    sett5 = ExperimentSetting(TensorProductState(), sZ(2))

    expt1 = Experiment(settings=[sett1, sett2], program=Program(X(1)))
    expt2 = Experiment(settings=[sett3, sett4], program=Program(Z(0)))
    expt3 = Experiment(settings=[sett5], program=Program())

    merged_expt = merge_disjoint_experiments([expt1, expt2, expt3])
    assert len(merged_expt) == 2
コード例 #19
0
ファイル: test_quil.py プロジェクト: tocheng/pyquil
def test_construction_syntax():
    p = (Program().inst(Declare("ro", "BIT", 2), X(0), Y(1),
                        Z(0)).measure(0, MemoryReference("ro", 1)))
    assert p.out() == ("DECLARE ro BIT[2]\nX 0\nY 1\nZ 0\nMEASURE 0 ro[1]\n")
    p = (Program().inst(Declare("ro", "BIT", 3), X(0)).inst(Y(1)).measure(
        0, MemoryReference("ro", 1)).inst(MEASURE(1, MemoryReference("ro",
                                                                     2))))
    assert p.out() == (
        "DECLARE ro BIT[3]\nX 0\nY 1\nMEASURE 0 ro[1]\nMEASURE 1 ro[2]\n")
    p = (Program().inst(Declare("ro", "BIT", 2),
                        X(0)).measure(0, MemoryReference("ro", 1)).inst(
                            Y(1), X(0)).measure(0, MemoryReference("ro", 0)))
    assert p.out() == (
        "DECLARE ro BIT[2]\nX 0\nMEASURE 0 ro[1]\nY 1\nX 0\nMEASURE 0 ro[0]\n")
コード例 #20
0
ファイル: test_grover.py プロジェクト: shyamalschandra/grove
def test_trivial_grover():
    """Testing that we construct the correct circuit for Grover's Algorithm with one step, and the
     identity_oracle on one qubit.
     """
    trivial_grover = Program()
    qubit0 = trivial_grover.alloc()
    # First we put the input into uniform superposition.
    trivial_grover.inst(H(qubit0))
    # No oracle is applied, so we just apply the diffusion operator.
    trivial_grover.inst(H(qubit0))
    trivial_grover.inst(Z(qubit0))
    trivial_grover.inst(H(qubit0))
    qubits = [qubit0]
    generated_trivial_grover = Grover().oracle_grover(identity_oracle, qubits,
                                                      1)
    assert generated_trivial_grover.out() == trivial_grover.out()
コード例 #21
0
ファイル: test_parametric.py プロジェクト: rtvuser1/pyquil
def test_fuse():
    @parametric
    def rx(alpha):
        p = Program()
        p += RX(alpha)(0)
        return p

    @parametric
    def ry(beta):
        p = Program()
        p += RY(beta)(1)
        return p

    z = Program().inst(Z(2))
    fused = rx.fuse(ry).fuse(z)

    assert fused(1.0, 2.0).out() == "RX(1.0) 0\nRY(2.0) 1\nZ 2\n"
コード例 #22
0
def simulate_error(primal: nx.Graph, dual: nx.Graph, p=None, phase_flips=None,
                   bit_flips=None):
    '''Given a code defined by a primal and dual graph, applies noise under the
    independent noise model.

    :param primal: Primal graph of the code
    :param dual: Dual graph of the code
    :param p: Probability with which to apply bit and phase flips
    :param phase_flips, bit_flips: Lists of edges to apply bit/phase flips to,
        if working in a deterministic setting (in this case, set p=None)
    :returns: Program for primal and dual graphs representing the applied
        errors, and lists of edges for each graph where phase and bit flips
        were applied for debugging
    '''
    if p is None:
        assert phase_flips is not None
        assert bit_flips is not None
    else:
        # Randomly choose which qubits will have bit/phase flip errors
        # Working under the independent noise model; since the toric code is a
        # CSS code, we can analyze bit and phase flip errors seperately

        assert phase_flips is None
        assert bit_flips is None

        phase_flips = set()
        for edge in primal.edges:
            if weighted_flip(p):
                phase_flips.add(edge)
        bit_flips = set()
        for edge in dual.edges:
            if weighted_flip(p):
                bit_flips.add(edge)

    primal_pq = Program()
    dual_pq = Program()

    # Apply the errors we selected above to the necessary qubits
    for p_edge in primal.edges:
        if p_edge in phase_flips:
            primal_pq += Z(primal.edges[p_edge]['data_qubit'])
    for d_edge in dual.edges:
        if d_edge in bit_flips:
            dual_pq += X(dual.edges[d_edge]['data_qubit'])

    return primal_pq, phase_flips, dual_pq, bit_flips
コード例 #23
0
ファイル: test_quil.py プロジェクト: tocheng/pyquil
def test_merge_with_pauli_noise():
    p = Program(X(0)).inst(Z(0))
    probs = [0.0, 1.0, 0.0, 0.0]
    merged = merge_with_pauli_noise(p, probs, [0])
    assert (merged.out() == """DEFGATE pauli_noise:
    1.0, 0
    0, 1.0

PRAGMA ADD-KRAUS pauli_noise 0 "(0.0 0.0 0.0 0.0)"
PRAGMA ADD-KRAUS pauli_noise 0 "(0.0 1.0 1.0 0.0)"
PRAGMA ADD-KRAUS pauli_noise 0 "(0.0 0.0 0.0 0.0)"
PRAGMA ADD-KRAUS pauli_noise 0 "(0.0 0.0 0.0 -0.0)"
X 0
pauli_noise 0
Z 0
pauli_noise 0
""")
コード例 #24
0
ファイル: test_grover.py プロジェクト: shyamalschandra/grove
def test_x_oracle_one_grover(x_oracle):
    """Testing that Grover's algorithm with an oracle that applies an X gate to the query bit works,
     with one iteration."""
    x_oracle_grover = Program()
    qubit0 = x_oracle_grover.alloc()
    qubits = [qubit0]
    oracle, query_qubit = x_oracle
    with patch("pyquil.quil.Program.alloc") as mock_alloc:
        mock_alloc.return_value = qubit0
    generated_x_oracle_grover = Grover().oracle_grover(oracle, qubits, 1)
    # First we put the input into uniform superposition.
    x_oracle_grover.inst(H(qubit0))
    # Now an oracle is applied.
    x_oracle_grover.inst(X(query_qubit))
    # We now apply the diffusion operator.
    x_oracle_grover.inst(H(qubit0))
    x_oracle_grover.inst(Z(qubit0))
    x_oracle_grover.inst(H(qubit0))
    assert generated_x_oracle_grover == x_oracle_grover
コード例 #25
0
ファイル: teleportation.py プロジェクト: vontell/pyquil
def teleport(start_index, end_index, ancilla_index):
    """Teleport a qubit from start to end using an ancilla qubit
    """
    p = make_bell_pair(end_index, ancilla_index)

    # do the teleportation
    p.inst(CNOT(start_index, ancilla_index))
    p.inst(H(start_index))

    # measure the results and store them in classical registers [0] and [1]
    p.measure(start_index, 0)
    p.measure(ancilla_index, 1)

    p.if_then(1, X(2))
    p.if_then(0, Z(2))

    p.measure(end_index, 2)

    return p
コード例 #26
0
def test_dagger():
    # these gates are their own inverses
    p = Program().inst(I(0), X(0), Y(0), Z(0),
                       H(0), CNOT(0,1), CCNOT(0,1,2),
                       SWAP(0,1), CSWAP(0,1,2))
    assert p.dagger().out() == 'CSWAP 0 1 2\nSWAP 0 1\n' \
                      'CCNOT 0 1 2\nCNOT 0 1\nH 0\n' \
                      'Z 0\nY 0\nX 0\nI 0\n'

    # these gates require negating a parameter
    p = Program().inst(PHASE(pi, 0), RX(pi, 0), RY(pi, 0),
                       RZ(pi, 0), CPHASE(pi, 0, 1),
                       CPHASE00(pi, 0, 1), CPHASE01(pi, 0, 1),
                       CPHASE10(pi, 0, 1), PSWAP(pi, 0, 1))
    assert p.dagger().out() == 'PSWAP(-3.141592653589793) 0 1\n' \
                               'CPHASE10(-3.141592653589793) 0 1\n' \
                               'CPHASE01(-3.141592653589793) 0 1\n' \
                               'CPHASE00(-3.141592653589793) 0 1\n' \
                               'CPHASE(-3.141592653589793) 0 1\n' \
                               'RZ(-3.141592653589793) 0\n' \
                               'RY(-3.141592653589793) 0\n' \
                               'RX(-3.141592653589793) 0\n' \
                               'PHASE(-3.141592653589793) 0\n'

    # these gates are special cases
    p = Program().inst(S(0), T(0), ISWAP(0, 1))
    assert p.dagger().out() == 'PSWAP(1.5707963267948966) 0 1\n' \
                               'RZ(0.7853981633974483) 0\n' \
                               'PHASE(-1.5707963267948966) 0\n'

    # must invert defined gates
    G = np.array([[0, 1], [0+1j, 0]])
    p = Program().defgate("G", G).inst(("G", 0))
    assert p.dagger().out() == 'DEFGATE G-INV:\n' \
                               '    0.0+-0.0i, 0.0-1.0i\n' \
                               '    1.0+-0.0i, 0.0+-0.0i\n\n' \
                               'G-INV 0\n'

    # can also pass in a list of inverses
    inv_dict = {"G":"J"}
    p = Program().defgate("G", G).inst(("G", 0))
    assert p.dagger(inv_dict=inv_dict).out() == 'J 0\n'
コード例 #27
0
ファイル: test_quil.py プロジェクト: kylegulshen/pyquil
def test_construction_syntax():
    p = Program().inst(Declare('ro', 'BIT', 2), X(0), Y(1), Z(0)).measure(0, MemoryReference('ro', 1))
    assert p.out() == ('DECLARE ro BIT[2]\n'
                       'X 0\n'
                       'Y 1\n'
                       'Z 0\n'
                       'MEASURE 0 ro[1]\n')
    p = Program().inst(Declare('ro', 'BIT', 3), X(0)).inst(Y(1)).measure(0, MemoryReference('ro', 1)).inst(MEASURE(1, MemoryReference('ro', 2)))
    assert p.out() == ('DECLARE ro BIT[3]\n'
                       'X 0\n'
                       'Y 1\n'
                       'MEASURE 0 ro[1]\n'
                       'MEASURE 1 ro[2]\n')
    p = Program().inst(Declare('ro', 'BIT', 2), X(0)).measure(0, MemoryReference('ro', 1)).inst(Y(1), X(0)).measure(0, MemoryReference('ro', 0))
    assert p.out() == ('DECLARE ro BIT[2]\n'
                       'X 0\n'
                       'MEASURE 0 ro[1]\n'
                       'Y 1\n'
                       'X 0\n'
                       'MEASURE 0 ro[0]\n')
コード例 #28
0
ファイル: test_quil.py プロジェクト: shenzhi-git/pyquil
def test_construction_syntax():
    p = Program().inst(X(0), Y(1), Z(0)).measure(0, 1)
    assert p.out() == ('DECLARE ro BIT[2]\n'
                       'X 0\n'
                       'Y 1\n'
                       'Z 0\n'
                       'MEASURE 0 ro[1]\n')
    p = Program().inst(X(0)).inst(Y(1)).measure(0, 1).inst(MEASURE(1, 2))
    assert p.out() == ('DECLARE ro BIT[3]\n'
                       'X 0\n'
                       'Y 1\n'
                       'MEASURE 0 ro[1]\n'
                       'MEASURE 1 ro[2]\n')
    p = Program().inst(X(0)).measure(0, 1).inst(Y(1), X(0)).measure(0, 0)
    assert p.out() == ('DECLARE ro BIT[2]\n'
                       'X 0\n'
                       'MEASURE 0 ro[1]\n'
                       'Y 1\n'
                       'X 0\n'
                       'MEASURE 0 ro[0]\n')
コード例 #29
0
def create_singlet_state():
    """ Returns quantum program that constructs a Singlet state of two spins """

    p = Program()

    # Start by constructing a Triplet state of two spins (Bell state)
    # 10|> + 01|>
    # https://en.wikipedia.org/wiki/Triplet_state
    #
    p.inst(X(0))
    p.inst(H(1))
    p.inst(CNOT(1, 0))

    # Convert to Singlet
    # 01|> - 10|>
    # https://en.wikipedia.org/wiki/Singlet_state
    #
    p.inst(Z(1))

    return p
コード例 #30
0
ファイル: test_grover.py プロジェクト: ntezak/grove
def test_x_oracle_two_grover(x_oracle):
    """Testing that Grover's algorithm with an oracle that applies an X gate to the query bit works,
     with two iterations."""
    x_oracle_grover = Program()
    qubit0 = x_oracle_grover.alloc()
    qubits = [qubit0]
    oracle, query_qubit = x_oracle
    with patch("pyquil.quilbase.InstructionGroup.alloc") as mock_alloc:
        mock_alloc.return_value = qubit0
    generated_x_oracle_grover = Grover().oracle_grover(oracle, qubits, 2)
    # First we put the input into uniform superposition.
    x_oracle_grover.inst(H(qubit0))
    # Two iterations.
    for _ in range(2):
        # Now an oracle is applied.
        x_oracle_grover.inst(X(query_qubit))
        # We apply the diffusion operator.
        x_oracle_grover.inst(H(qubit0))
        x_oracle_grover.inst(Z(qubit0))
        x_oracle_grover.inst(H(qubit0))
    synthesize_programs(generated_x_oracle_grover, x_oracle_grover)
    assert prog_equality(generated_x_oracle_grover, x_oracle_grover)