コード例 #1
0
ファイル: test_noise.py プロジェクト: timasq/pyquil
def test_tensor_kraus_maps():
    damping = damping_kraus_map()
    k1, k2, k3, k4 = tensor_kraus_maps(damping, damping)
    assert k1.shape == (4, 4)
    assert k2.shape == (4, 4)
    assert k3.shape == (4, 4)
    assert k4.shape == (4, 4)
    np.testing.assert_allclose(k1[-1, -1], 1 - 0.1)
コード例 #2
0
ファイル: test_noise.py プロジェクト: timasq/pyquil
def test_pauli_kraus_map():
    probabilities = [.1, .2, .3, .4]
    k1, k2, k3, k4 = pauli_kraus_map(probabilities)
    assert np.allclose(k1, np.sqrt(.1) * np.eye(2), atol=1 * 10**-8)
    assert np.allclose(k2,
                       np.sqrt(.2) * np.array([[0, 1.], [1., 0]]),
                       atol=1 * 10**-8)
    assert np.allclose(k3,
                       np.sqrt(.3) * np.array([[0, -1.j], [1.j, 0]]),
                       atol=1 * 10**-8)
    assert np.allclose(k4,
                       np.sqrt(.4) * np.array([[1, 0], [0, -1]]),
                       atol=1 * 10**-8)

    two_q_pauli_kmaps = pauli_kraus_map(
        np.kron(probabilities, list(reversed(probabilities))))
    q1_pauli_kmaps = [k1, k2, k3, k4]
    q2_pauli_kmaps = pauli_kraus_map(list(reversed(probabilities)))
    tensor_kmaps = tensor_kraus_maps(q1_pauli_kmaps, q2_pauli_kmaps)
    assert np.allclose(two_q_pauli_kmaps, tensor_kmaps)
コード例 #3
0
def _modified_decoherence_noise_model(
    gates: Sequence[Gate],
    T1: Union[Dict[int, float], float] = 30e-6,
    T2: Union[Dict[int, float], float] = 30e-6,
    gate_time_1q: float = 50e-9,
    gate_time_2q: float = 150e-09,
    ro_fidelity: Union[Dict[int, float], float] = 0.95,
) -> NoiseModel:
    """
    The default noise parameters

    - T1 = 30 us
    - T2 = 30 us
    - 1q gate time = 50 ns
    - 2q gate time = 150 ns

    are currently typical for near-term devices.

    This function will define new gates and add Kraus noise to these gates. It will translate
    the input program to use the noisy version of the gates.

    :param gates: The gates to provide the noise model for.
    :param T1: The T1 amplitude damping time either globally or in a
        dictionary indexed by qubit id. By default, this is 30 us.
    :param T2: The T2 dephasing time either globally or in a
        dictionary indexed by qubit id. By default, this is also 30 us.
    :param gate_time_1q: The duration of the one-qubit gates, namely RX(+pi/2) and RX(-pi/2).
        By default, this is 50 ns.
    :param gate_time_2q: The duration of the two-qubit gates, namely CZ.
        By default, this is 150 ns.
    :param ro_fidelity: The readout assignment fidelity
        :math:`F = (p(0|0) + p(1|1))/2` either globally or in a dictionary indexed by qubit id.
    :return: A NoiseModel with the appropriate Kraus operators defined.
    """
    all_qubits = set(sum(([t.index for t in g.qubits] for g in gates), []))
    if isinstance(T1, dict):
        all_qubits.update(T1.keys())
    if isinstance(T2, dict):
        all_qubits.update(T2.keys())
    if isinstance(ro_fidelity, dict):
        all_qubits.update(ro_fidelity.keys())

    if not isinstance(T1, dict):
        T1 = {q: T1 for q in all_qubits}

    if not isinstance(T2, dict):
        T2 = {q: T2 for q in all_qubits}

    if not isinstance(ro_fidelity, dict):
        ro_fidelity = {q: ro_fidelity for q in all_qubits}

    kraus_maps = []
    for g in gates:
        targets = tuple(t.index for t in g.qubits)
        key = (g.name, tuple(g.params))
        if g.name in NO_NOISE:
            if not g.dd:
                g.gate_time = gate_time_1q
            continue
        matrix, _ = get_modified_noisy_gate(g.name, g.params)

        if len(targets) == 1:
            if g.gate_time == None:
                g.gate_time = gate_time_1q
            noisy_I = damping_after_dephasing(T1.get(targets[0], INFINITY),
                                              T2.get(targets[0], INFINITY),
                                              g.gate_time)
        else:
            if len(targets) != 2:
                raise ValueError(
                    "Noisy gates on more than 2Q not currently supported")
            if g.gate_time == None:
                g.gate_time = gate_time_2q

            # note this ordering of the tensor factors is necessary due to how the QVM orders
            # the wavefunction basis
            noisy_I = tensor_kraus_maps(
                damping_after_dephasing(T1.get(targets[1], INFINITY),
                                        T2.get(targets[1], INFINITY),
                                        g.gate_time),
                damping_after_dephasing(T1.get(targets[0], INFINITY),
                                        T2.get(targets[0], INFINITY),
                                        g.gate_time))
        kraus_maps.append(
            KrausModel(g.name, tuple(g.params), targets,
                       combine_kraus_maps(noisy_I, [matrix]), 1.0))
    aprobs = {}
    for q, f_ro in ro_fidelity.items():
        aprobs[q] = np.array([[f_ro, 1. - f_ro], [1. - f_ro, f_ro]])

    return NoiseModel(kraus_maps, aprobs)