コード例 #1
0
ファイル: kaitutils.py プロジェクト: cenko/python
def kaitphot(refimage, inlist, sncoo, aperture=10.0, dx=20, dy=20):

    infiles = iraffiles(inlist)

    # Find location of SN
    [[snra, sndec]] = impix2wcs(refimage, sncoo[0], sncoo[1])
    sn=[Star(name="New_SN",xval=sncoo[0],yval=sncoo[1])]
    snstars=Starlist(stars=sn)
    print "Coordinates of new SN: %s %s (J2000.0)" % (snra, sndec)

    # Grab reference rootname
    refroot,null = refimage.split('.')
    
    # Big loop
    for image in infiles:

        # Image root
        root,null = image.split('.')

        # Grab zeropt and zeropt error from image header
        zp,zpu = get_head(image,[ZPTKEY,ZPUKEY])

        # Detect objects in difference image
        iraf.iqobjs('%s.sub.fits' % root,SIGMA,SATVAL,skyval="0.0",
                    zeropt=float(zp),masksfx=MASKSFX,wtimage="",fwhm=FWHM,
                    pix=PIXSCALE,aperture=2*FWHM/PIXSCALE,gain=FL_GAIN,
                    minlim=no,clobber=yes,verbose=no)

        # See if object was detected
        stars=Starlist('%s.sub.fits.stars' % root)
        match,snmatch=stars.match(snstars,useflags=yes)
        
        # If so, use SN magnitude and statistical error
        if len(match):
            snmag = match[0].mag
            snerr = match[0].magu
   
        # Otherwise calculate upper limit
        else:
            statsec = '[%i:%i,%i:%i]' % (int(sncoo[0]-dx/2), int(sncoo[0]+dx/2),
                                         int(sncoo[1]-dy/2), int(sncoo[1]+dy/2))
            iraf.iterstat('%s.sub%s' % (root, statsec), nsigrej=5, maxiter=5,
                          prin=no,verbose=no)
            sigma=float(iraf.iterstat.sigma)
            snmag = - 2.5 * log10(3 * sigma * sqrt(pi * power(aperture,2))) + \
                    float(zp)
            snerr = 99.999

        # Want UT of Observation
        [dateobs,ut] = get_head(image,['DATE-OBS','UT'])
        tobs=DateTime(int(dateobs[6:]),int(dateobs[3:5]),int(dateobs[:2]),
                      int(ut[:2]),int(ut[3:5]),int(ut[6:]))
        
        # Return SN Mag / UL
        print '%s\t%s %.3f %10.3f%10.3f%10.3f%10.3f' % (root,tobs.Format("%b"),
              (((tobs.second/3600.0)+tobs.minute)/60.0+tobs.hour)/24.0+
              tobs.day,snmag,snerr,float(zp),float(zpu))
   
    print 'Exiting Successfully'
    return
コード例 #2
0
ファイル: iqlmi.py プロジェクト: jicapone/python
def lmi_detrend(
    imlist,
    otype="OBJECT",
    ppre="p",
    bkey="BIASSEC",
    tkey="TRIMSEC",
    bpre="b",
    bfile="Bias.fits",
    fkey="FILTER",
    fpre="f",
    flatpre="Flat",
    skybkg="SKYBKG",
    skysub="SKYSUB",
    skysig="SKYSIG",
    fpfx="F",
    clobber=globclob,
    verbose=globver,
):

    """Identify science frames, pre-process, subtract bias, divide by flat, 
	   and correct for non-linearity."""

    images = glob.glob(imlist)
    images.sort()

    # Loop through all images
    for im in images:
        hdr = pyfits.getheader(im)
        if hdr["OBSTYPE"] == otype:

            # Preprocess
            preproc(im, fkey=fkey, ppre=ppre, bkey=bkey, tkey=tkey, clobber=clobber, verbose=verbose)

            # Bias subtraction
            lmi_debias("%s%s" % (ppre, im), bpre=bpre, bfile=bfile)

            # Flat field
            lmi_flat("%s%s%s" % (bpre, ppre, im), fpre=fpre, fkey=fkey, flatpre="Flat")

            # Linearity correction
            lmi_lincor("%s%s%s%s" % (fpre, bpre, ppre, im))

            # Write sky values to header
            iraf.iterstat("%s%s%s%s" % (fpre, bpre, ppre, im), verbose=no, prin=no)
            fimg = pyfits.open("%s%s%s%s" % (fpre, bpre, ppre, im), mode="update")
            fimg[0].header[skybkg] = iraf.iterstat.median
            fimg[0].header[skysig] = iraf.iterstat.sigma
            fimg[0].header[skysub] = 0
            fimg.flush()
            fimg.close()

            # Final processed image
            shutil.copy("%s%s%s%s" % (fpre, bpre, ppre, im), "%s%s" % (fpfx, im))

    return
コード例 #3
0
ファイル: iqnirc2.py プロジェクト: pradipgatkine/python
def nirc_sky(image, bpm):

    usebpm = 0
    if len(bpm) > 0:
        re1 = re.search("^\!(\w+)", bpm)
        if re1:
            bpmkey = re1.group(1)
            bpmfile = get_head(image, bpmkey)
        else:
            bpmfile = bpm
        if len(bpmfile) > 0 and os.path.exists(bpmfile):
            usebpm = 1

    if usebpm:
        mimstat = iraf.mimstatistics(
            image,
            imasks='!BPM',
            omasks="",
            fields='image,npix,mean,stddev,min,max,mode',
            lower='INDEF',
            upper='INDEF',
            nclip=4,
            lsigma=5.0,
            usigma=5.0,
            binwidth=0.1,
            format=no,
            Stdout=1,
            Stderr=1)
        mimels = mimstat[0].split()
        skybkg = None

        if len(mimels) == 6:
            try:
                skybkg = float(mimels[5])
            except:
                pass

        if not skybkg:
            usebpm = 0

    if not usebpm:
        iraf.iterstat(image, nsigrej=5, maxiter=10, prin=no, verbose=no)
        skybkg = float(iraf.iterstat.median)

    return skybkg
コード例 #4
0
ファイル: iqwirc.py プロジェクト: cenko/python
def wirc_sky(image,bpm):

    usebpm=0
    if len(bpm)>0:
        re1=re.search("^\!(\w+)",bpm)
        if re1:
            bpmkey=re1.group(1)
            bpmfile=get_head(image,bpmkey)
        else:
            bpmfile=bpm
        if len(bpmfile)>0 and os.path.exists(bpmfile):
            usebpm=1

    if usebpm:
        mimstat=iraf.mimstatistics(image,imasks='!BPM',omasks="",
                     fields='image,npix,mean,stddev,min,max,mode',
                     lower='INDEF',upper='INDEF',nclip=4,
                     lsigma=5.0,usigma=5.0,binwidth=0.1,
                     format=no,Stdout=1,Stderr=1)
        mimels=mimstat[0].split()
        skybkg=None

        if len(mimels)==6:
            try:
                skybkg=float(mimels[5])
            except:
                pass

        if not skybkg:
            usebpm=0
            
    if not usebpm:
        iraf.iterstat(image,nsigrej=5,maxiter=10,
                      prin=no,verbose=no)
        skybkg=float(iraf.iterstat.median)

    return skybkg
コード例 #5
0
ファイル: iqratir.py プロジェクト: ancheetah/RATIR-GSFC
def iq_ratir(chip="C1", filt="i", reflist="sdss.reg"):
    '''Process RATIR data for given chip and filter'''

    # Check and see if bias frame exists.  If not, create one
    if not os.path.exists("Bias-%s.fits" % chip):

        imlist = glob.glob("[0-9]*T[0-9]*%sb.fits" % chip)
        hdr = pyfits.getheader(imlist[0])

        # Setup zerocombine
        zerocombine = iraf.ccdred.zerocombine
        zerocombine.combine = 'median'
        zerocombine.reject = 'avsigclip'
        zerocombine.ccdtype = ''
        zerocombine.process = no
        zerocombine.delete = no
        zerocombine.clobber = no
        zerocombine.scale = 'none'
        zerocombine.statsec = '*'
        zerocombine.nlow = 0
        zerocombine.nhigh = 1
        zerocombine.nkeep = 1
        zerocombine.mclip = yes
        zerocombine.lsigma = 3.0
        zerocombine.hsigma = 3.0
        zerocombine.rdnoise = 0.0
        zerocombine.gain = hdr['SOFTGAIN']
        zerocombine.snoise = 0
        zerocombine.pclip = -0.5
        zerocombine.blank = 0.0

        # Run zerocombine
        bstr = ",".join(imlist)
        zerocombine(input=bstr, output="Bias-%s.fits" % chip)

    # Bias subtract flat frames
    imlist = glob.glob("[0-9]*T[0-9]*%sf.fits" % chip)
    flis = []
    for im in imlist:
        hdr = pyfits.getheader(im)
        if (hdr["FILTER"] == filt) and (not os.path.exists("b%s" % im)):

            # Subtract bias frame
            ccdproc = iraf.ccdred.ccdproc
            ccdproc.ccdtype = ""
            ccdproc.noproc = no
            ccdproc.fixpix = no
            ccdproc.overscan = no
            ccdproc.trim = no
            ccdproc.zerocor = yes
            ccdproc.darkcor = no
            ccdproc.flatcor = no
            ccdproc.illumcor = no
            ccdproc.fringecor = no
            ccdproc.readcor = no
            ccdproc.scancor = no
            ccdproc.readaxis = 'line'
            ccdproc.fixfile = ""
            ccdproc.zero = "Bias-%s.fits" % chip
            ccdproc.interactive = no
            ccdproc.function = "legendre"
            ccdproc.order = 1
            ccdproc.sample = "*"
            ccdproc.naverage = 1
            ccdproc.niterate = 1
            ccdproc.low_reject = 3.0
            ccdproc.high_reject = 3.0
            ccdproc.grow = 0
            ccdproc(images=im, output="b%s" % im)

            flis.append("b%s" % im)
        elif (hdr["FILTER"] == filt):
            flis.append("b%s" % im)

    # Create flat field
    if not os.path.exists("Flat-%s-%s.fits" % (chip, filt)):

        glis = []
        for im in flis:
            iraf.iterstat.nsigrej = 5.0
            iraf.iterstat.maxiter = 10
            iraf.iterstat.verbose = globver
            iraf.iterstat.lower = INDEF
            iraf.iterstat.upper = INDEF
            iraf.iterstat(im)
            if (iraf.iterstat.median <
                    RATIRSAT[chip]) and (iraf.iterstat.median > 1000.0):
                glis.append(im)

        # Set up flatcombine
        flatcombine = iraf.ccdred.flatcombine
        flatcombine.combine = 'median'
        flatcombine.reject = 'avsigclip'
        flatcombine.ccdtype = ''
        flatcombine.scale = 'median'
        flatcombine.statsec = ''
        flatcombine.nlow = 1
        flatcombine.nhigh = 1
        flatcombine.nkeep = 1
        flatcombine.mclip = yes
        flatcombine.lsigma = 3.0
        flatcombine.hsigma = 3.0
        flatcombine.rdnoise = 0.0
        flatcombine.gain = hdr["SOFTGAIN"]
        flatcombine.snoise = 0.0
        flatcombine.pclip = -0.5

        # Run flatcombine
        fstr = ",".join(glis[:10])
        flatcombine(fstr, output="Flat-%s-%s.fits" % (chip, filt))

        # Normalize
        iraf.iterstat.nsigrej = 5.0
        iraf.iterstat.maxiter = 10
        iraf.iterstat.verbose = globver
        iraf.iterstat.lower = INDEF
        iraf.iterstat.upper = INDEF
        iraf.iterstat("Flat-%s-%s.fits" % (chip, filt))
        iraf.imarith("Flat-%s-%s.fits" % (chip, filt), "/",
                     iraf.iterstat.median, "Flat-%s-%s.fits" % (chip, filt))

    # Bias subtract and flat-field science images
    imlist = glob.glob("[0-9]*T[0-9]*%so_img_1.fits" % chip)
    for im in imlist:
        hdr = pyfits.getheader(im)
        if (hdr["FILTER"] == filt) and (not os.path.exists("fb%s" % im)):

            hdr = pyfits.getheader(im)

            # Subtract bias frame
            ccdproc = iraf.ccdred.ccdproc
            ccdproc.ccdtype = ""
            ccdproc.noproc = no
            ccdproc.fixpix = no
            ccdproc.overscan = no
            ccdproc.trim = no
            ccdproc.zerocor = yes
            ccdproc.darkcor = no
            ccdproc.flatcor = yes
            ccdproc.illumcor = no
            ccdproc.fringecor = no
            ccdproc.readcor = no
            ccdproc.scancor = no
            ccdproc.readaxis = 'line'
            ccdproc.fixfile = ""
            ccdproc.zero = "Bias-%s.fits" % chip
            ccdproc.flat = "Flat-%s-%s.fits" % (chip, filt)
            ccdproc.interactive = no
            ccdproc.function = "legendre"
            ccdproc.order = 1
            ccdproc.sample = "*"
            ccdproc.naverage = 1
            ccdproc.niterate = 1
            ccdproc.low_reject = 3.0
            ccdproc.high_reject = 3.0
            ccdproc.grow = 0
            ccdproc(images=im, output="fb%s" % im)

    # Create sky frame (including dark current!)
    if not os.path.exists("Sky-%s-%s.fits" % (chip, filt)):
        imlist = glob.glob("fb[0-9]*T[0-9]*%so_img_1.fits" % chip)
        hdr = pyfits.getheader(imlist[0])
        slis = []
        for im in imlist:
            if (hdr["FILTER"] == filt):
                slis.append(im)

        # Set up combine
        imcombine = iraf.immatch.imcombine
        imcombine.headers = ""
        imcombine.bpmasks = ""
        imcombine.rejmasks = ""
        imcombine.nrejmasks = ""
        imcombine.expmasks = ""
        imcombine.sigmas = ""
        imcombine.combine = "median"
        imcombine.reject = "avsigclip"
        imcombine.project = no
        imcombine.outtype = "real"
        imcombine.offsets = "none"
        imcombine.masktype = "none"
        imcombine.scale = "median"
        imcombine.zero = "none"
        imcombine.weight = "none"
        imcombine.statsec = ""
        imcombine.lsigma = 3.0
        imcombine.hsigma = 3.0
        imcombine.rdnoise = 0.0
        imcombine.gain = hdr["SOFTGAIN"]

        sstr = ",".join(slis[:10])
        imcombine(sstr, "Sky-%s-%s.fits" % (chip, filt))

        # Normalize
        iraf.iterstat("Sky-%s-%s.fits" % (chip, filt))
        iraf.imarith("Sky-%s-%s.fits" % (chip, filt), "/",
                     iraf.iterstat.median, "Sky-%s-%s.fits" % (chip, filt))

    # Subtract sky frame (and dark!)
    imlist = glob.glob("fb[0-9]*T[0-9]*%so_img_1.fits" % chip)
    for im in imlist:
        if not os.path.exists("s%s" % im):

            iraf.iterstat(im)
            iraf.imarith("Sky-%s-%s.fits" % (chip, filt), "*",
                         iraf.iterstat.median, "temp.fits")
            iraf.imarith(im, "-", "temp.fits", "s%s" % im)
            os.remove("temp.fits")
            fimg = pyfits.open("s%s" % im, "update")
            fimg[0].header["SKYMED"] = iraf.iterstat.median
            fimg[0].header["SKYSIG"] = iraf.iterstat.sigma
            fimg[0].header["SKYSUB"] = 1
            fimg.flush()

    # Remove cosmic rays
    imlist = glob.glob("sfb[0-9]*T[0-9]*%so_img_1.fits" % chip)
    for im in imlist:
        if not os.path.exists("c%s" % im):
            fimg = pyfits.open(im)
            iraf.lacos_im(im,
                          "c%s" % im,
                          "c%s.mask.fits" % im[:-5],
                          gain=hdr['SOFTGAIN'],
                          readn=0.0,
                          statsec="*,*",
                          skyval=fimg[0].header["SKYMED"],
                          sigclip=4.5,
                          sigfrac=0.5,
                          objlim=1.0,
                          niter=3,
                          verbose=no)

    # Add WCS keywords
    clis = glob.glob("csfb[0-9]*T[0-9]*%so_img_1.fits" % chip)
    for im in clis:

        fimg = pyfits.open(im, mode='update')
        if fimg[0].header.get("RA") == None:

            ra0 = fimg[0].header["STRCURA"]
            dec0 = fimg[0].header["STRCUDE"]
            nax = [fimg[0].header["NAXIS1"], fimg[0].header["NAXIS2"]]
            fimg[0].header["RA"] = ra0
            fimg[0].header["DEC"] = dec0
            fimg[0].header["PIXSCALE"] = RATIRPIXSCALE[chip]
            fimg[0].header["PIXSCAL1"] = RATIRPIXSCALE[chip]
            fimg[0].header["PIXSCAL2"] = RATIRPIXSCALE[chip]
            fimg[0].header["CTYPE1"] = "RA---TAN"
            fimg[0].header["CTYPE2"] = "DEC--TAN"
            fimg[0].header["WCSDIM"] = 2
            fimg[0].header["WAT0_001"] = "system=image"
            fimg[0].header["WAT1_001"] = "wtype=tan axtype=ra"
            fimg[0].header["WAT2_001"] = "wtype=tan axtype=dec"
            fimg[0].header["LTM1_1"] = 1.0
            fimg[0].header["LTM2_2"] = 1.0
            fimg[0].header["CRPIX1"] = nax[0] / 2.0
            fimg[0].header["CRPIX2"] = nax[1] / 2.0
            fimg[0].header["CRVAL1"] = ra0
            fimg[0].header["CRVAL2"] = dec0
            fimg[0].header["CD1_1"] = -RATIRPIXSCALE[chip] / 3600.0
            fimg[0].header["CD1_2"] = 0.0
            fimg[0].header["CD2_1"] = 0.0
            fimg[0].header["CD2_2"] = RATIRPIXSCALE[chip] / 3600.0

        fimg.flush()

    # Crude astrometry
    for im in clis:

        if not os.path.exists("a%s" % im):
            os.system("python %s %s" % (PYASTROM, im))

    # Refine Astrometry
    o1 = open("daofind.param", "w")
    o1.write(
        "NUMBER\nXWIN_IMAGE\nYWIN_IMAGE\nMAG_AUTO\nFLAGS\nA_IMAGE\nB_IMAGE\n")
    o1.write("ELONGATION\nFWHM_IMAGE\nXWIN_WORLD\nYWIN_WORLD\n")
    o1.write(
        "ERRAWIN_IMAGE\nERRBWIN_IMAGE\nERRTHETAWIN_IMAGE\nERRAWIN_WORLD\n")
    o1.write(
        "ERRBWIN_WORLD\nERRTHETAWIN_WORLD\nFLUX_AUTO\nFLUX_RADIUS\nFLUXERR_AUTO"
    )
    o1.close()

    o2 = open("default.conv", "w")
    o2.write(
        "CONV NORM\n# 5x5 convolution mask of a gaussian PSF with FWHM = 3.0 pixels.\n0.092163 0.221178 0.296069 0.221178 0.092163\n0.221178 0.530797 0.710525 0.530797 0.221178\n0.296069 0.710525 0.951108 0.710525 0.296069\n0.221178 0.530797 0.710525 0.530797 0.221178\n0.092163 0.221178 0.296069 0.221178 0.092163"
    )
    o2.close()

    alis = glob.glob("acsfb[0-9]*T[0-9]*%so_img_1.fits" % chip)
    for im in alis:

        # Detect sources
        os.system(
            "sex -CATALOG_NAME %s.cat -CATALOG_TYPE FITS_LDAC -PARAMETERS_NAME daofind.param -DETECT_THRESH 2.0 -ANALYSIS_THRESH 2.0 -GAIN_KEY SOFTGAIN -PIXEL_SCALE 0 %s"
            % (im[:-5], im))

    # Run scamp for alignment
    imlist = " ".join(alis)
    os.system(
        "scamp -ASTREF_CATALOG SDSS-R7 -DISTORTDEG 1 -SOLVE_PHOTOM N -SN_THRESHOLDS 3.0,10.0 -CHECKPLOT_DEV NULL %s"
        % imlist.replace(".fits", ".cat"))

    # Update header
    for im in alis:
        os.system("missfits %s" % im)
        os.system("rm %s.head %s.back" % (im[:-5], im))

    # Find good images for coadd
    slis = []
    for im in alis:
        hdr = pyfits.getheader(im)
        rms1 = hdr["ASTRRMS1"]
        rms2 = hdr["ASTRRMS2"]
        if (rms1 < 1.0e-4) and (rms1 > 5.0e-6) and (rms2 < 1.0e-4) and (
                rms2 > 5.0e-6):
            slis.append(im)

    # Initial (unweighted) coadd
    sstr = " ".join(slis)
    os.system("swarp -GAIN_KEYWORD SOFTGAIN %s" % sstr)

    # Identify sources in the coadded frame
    hdr = pyfits.getheader("coadd.fits")
    iqpkg.iqobjs("coadd.fits",
                 10.0,
                 RATIRSAT[chip],
                 skyval="0.0",
                 pix=RATIRPIXSCALE[chip],
                 gain=hdr["GAIN"],
                 aperture=20.0,
                 wtimage="coadd.weight.fits")
    hdr = pyfits.getheader("coadd.fits")
    cpsfdiam = 1.34 * float(hdr["SEEPIX"])
    iqpkg.iqobjs("coadd.fits",
                 10.0,
                 RATIRSAT[chip],
                 skyval="0.0",
                 pix=RATIRPIXSCALE[chip],
                 gain=hdr["GAIN"],
                 aperture=cpsfdiam,
                 wtimage="coadd.weight.fits")

    refstars1 = Starlist("coadd.fits.stars")
    refstars1.pix2wcs("coadd.fits")
    truemags = np.array(refstars1.mags())
    maglist = []
    errlist = []

    # (Relative) Zeropoints for individual images
    for im in slis:
        hdr = pyfits.getheader(im)
        iqpkg.iqobjs(im,
                     3.0,
                     RATIRSAT[chip],
                     skyval="!SKYMED",
                     pix=RATIRPIXSCALE[chip],
                     gain=hdr["SOFTGAIN"],
                     aperture=20.0)
        hdr = pyfits.getheader(im)
        psfdiam = 1.34 * float(hdr["SEEPIX"])
        iqpkg.iqobjs(im,
                     3.0,
                     RATIRSAT[chip],
                     skyval="!SKYMED",
                     pix=RATIRPIXSCALE[chip],
                     gain=hdr["SOFTGAIN"],
                     aperture=psfdiam)
        stars = Starlist("%s.stars" % im)
        refstars1.wcs2pix(im)
        a, b = stars.match(refstars1, tol=10.0, maxnum=1000)
        newmags = np.zeros(len(refstars1))
        newwts = np.zeros(len(refstars1))
        for i in range(len(refstars1)):
            for j in range(len(a)):
                if b[j].mag == truemags[i]:
                    newmags[i] = a[j].mag
                    newwts[i] = 1.0 / np.power(np.maximum(a[j].magu, 0.01), 2)
                    continue
        maglist.append(newmags)
        errlist.append(newwts)

    obsmags = np.array(maglist)
    wts = np.array(errlist)

    [zpts, scatt, rms] = calc_zpts(truemags, obsmags, wts, sigma=3.0)

    # Update headers
    medzp = np.median(zpts)
    for i in range(len(slis)):
        im = slis[i]
        fimg = pyfits.open(im, mode="update")
        fimg[0].header["RELZPT"] = zpts[i]
        fimg[0].header["RELZPTSC"] = scatt[i]
        fimg[0].header["RELZPRMS"] = rms[i]
        fimg[0].header["FLXSCALE"] = 1.0 / np.power(10,
                                                    (zpts[i] - medzp) / 2.5)
        fimg.flush()

    # Final coadd
    os.system("swarp -GAIN_KEYWORD SOFTGAIN %s" % sstr)

    # Calibration
    iqpkg.iqobjs("coadd.fits",
                 10.0,
                 RATIRSAT[chip],
                 skyval="0.0",
                 pix=RATIRPIXSCALE[chip],
                 gain=hdr["GAIN"],
                 aperture=cpsfdiam,
                 wtimage="coadd.weight.fits")
    stars = Starlist("coadd.fits.stars")
    refstars = Starlist(reflist)
    refstars.wcs2pix("coadd.fits")
    refstars.set_mag("%sMAG" % filt.upper())
    truemags = np.array(refstars.mags())
    maglist = []
    errlist = []

    a, b = stars.match(refstars, tol=10.0, maxnum=1000)
    newmags = np.zeros(len(refstars))
    newwts = np.zeros(len(refstars))
    for i in range(len(refstars)):
        for j in range(len(a)):
            if b[j].mag == truemags[i]:
                newmags[i] = a[j].mag
                newwts[i] = 1.0 / np.power(np.maximum(a[j].magu, 0.01), 2)
                continue
    maglist.append(newmags)
    errlist.append(newwts)

    obsmags = np.array(maglist)
    wts = np.array(errlist)

    [zpts, scatt, rms] = calc_zpts(truemags, obsmags, wts, sigma=3.0)
    fimg = pyfits.open("coadd.fits", mode="update")
    fimg[0].header["ABSZPT"] = zpts[0] + 25
    fimg[0].header["ABSZPTSC"] = scatt[0]
    fimg[0].header["ABZPRMS"] = rms[0]

    print "Zeropoint for coadded image: %.3f" % (25.0 + zpts[0])
    print "Robust scatter for coadded image: %.3f" % scatt[0]
    print "RMS for coadded image: %.3f" % rms[0]
コード例 #6
0
ファイル: iqlmi.py プロジェクト: jicapone/python
def lmi_cals(
    imlist,
    dobias=yes,
    dobpm=yes,
    doflats=yes,
    btype="BIAS",
    ftype="SKY FLAT",
    fkey="FILTER",
    ppre="p",
    bkey="BIASSEC",
    tkey="TRIMSEC",
    bfile="Bias.fits",
    bpmfile="BPM.pl",
    bpre="b",
    flatpre="Flat",
    clobber=globclob,
    verbose=globver,
):

    """Process bias and twilight flats, creating relevant calibration files for
	   nightly processing of LMI data."""

    images = glob.glob(imlist)
    blist = []
    flist = []

    # Preprocess all the relevant images
    for im in images:
        hdr = pyfits.getheader(im)
        if hdr["OBSTYPE"] == btype:
            blist.append("%s%s" % (ppre, im))
            preproc(im, fkey=fkey, ppre=ppre, bkey=bkey, tkey=tkey, clobber=clobber, verbose=verbose)
        elif hdr["OBSTYPE"] == ftype:
            flist.append("%s%s" % (ppre, im))
            preproc(im, fkey=fkey, ppre=ppre, bkey=bkey, tkey=tkey, clobber=clobber, verbose=verbose)

    if dobias:

        # Setup zerocombine
        zerocombine = iraf.ccdred.zerocombine
        zerocombine.combine = "median"
        zerocombine.reject = "avsigclip"
        zerocombine.ccdtype = ""
        zerocombine.process = no
        zerocombine.delete = no
        zerocombine.clobber = no
        zerocombine.scale = "none"
        zerocombine.statsec = "*"
        zerocombine.nlow = 0
        zerocombine.nhigh = 1
        zerocombine.nkeep = 1
        zerocombine.mclip = yes
        zerocombine.lsigma = 3.0
        zerocombine.hsigma = 3.0
        zerocombine.rdnoise = hdr["RDNOISE"]
        zerocombine.gain = hdr["GAIN"]
        zerocombine.snoise = 0
        zerocombine.pclip = -0.5
        zerocombine.blank = 0.0

        # Run zerocombine
        bstr = ",".join(blist)
        if os.path.exists(bfile):
            os.remove(bfile)
        zerocombine(input=bstr, output=bfile)

    if dobpm:

        # Setup imcombine
        imcombine = iraf.immatch.imcombine
        imcombine.sigmas = "bsigma.fits"
        imcombine.combine = "median"
        imcombine.reject = "none"
        imcombine.project = no
        imcombine.outtype = "real"
        imcombine.outlimits = ""
        imcombine.offsets = "none"
        imcombine.masktype = "none"
        imcombine.scale = "none"
        imcombine.zero = "none"
        imcombine.weight = "none"

        # Run imcombine
        bstr = ",".join(blist)
        if os.path.exists("junk.fits"):
            os.remove("junk.fits")
        if os.path.exists("bsigma.fits"):
            os.remove("bsigma.fits")
        imcombine(input=bstr, output="junk.fits")

        # Run ccdmask to create BPM file
        if os.path.exists(bpmfile):
            os.remove(bpmfile)
        iraf.ccdred.ccdmask(
            "bsigma.fits",
            bpmfile,
            ncmed=7,
            nlmed=7,
            ncsig=15,
            nlsig=15,
            lsigma=10,
            hsigma=10,
            ngood=1,
            linterp=1,
            cinterp=1,
            eqinterp=1,
        )

        os.remove("bsigma.fits")
        os.remove("junk.fits")

    if doflats:

        # Subtract bias images from all flats
        for im in flist:
            lmi_debias(im, bfile=bfile)

            # Loop over filters
        for filt in LMIFILTS:

            # ID files in appropriate filter
            flis = []
            for im in flist:
                hdr = pyfits.getheader(im)
                if hdr[fkey] == filt:
                    flis.append("%s%s" % (bpre, im))

            if flis == []:
                continue

                # Set up flatcombine
            flatcombine = iraf.ccdred.flatcombine
            flatcombine.combine = "median"
            flatcombine.reject = "avsigclip"
            flatcombine.ccdtype = ""
            flatcombine.process = no
            flatcombine.scale = "median"
            flatcombine.statsec = ""
            flatcombine.nlow = 1
            flatcombine.nhigh = 1
            flatcombine.nkeep = 1
            flatcombine.mclip = yes
            flatcombine.lsigma = 3.0
            flatcombine.hsigma = 3.0
            flatcombine.rdnoise = hdr["RDNOISE"]
            flatcombine.gain = hdr["GAIN"]
            flatcombine.snoise = 0.0
            flatcombine.pclip = -0.5
            flatcombine.blank = 1.0

            # Run flatcombine
            fstr = ",".join(flis)
            if os.path.exists("%s-%s.fits" % (flatpre, filt)):
                os.remove("%s-%s.fits" % (flatpre, filt))
            flatcombine(input=fstr, output="%s-%s.fits" % (flatpre, filt))

            # Normalize
            iraf.iterstat.nsigrej = 5.0
            iraf.iterstat.maxiter = 10
            iraf.iterstat.verbose = globver
            iraf.iterstat.lower = INDEF
            iraf.iterstat.upper = INDEF
            iraf.iterstat("%s-%s.fits" % (flatpre, filt), verbose=no, prin=no)
            iraf.imarith("%s-%s.fits" % (flatpre, filt), "/", iraf.iterstat.median, "%s-%s.fits" % (flatpre, filt))

    return
コード例 #7
0
def spitzer_sub(new,
                newunc,
                newcov,
                ref,
                refunc,
                refcov,
                out,
                stamps=None,
                tmass=None):

    # Remove nan from mosaics
    x = pyfits.open(new)
    y = np.nan_to_num(x[0].data)
    x[0].data = y
    new2 = "n%s" % new
    x.writeto(new2)

    # Find stars in new image
    os.system("$REDUCTION/runsex.pl %s 5.0 -weight %s" % (new2, newcov))

    # Find stars in reference
    os.system("$REDUCTION/runsex.pl %s 5.0 -weight %s" % (ref, refcov))

    # Create file for geotran
    stars = Starlist("%s.stars" % new2)
    refstars = Starlist("%s.stars" % ref)
    refstars.pix2wcs(ref)
    refstars.wcs2pix(new2)
    a, b = stars.match(refstars, maxnum=1000)

    # Create file for geotran
    b.pix2wcs(new2)
    b.wcs2pix(ref)
    refroot = ref.split(".")[0]
    outf = open("%s.match" % refroot, "w")
    for i in range(len(a)):
        outf.write("%10.3f%10.3f%10.3f%10.3f\n" %
                   (a[i].xval, a[i].yval, b[i].xval, b[i].yval))
    outf.close()

    # Geomap and geotran
    [naxis1, naxis2] = get_head(new, ["NAXIS1", "NAXIS2"])
    iraf.geomap("%s.match" % refroot,
                "%s.db" % refroot,
                1,
                naxis1,
                1,
                naxis2,
                fitgeometry="rotate",
                interactive=no)
    iraf.geotran(ref, "t%s" % ref, "%s.db" % refroot, "%s.match" % refroot)
    iraf.geotran(refunc, "t%s" % refunc, "%s.db" % refroot,
                 "%s.match" % refroot)

    # Get stars for PSF matching
    if stamps != None:

        psfstars = Starlist(stamps)
        psfstars.pix2wcs(ref)
        psfstars.wcs2pix(new2)
        outf = open("stamps.lis", "w")
        for star in psfstars:
            outf.write("%10.3f%10.3f\n" % (star.xval, star.yval))
        outf.close()

    # Appropriate parameters
    iraf.iterstat(ref)
    update_head(ref, ["MEDSKY", "SKYSIG"],
                [iraf.iterstat.median, iraf.iterstat.sigma])
    [refskybkg, refskysig] = get_head(ref, ["MEDSKY", "SKYSIG"])
    tl = refskybkg - 10 * refskysig
    tu = 30000.0
    iraf.iterstat(new)
    update_head(new, ["MEDSKY", "SKYSIG"],
                [iraf.iterstat.median, iraf.iterstat.sigma])
    [newskybkg, newskysig] = get_head(new, ["MEDSKY", "SKYSIG"])
    il = newskybkg - 10 * newskysig
    iu = 30000.0

    # Run hotpants
    hpcmd = "hotpants -inim %s -tmplim t%s -outim %s -tni t%s -ini %s -nsx 3 -nsy 3 -savexy %s.xy -ko 0 -bgo 0 -oni u%s -n t -tl %.2f -tu %.2f -il %.2f -iu %.2f -r 7.5 -rss 18.0" % (
        new2, ref, out, refunc, newunc, new2, out, tl, tu, il, iu)
    if stamps != None:
        hpcmd += " -ssf stamps.lis -afssc 0"
    os.system(hpcmd)
    #iraf.imarith(new2, "-", "t%s" % ref, out)

    # Create appropriate weight image
    #iraf.imexpr("sqrt(a**2 + b**2)", "u%s" % out, a=newunc, b=refunc)
    iraf.imarith(1, "/", "u%s" % out, "temp1.fits")
    iraf.imarith("temp1.fits", "/", "u%s" % out, "w%s" % out)
    os.remove("temp1.fits")

    # Pick up candidates
    os.system("$REDUCTION/runsex.pl %s 2.0 -weight w%s" % (out, out))
    stars = Starlist("%s.stars" % out)
    cands = []
    [nax1, nax2] = get_head(ref, ["NAXIS1", "NAXIS2"])
    stars.pix2wcs(new)
    stars.wcs2pix(ref)
    refu = pyfits.open(refunc)
    for star in stars:
        if star.xval > EDGETOL and star.xval < (
                nax1 - EDGETOL) and star.yval > EDGETOL and star.yval < (
                    nax2 - EDGETOL) and refu[0].data[
                        star.yval, star.
                        xval] != 0 and star.fwhmw > 0.5 and star.fwhmw < 10.0:
            cands.append(star)
    scands = Starlist(stars=cands)

    # Filter out bright stars
    if tmass == None:
        scands.write("cands.reg")
    else:
        stmass = Starlist(tmass)
        stmass.wcs2pix(ref)
        s2cands = scands.nomatch(stmass)
        s2cands.write("cands.reg")

    # More comprehensive list
    os.system("$REDUCTION/runsex.pl %s 1.5" % out)
    stars = Starlist("%s.stars" % out)
    cands = []
    [nax1, nax2] = get_head(ref, ["NAXIS1", "NAXIS2"])
    stars.pix2wcs(new)
    stars.wcs2pix(ref)
    refu = pyfits.open(refunc)
    for star in stars:
        if star.xval > EDGETOL and star.xval < (
                nax1 - EDGETOL) and star.yval > EDGETOL and star.yval < (
                    nax2 - EDGETOL) and refu[0].data[
                        star.yval, star.
                        xval] != 0 and star.fwhmw > 0.5 and star.fwhmw < 10.0:
            cands.append(star)
    scands = Starlist(stars=cands)
    scands.write("cands_all.reg")

    return
コード例 #8
0
ファイル: saofocus.py プロジェクト: cenko/python
def saofocus(inpat,prepfile=yes,endhow="never",endwhen="",
             clobber=globclob,verbose=globver):

    """ derive best focus from an SAOFOCUS run on P60 """

    # Defaults
    twait=30
    reduced={}
    bpmname="BPM.pl"
    saokey="IMGTYPE"
    saore="SAOFOCUS"
    fseqkey="SAOFVALS"
    sigma=2.0
    satval=50000.0
    masksfx="mask"
    pix=0.3787 # arcsec per pixel
    mindiff=2  # minimum tolerable diff b/ best and worst seeing (pix)

    # Parse end-condition "time"
    if endhow=="time":
        re1=re.search("^(\d+):(\d+)",endwhen)
        if re1:
            tnow=time.gmtime()
            # Force UT calculation w/ ignoring of DST issues
            reftime=time.mktime([tnow[0],tnow[1],tnow[2],
                                 int(re1.group(1)),int(re1.group(2)),0,
                                 tnow[6],tnow[7],0]) - time.timezone
            if reftime<time.time():
                reftime+=86400
            if verbose:
                print "Running until %s" % \
                      time.strftime("%d %b %H:%M",time.gmtime(reftime))
        else:
            print "Failed to parse %s as UT time" % endwhen
            print "Running until stopped..."
            endhow="never"

    ##################################################

    # Big Loop
    done=no
    while not done:

        # Parse inputs
        allfiles=glob.glob(inpat)

        newfiles=[]
        for image in allfiles:
            if not reduced.has_key(image):
                # Interested only in SAOFOCUS images
                saoval=get_head(image,saokey)
                if re.search(saore,saoval,re.I):
                    reduced[image]=no
                    newfiles.append(image)
                else:
                    # Skip
                    reduced[image]=yes

        for image in newfiles:

            if verbose:
                print "Processing new SAOFOCUS image %s" % image

            # Only attempt reduction once for each image
            reduced[image]=yes

            # Demosaic
            ccdproc=iraf.ccdproc
            ccdproc.overscan=yes
            ccdproc.trim=yes
            ccdproc.zerocor=no
            iraf.iqmosaic(image,outpfx="",biassec="!BIASSEC",
                          trimsec="!TRIMSEC",joinkeys="DETSEC",
                          splitkeys="AMPSEC,CCDSEC,TRIM,OVERSCAN",
                          clobber=yes,verbose=verbose)
            # Fix the WCS that IRAF has now clobbered
            iraf.add_wcs(image,instrument="p60new")

            # Get some important keywords
            [raoff,decoff,saonseq,saoshift] = \
                   get_head(image,['RAOFF','DECOFF','NUMFOC',
                                   'SAOSHIFT'])
            # Type conversions
            saonseq=int(saonseq)
            saoshift=float(saoshift)

            # No bias-subtraction or flat-fielding

            # Subtract stair-step background if requested
            if prepfile:
                qtmp=iraf.mktemp("saofoc")+".fits"
                iraf.imcopy(image,qtmp,verbose=no)
                for iamp in [-1,1]:
                    for istep in range(saonseq):
                        qsec=iraf.mktemp("saofsc")+".fits"
                        y1=1024+iamp*(1+istep*saoshift)+max(0,iamp)
                        y2=y1+iamp*(saoshift-1)
                        if istep==0:
                            y1-=iamp
                        elif istep==saonseq-1:
                            y2=1+max(0,iamp)*2047
                        ymin=min(y1,y2)
                        ymax=max(y1,y2)
                        statsec='[*,%d:%d]' % (ymin,ymax)
                        iraf.iterstat(image+statsec,nsigrej=5,
                                      maxiter=10,prin=no,verbose=no)
                        medreg=float(iraf.iterstat.median)
                        iraf.imarith(image+statsec,'-',medreg,
                                     qsec,verbose=no,noact=no)
                        iraf.imcopy(qsec,qtmp+statsec,verbose=no)
                        iraf.imdel(qsec,verify=no,go_ahead=yes)
                iraf.imdel(image,verify=no,go_ahead=yes)
                iraf.imrename(qtmp,image,verbose=no)
            
            # No renaming of the file

            # No Bad Pixel Masking or rudimentary WCS

            # Object-detection
            doobj=1
            if check_head(image,'STARFILE'):
                if os.path.exists(get_head(image,'STARFILE')):
                    doobj=0
            if doobj:
                iraf.iqobjs(image,sigma,satval,skyval="0.0",
                            masksfx=masksfx,wtimage="none",minlim=no,
                            clobber=yes,verbose=verbose)

            # Establish our "region of interest" for pixels
            pixrough=800
            pixminx=1024-float(decoff)/pix-pixrough/2
            pixmaxx=pixminx+pixrough
            pixmaxy=1023
            pixminy=pixmaxy-float(raoff)/pix-(1+saonseq)*saoshift-pixrough/2

            # The array of focus positions (from low Y to high Y)
            farrkeys=[]
            for i in range(saonseq):
                farrkeys.append("SAOFOC%02d" % (i+1))
            farr=get_head(image,farrkeys)

            # Starlist from Sextractor
            starfile=get_head(image,'STARFILE')
            stars=Starlist(starfile)
            stars.mag_sort()

            # Find some of the stars in the sequence
            xvals=[]
            yvals=[]
            good1=[]
            for star in stars:
                # We're going in order from bright to faint
                if star.xval>pixminx and star.xval<pixmaxx and \
                   star.yval<pixmaxy and star.yval>pixminy and \
                   star.elong<3:
                    good1.append(star)
                    xvals.append(star.xval)
                    yvals.append(star.yval)
                    if len(good1)>=1.2*saonseq:
                        break

            # Sanity checking
            if len(xvals)<1:
                print "No stars found in search region"
                update_head(image,'SAOFOCUS',0,
                            "saofocus processing failed for this image")
                continue

            # Guess for x is median of the xvals of the goodstars
            xctr=median(xvals,pick=1)

            # First guess for y is median of the goodstars that fall
            # within +/- (pixfine) pix of this X value
            pixfine=8
            yval2=[]
            good2=[]
            for star in good1:
                if abs(star.xval-xctr)<pixfine:
                    good2.append(star)
                    yval2.append(star.yval)

            # Sanity checking
            if len(yval2)<1:
                print "No stars found in refined search region"
                update_head(image,'SAOFOCUS',0,
                            "saofocus processing failed for this image")
                continue

            yctr=median(yval2,pick=1)

            # This will be our reference star
            usestar=good2[yval2.index(yctr)]
            [refx,refy]=[usestar.xval,usestar.yval]
            
            # Identify additional stars, working out from the
            # reference star
            usestars=[usestar]

            # Search increasing & decreasing in Y
            # (we use a bigger box in Y, and correct for the last star
            # position, because of potential for tracking errors)
            for isgn in [+1,-1]:
                shifty=refy
                for i in range(1,saonseq):
                    shifty += isgn*saoshift
                    tgtstars=stars.starsinbox([[refx-pixfine,refx+pixfine],
                                               [shifty-1.5*pixfine,
                                                shifty+1.5*pixfine]])
                    if len(tgtstars)>0:
                        minmag=99.99
                        # Pick the brightest in the box
                        for tstar in tgtstars:
                            if tstar.mag<minmag:
                                svstar=tstar
                                minmag=tstar.mag
                        usestars.append(svstar)
                        shifty=svstar.yval
                    else:
                        # Quit searching when there are no stars in box
                        break

            # Exclude faint stars if we have too many
            # (could also drop stars until we reach the number, but
            # then we would want to check that all the y-values are in
            # strict succession...)
            magrough=2.0
            if len(usestars)>saonseq:
                usemags=[]
                for star in usestars:
                    usemags.append(star.mag)
                minmag=min(usemags)
                use2=[]
                for star in usestars:
                    if star.mag<minmag+magrough:
                        use2.append(star)
                if len(use2)==saonseq:
                    usestars=use2

            # Check for the right number
            if len(usestars)!=saonseq:
                print "Failed to get right number of target stars"
                update_head(image,'SAOFOCUS',0,
                            "saofocus processing failed for this image")
                continue

            # Construct the array of x- and y-values
            xval3=[]
            yval3=[]
            for star in usestars:
                xval3.append(star.xval)
                yval3.append(star.yval)
            # Choose a single x-value for the run
            xctr2="%.3f" % median(xval3)
            # Increasing y-value means increasing index in farr
            yval3.sort()
            ylis=','.join(map(str,yval3))
            flis=','.join(map(str,farr))

            # Run iqfocus
            iraf.iqfocus(image,xctr2,ylis,flis,method="acorr",
                         boxsize=saoshift,focuskey="BESTFOC",
                         seekey="SEEING",fseekey="SAOSEE",
                         update=yes,clobber=yes,verbose=verbose)

            # Check for successful iqfocus run
            if not check_head(image,'BESTFOC'):
                print "iqfocus run failed to find good focus"
                update_head(image,'SAOFOCUS',0,
                            "saofocus processing failed for this image")
                continue

            # Grab focus positions and seeing values
            bestfoc,saosee=get_head(image,['BESTFOC','SAOSEE'])

            # Some information
            if verbose:
                print "Focus settings:  "+flis
                print "Seeing values:   "+saosee
                print "Best focus:      %.3f" % bestfoc

            # Check for best-focus "near edge" condition
            for i in range(saonseq):
                if ("%.3f" % bestfoc)==("%.3f" % float(farr[i])):
                    ibest=i
                    break
            if (saonseq>3 and (ibest==0 or ibest==saonseq-1)) or \
               (saonseq>5 and (ibest==1 or ibest==saonseq-2)):
                update_head(image,'SAOEDGE',1,
                            "Best seeing is near edge of focus run")

            # Check for insufficient variation across the focus run
            maxsee=0
            minsee=0.5*saoshift
            saoseevals=eval(saosee)
            for seeval in saoseevals:
                minsee=min(minsee,seeval)
                maxsee=max(maxsee,seeval)
            if (maxsee-minsee) < mindiff:
                print "Failed to observe significant variation "+\
                      "across focus run"
                update_head(image,'SAOFOCUS',0,
                            "saofocus processing failed for this image")
                continue

            # Convert seeing value to arcsec
            seepix=get_head(image,'SEEPIX')
            update_head(image,'BESTSEE',seepix,
                        "Best seeing in pixels for this series")
            try:
                seeasec=float(seepix)*pix
                update_head(image,'SEEING',seeasec,
                            "Best seeing in arcsec for this series")
            except:
                print "Failed to convert seeing to arcsec for %s" % image

            # Successful processing
            update_head(image,'SAOFOCUS',1,
                        "saofocus processing succeeded for this image")

        ##############################

        # Test end conditions
        if endhow=="never":
            done=no
        elif endhow=="once":
            done=yes
        elif endhow=="time":
            if time.time()>reftime:
                done=yes
        
        # Wait a little while
        if not done:
            time.sleep(twait)
コード例 #9
0
ファイル: fastfocus.py プロジェクト: pradipgatkine/python
def fastfocus(inpat,
              prepfile=yes,
              endhow="never",
              endwhen="",
              clobber=globclob,
              verbose=globver):
    """ derive best focus from an SAOFOCUS run on P60 """

    # Defaults
    twait = 30
    reduced = {}
    bpmname = "BPM.pl"
    saokey = "IMGTYPE"
    saore = "SAOFOCUS"
    fseqkey = "SAOFVALS"
    sigma = 10.0
    satval = 50000.0
    masksfx = "mask"
    pix = 0.3787  # arcsec per pixel
    mindiff = 2  # minimum tolerable diff b/ best and worst seeing (pix)

    # Parse end-condition "time"
    if endhow == "time":
        re1 = re.search("^(\d+):(\d+)", endwhen)
        if re1:
            tnow = time.gmtime()
            # Force UT calculation w/ ignoring of DST issues
            reftime = time.mktime([
                tnow[0], tnow[1], tnow[2],
                int(re1.group(1)),
                int(re1.group(2)), 0, tnow[6], tnow[7], 0
            ]) - time.timezone
            if reftime < time.time():
                reftime += 86400
            if verbose:
                print "Running until %s" % \
                      time.strftime("%d %b %H:%M",time.gmtime(reftime))
        else:
            print "Failed to parse %s as UT time" % endwhen
            print "Running until stopped..."
            endhow = "never"

    # Open fake OCS
    fakeocs = ocs_ooriented(TEST=1)
    fakeocs.read_foctable()

    ##################################################

    # Big Loop
    done = no
    while not done:

        # Parse inputs
        allfiles = glob.glob(inpat)

        newfiles = []
        for image in allfiles:
            if not reduced.has_key(image):
                # Interested only in SAOFOCUS images
                saoval = get_head(image, saokey)
                if re.search(saore, saoval, re.I):
                    reduced[image] = no
                    newfiles.append(image)
                else:
                    # Skip
                    reduced[image] = yes

        for image in newfiles:

            if verbose:
                print "Processing new SAOFOCUS image %s" % image

            # Only attempt reduction once for each image
            reduced[image] = yes

            # Demosaic
            ccdproc = iraf.ccdproc
            ccdproc.overscan = yes
            ccdproc.trim = yes
            ccdproc.zerocor = no
            iraf.iqmosaic(image,
                          outpfx="",
                          biassec="!BIASSEC",
                          trimsec="!TRIMSEC",
                          joinkeys="DETSEC",
                          splitkeys="AMPSEC,CCDSEC,TRIM,OVERSCAN",
                          clobber=yes,
                          verbose=verbose)
            # Fix the WCS that IRAF has now clobbered
            iraf.add_wcs(image, instrument="p60new")

            # Get some important keywords
            [raoff,decoff,saonseq,saoshift] = \
                   get_head(image,['RAOFF','DECOFF','NUMFOC',
                                   'SAOSHIFT'])
            # Type conversions
            saonseq = int(saonseq)
            saoshift = float(saoshift)

            # No bias-subtraction or flat-fielding

            # Subtract stair-step background if requested
            if prepfile:
                qtmp = iraf.mktemp("saofoc") + ".fits"
                iraf.imcopy(image, qtmp, verbose=no)
                for iamp in [-1, 1]:
                    for istep in range(saonseq):
                        qsec = iraf.mktemp("saofsc") + ".fits"
                        y1 = 1024 + iamp * (1 + istep * saoshift) + max(
                            0, iamp)
                        y2 = y1 + iamp * (saoshift - 1)
                        if istep == 0:
                            y1 -= iamp
                        elif istep == saonseq - 1:
                            y2 = 1 + max(0, iamp) * 2047
                        ymin = min(y1, y2)
                        ymax = max(y1, y2)
                        statsec = '[*,%d:%d]' % (ymin, ymax)
                        iraf.iterstat(image + statsec,
                                      nsigrej=5,
                                      maxiter=10,
                                      prin=no,
                                      verbose=no)
                        medreg = float(iraf.iterstat.median)
                        iraf.imarith(image + statsec,
                                     '-',
                                     medreg,
                                     qsec,
                                     verbose=no,
                                     noact=no)
                        iraf.imcopy(qsec, qtmp + statsec, verbose=no)
                        iraf.imdel(qsec, verify=no, go_ahead=yes)
                iraf.imdel(image, verify=no, go_ahead=yes)
                iraf.imrename(qtmp, image, verbose=no)

            # No renaming of the file

            # No Bad Pixel Masking or rudimentary WCS

            # Object-detection
            doobj = 1
            if check_head(image, 'STARFILE'):
                if os.path.exists(get_head(image, 'STARFILE')):
                    doobj = 0
            if doobj:
                iraf.iqobjs(image,
                            sigma,
                            satval,
                            skyval="0.0",
                            masksfx=masksfx,
                            wtimage="none",
                            minlim=no,
                            clobber=yes,
                            verbose=verbose)

            # Establish our "region of interest" for pixels
            pixrough = 800
            pixminx = 1024 - float(decoff) / pix - pixrough / 2
            pixmaxx = pixminx + pixrough
            pixmaxy = 1023
            pixminy = pixmaxy - float(raoff) / pix - (
                1 + saonseq) * saoshift - pixrough / 2

            # The array of focus positions (from low Y to high Y)
            farrkeys = []
            for i in range(saonseq):
                farrkeys.append("SAOFOC%02d" % (i + 1))
            farr = get_head(image, farrkeys)

            # Starlist from Sextractor
            starfile = get_head(image, 'STARFILE')
            stars = Starlist(starfile)
            stars.mag_sort()

            # Find some of the stars in the sequence
            xvals = []
            yvals = []
            good1 = []
            for star in stars:
                # We're going in order from bright to faint
                if star.xval>pixminx and star.xval<pixmaxx and \
                   star.yval<pixmaxy and star.yval>pixminy and \
                   star.elong<3:
                    good1.append(star)
                    xvals.append(star.xval)
                    yvals.append(star.yval)
                    if len(good1) >= 1.2 * saonseq:
                        break

            # Sanity checking
            if len(xvals) < 1:
                print "No stars found in search region"
                update_head(image, 'SAOFOCUS', 0,
                            "saofocus processing failed for this image")
                continue

            # Guess for x is median of the xvals of the goodstars
            xctr = median(xvals, pick=1)

            # First guess for y is median of the goodstars that fall
            # within +/- (pixfine) pix of this X value
            #pixfine=10
            pixfine = 20
            yval2 = []
            good2 = []
            for star in good1:
                if abs(star.xval - xctr) < pixfine:
                    good2.append(star)
                    yval2.append(star.yval)

            # Sanity checking
            if len(yval2) < 1:
                print "No stars found in refined search region"
                update_head(image, 'SAOFOCUS', 0,
                            "saofocus processing failed for this image")
                continue

            yctr = median(yval2, pick=1)

            # This will be our reference star
            usestar = good2[yval2.index(yctr)]
            [refx, refy] = [usestar.xval, usestar.yval]

            # Identify additional stars, working out from the
            # reference star
            usestars = [usestar]

            # Search increasing & decreasing in Y
            # (we use a bigger box in Y, and correct for the last star
            # position, because of potential for tracking errors)
            for isgn in [+1, -1]:
                shifty = refy
                for i in range(1, saonseq):
                    shifty += isgn * saoshift
                    tgtstars = stars.starsinbox(
                        [[refx - pixfine, refx + pixfine],
                         [shifty - pixfine, shifty + pixfine]])
                    #[shifty-1.5*pixfine,
                    #shifty+1.5*pixfine]])
                    if len(tgtstars) > 0:
                        minmag = 99.99
                        # Pick the brightest in the box
                        for tstar in tgtstars:
                            if tstar.mag < minmag:
                                svstar = tstar
                                minmag = tstar.mag
                        usestars.append(svstar)
                        shifty = svstar.yval
                    else:
                        # Quit searching when there are no stars in box
                        break

            # Exclude faint stars if we have too many
            # (could also drop stars until we reach the number, but
            # then we would want to check that all the y-values are in
            # strict succession...)
            magrough = 2.0
            if len(usestars) > saonseq:
                usemags = []
                for star in usestars:
                    usemags.append(star.mag)
                minmag = min(usemags)
                use2 = []
                for star in usestars:
                    if star.mag < minmag + magrough:
                        use2.append(star)
                if len(use2) == saonseq:
                    usestars = use2

            # Check for the right number
            if len(usestars) != saonseq:
                print "Failed to get right number of target stars"
                update_head(image, 'SAOFOCUS', 0,
                            "saofocus processing failed for this image")
                continue

            # Construct the array of x- and y-values
            xval3 = []
            yval3 = []
            for star in usestars:
                xval3.append(star.xval)
                yval3.append(star.yval)
            # Choose a single x-value for the run
            xctr2 = "%.3f" % median(xval3)
            # Increasing y-value means increasing index in farr
            yval3.sort()
            ylis = ','.join(map(str, yval3))
            flis = ','.join(map(str, farr))

            # Run iqfocus
            iraf.iqfocus(image,
                         xctr2,
                         ylis,
                         flis,
                         method="acorr",
                         boxsize=saoshift,
                         focuskey="BESTFOC",
                         seekey="SEEPIX",
                         fseekey="SAOSEE",
                         update=yes,
                         clobber=yes,
                         verbose=verbose)

            # Check for successful iqfocus run
            if not check_head(image, 'BESTFOC'):
                print "iqfocus run failed to find good focus"
                update_head(image, 'SAOFOCUS', 0,
                            "saofocus processing failed for this image")
                continue

            # Grab focus positions and seeing values
            bestfoc, saosee = get_head(image, ['BESTFOC', 'SAOSEE'])

            # Some information
            if verbose:
                print "Focus settings:  " + flis
                print "Seeing values:   " + saosee
                print "Best focus:      %.3f" % bestfoc

            # Check for best-focus "near edge" condition
            for i in range(saonseq):
                if ("%.3f" % bestfoc) == ("%.3f" % float(farr[i])):
                    ibest = i
                    break
            if (saonseq>3 and (ibest==0 or ibest==saonseq-1)) or \
               (saonseq>5 and (ibest==1 or ibest==saonseq-2)):
                update_head(image, 'SAOEDGE', 1,
                            "Best seeing is near edge of focus run")

            # Check for insufficient variation across the focus run
            maxsee = 0
            minsee = 0.5 * saoshift
            saoseevals = eval(saosee)
            for seeval in saoseevals:
                minsee = min(minsee, seeval)
                maxsee = max(maxsee, seeval)
            if (maxsee - minsee) < mindiff:
                print "Failed to observe significant variation "+\
                      "across focus run"
                update_head(image, 'SAOFOCUS', 0,
                            "saofocus processing failed for this image")
                continue

            # Convert seeing value to arcsec
            seepix = get_head(image, 'SEEPIX')
            update_head(image, 'BESTSEE', seepix,
                        "Best seeing in pixels for this series")
            try:
                seeasec = float(seepix) * pix
                update_head(image, 'SEEING', seeasec,
                            "Best seeing in arcsec for this series")
            except:
                print "Failed to convert seeing to arcsec for %s" % image

            # Successful processing
            update_head(image, 'SAOFOCUS', 1,
                        "saofocus processing succeeded for this image")

            # Get other necessary keywords
            [filter, btubtemp, airmass] = get_head(image, \
                                           ['FILTER','BTUBTEMP','AIRMASS'])

            # Update focus file
            fakeocs.focus = [filter, bestfoc, float(btubtemp), float(airmass)]
            fakeocs.write_foctable()

        ##############################

        # Test end conditions
        if endhow == "never":
            done = no
        elif endhow == "once":
            done = yes
        elif endhow == "time":
            if time.time() > reftime:
                done = yes

        # Wait a little while
        if not done:
            time.sleep(twait)
コード例 #10
0
def psfphot(image,
            coofile,
            ot,
            wtimage="",
            varorder=1,
            clobber=globclob,
            verbose=globver,
            pixtol=3.0,
            maxnpsf=25):
    """ perform PSF-based photometry on a single target star (SN?) at RA, Dec and  
        also on a set of comparison stars, using daophot.  simultaneously 
        perform aperture photometry on all the comparison stars (after 
        subtracting off contributions from neighbors) to enable absolute 
        photometry by comparison to aperture photometry of standard stars 
        observed in other fields """

    # Defaults / constants
    psfmult = 5.0  #standard factor (multiplied by fwhm to get psfradius)
    psfmultsmall = 3.0  #similar to psfmult, adjusted for nstar and substar

    # Necessary package
    iraf.imutil()
    iraf.digiphot()
    iraf.daophot()

    # Detect stars
    iqobjs("%s.sub.fits" % image[:-5],
           1.5,
           12000.0,
           wtimage=wtimage,
           skyval="0.0")

    root = image[:-5]
    [gain, rnoise, fwhm] = get_head(image, ["GAIN", "READN", "SEEPIX"])
    fwhm = float(fwhm)
    rnoise = float(rnoise)

    iraf.iterstat(image)

    # Saturation level
    if not check_head(image, "SATURATE"):
        saturate = 60000.0
    else:
        saturate = get_head(image, "SATURATE")

    # Update datapars and daopars
    iraf.datapars.fwhmpsf = fwhm
    iraf.datapars.sigma = iraf.iterstat.sigma
    iraf.datapars.datamin = iraf.iterstat.median - 10 * iraf.iterstat.sigma
    iraf.datapars.datamax = 0.50 * saturate
    iraf.datapars.readnoise = rnoise
    iraf.datapars.epadu = gain
    iraf.daopars.psfrad = psfmult * fwhm
    iraf.daopars.fitrad = fwhm
    iraf.daopars.function = "gauss,moffat15,moffat25,lorentz,penny1"
    iraf.daopars.varorder = varorder

    # Reference stars file
    stars = Starlist(coofile)
    stars.wcs2pix(image)
    outf = open("%s.coo.1" % image[:-5], "w")
    for star in stars:
        outf.write("%10.3f%10.3f\n" % (star.xval, star.yval))
    outf.close()

    #Aperture photometry
    iraf.daophot.phot(root,
                      'default',
                      'default',
                      apertures=fwhm,
                      verify=no,
                      interac=no,
                      verbose=verbose)

    iraf.datapars.datamax = 0.50 * saturate
    iraf.pstselect(root,
                   'default',
                   'default',
                   maxnpsf,
                   interactive=no,
                   verify=no,
                   verbose=verbose)

    iraf.psf(root,
             'default',
             'default',
             'default',
             'default',
             'default',
             interactive=no,
             showplots=no,
             verify=no,
             verbose=verbose)

    iraf.allstar(root,
                 'default',
                 'default',
                 'default',
                 'default',
                 'default',
                 verify=no,
                 verbose=verbose)

    # Prep for subtracted image
    iraf.iterstat("%s.sub.fits" % root)

    iraf.datapars.sigma = iraf.iterstat.sigma
    iraf.datapars.datamin = iraf.iterstat.median - 10 * iraf.iterstat.sigma
    iraf.datapars.datamax = saturate

    # Look for source at OT location
    substars = Starlist("%s.sub.fits.stars" % image[:-5])
    otstars = Starlist(ot)
    otstars.wcs2pix("%s.sub.fits" % image[:-5])
    smatch, omatch = substars.match(otstars, tol=pixtol, useflags=no)

    # Generate coo file
    otcoo = open("%s.sub.coo.1" % image[:-5], "w")

    if len(smatch) == 0:
        otcoo.write("%10.3f%10.3f\n" % (otstars[0].xval, otstars[0].yval))
    else:
        otcoo.write("%10.3f%10.3f\n" % (smatch[0].xval, smatch[0].yval))

    otcoo.close()

    iraf.daophot.phot("%s.sub.fits" % root,
                      "%s.sub.coo.1" % image[:-5],
                      'default',
                      'default',
                      apertures=fwhm,
                      calgorithm="none",
                      interac=no,
                      verify=no,
                      verbose=verbose)

    if len(smatch) == 0:
        print "No match in subtracted image: %s.sub.fits" % root
    else:
        iraf.allstar("%s.sub.fits" % root,
                     'default',
                     "%s.psf.1.fits" % root,
                     'default',
                     'default',
                     'default',
                     verify=no,
                     verbose=no)

        return
コード例 #11
0
ファイル: iqratir.py プロジェクト: aancheta/RATIR-GSFC
def iq_ratir(chip="C1", filt="i", reflist="sdss.reg"):

	'''Process RATIR data for given chip and filter'''
	
	# Check and see if bias frame exists.  If not, create one
	if not os.path.exists("Bias-%s.fits" % chip):
	
		imlist = glob.glob("[0-9]*T[0-9]*%sb.fits" % chip)
		hdr = pyfits.getheader(imlist[0])
		
		# Setup zerocombine
		zerocombine = iraf.ccdred.zerocombine
		zerocombine.combine = 'median'
		zerocombine.reject = 'avsigclip'
		zerocombine.ccdtype = ''
		zerocombine.process = no
		zerocombine.delete = no
		zerocombine.clobber = no
		zerocombine.scale = 'none'
		zerocombine.statsec = '*'
		zerocombine.nlow = 0
		zerocombine.nhigh = 1
		zerocombine.nkeep = 1
		zerocombine.mclip = yes
		zerocombine.lsigma = 3.0
		zerocombine.hsigma = 3.0
		zerocombine.rdnoise = 0.0
		zerocombine.gain = hdr['SOFTGAIN']
		zerocombine.snoise = 0
		zerocombine.pclip = -0.5
		zerocombine.blank = 0.0
		
		# Run zerocombine
		bstr = ",".join(imlist)
		zerocombine(input=bstr, output="Bias-%s.fits" % chip)
		
	# Bias subtract flat frames
	imlist = glob.glob("[0-9]*T[0-9]*%sf.fits" % chip)
	flis = []
	for im in imlist:
		hdr = pyfits.getheader(im)
		if (hdr["FILTER"] == filt) and (not os.path.exists("b%s" % im)):
			
			# Subtract bias frame
			ccdproc = iraf.ccdred.ccdproc	
			ccdproc.ccdtype = ""
			ccdproc.noproc = no
			ccdproc.fixpix = no
			ccdproc.overscan = no
			ccdproc.trim = no
			ccdproc.zerocor = yes
			ccdproc.darkcor = no
			ccdproc.flatcor = no
			ccdproc.illumcor = no
			ccdproc.fringecor = no
			ccdproc.readcor = no
			ccdproc.scancor = no
			ccdproc.readaxis = 'line'
			ccdproc.fixfile = ""
			ccdproc.zero = "Bias-%s.fits" % chip
			ccdproc.interactive = no
			ccdproc.function = "legendre"
			ccdproc.order = 1
			ccdproc.sample = "*"
			ccdproc.naverage = 1
			ccdproc.niterate = 1
			ccdproc.low_reject = 3.0
			ccdproc.high_reject = 3.0
			ccdproc.grow = 0
			ccdproc(images=im, output="b%s" % im)
				
			flis.append("b%s" % im)
		elif (hdr["FILTER"] == filt):
			flis.append("b%s" % im)

	# Create flat field
	if not os.path.exists("Flat-%s-%s.fits" % (chip, filt)):
	
		glis = []
		for im in flis:
			iraf.iterstat.nsigrej = 5.0
			iraf.iterstat.maxiter = 10
			iraf.iterstat.verbose = globver
			iraf.iterstat.lower = INDEF
			iraf.iterstat.upper = INDEF
			iraf.iterstat(im)
			if (iraf.iterstat.median < RATIRSAT[chip]) and (iraf.iterstat.median > 1000.0):
				glis.append(im)
		     	
		# Set up flatcombine
		flatcombine = iraf.ccdred.flatcombine
		flatcombine.combine = 'median'
		flatcombine.reject = 'avsigclip'
		flatcombine.ccdtype = ''
		flatcombine.scale = 'median'
		flatcombine.statsec = ''
		flatcombine.nlow = 1
		flatcombine.nhigh = 1
		flatcombine.nkeep = 1
		flatcombine.mclip = yes
		flatcombine.lsigma = 3.0
		flatcombine.hsigma = 3.0
		flatcombine.rdnoise = 0.0
		flatcombine.gain = hdr["SOFTGAIN"]
		flatcombine.snoise = 0.0
		flatcombine.pclip = -0.5
			
		# Run flatcombine
		fstr = ",".join(glis[:10])
		flatcombine(fstr, output="Flat-%s-%s.fits" % (chip, filt))
			
		# Normalize
		iraf.iterstat.nsigrej = 5.0
		iraf.iterstat.maxiter = 10
		iraf.iterstat.verbose = globver
		iraf.iterstat.lower = INDEF
		iraf.iterstat.upper = INDEF
		iraf.iterstat("Flat-%s-%s.fits" % (chip, filt))
		iraf.imarith("Flat-%s-%s.fits" % (chip, filt), "/", 
			         iraf.iterstat.median, "Flat-%s-%s.fits" % (chip, filt))
			         	
	# Bias subtract and flat-field science images
	imlist = glob.glob("[0-9]*T[0-9]*%so_img_1.fits" % chip)
	for im in imlist:
		hdr = pyfits.getheader(im)
		if (hdr["FILTER"] == filt) and (not os.path.exists("fb%s" % im)):
			
			hdr = pyfits.getheader(im)
			
			# Subtract bias frame
			ccdproc = iraf.ccdred.ccdproc	
			ccdproc.ccdtype = ""
			ccdproc.noproc = no
			ccdproc.fixpix = no
			ccdproc.overscan = no
			ccdproc.trim = no
			ccdproc.zerocor = yes
			ccdproc.darkcor = no
			ccdproc.flatcor = yes
			ccdproc.illumcor = no
			ccdproc.fringecor = no
			ccdproc.readcor = no
			ccdproc.scancor = no
			ccdproc.readaxis = 'line'
			ccdproc.fixfile = ""
			ccdproc.zero = "Bias-%s.fits" % chip
			ccdproc.flat = "Flat-%s-%s.fits" % (chip, filt)
			ccdproc.interactive = no
			ccdproc.function = "legendre"
			ccdproc.order = 1
			ccdproc.sample = "*"
			ccdproc.naverage = 1
			ccdproc.niterate = 1
			ccdproc.low_reject = 3.0
			ccdproc.high_reject = 3.0
			ccdproc.grow = 0
			ccdproc(images=im, output="fb%s" % im)
			
	# Create sky frame (including dark current!)
	if not os.path.exists("Sky-%s-%s.fits" % (chip, filt)):
		imlist = glob.glob("fb[0-9]*T[0-9]*%so_img_1.fits" % chip)
		hdr = pyfits.getheader(imlist[0])
		slis = []
		for im in imlist:
			if (hdr["FILTER"] == filt):
				slis.append(im)
				
		# Set up combine
		imcombine = iraf.immatch.imcombine
		imcombine.headers = ""
		imcombine.bpmasks = ""
		imcombine.rejmasks = ""
		imcombine.nrejmasks = ""
		imcombine.expmasks = ""
		imcombine.sigmas = ""
		imcombine.combine = "median"
		imcombine.reject = "avsigclip"
		imcombine.project = no
		imcombine.outtype = "real"
		imcombine.offsets = "none"
		imcombine.masktype = "none"
		imcombine.scale = "median"
		imcombine.zero = "none"
		imcombine.weight = "none"
		imcombine.statsec = ""
		imcombine.lsigma = 3.0
		imcombine.hsigma = 3.0
		imcombine.rdnoise = 0.0
		imcombine.gain = hdr["SOFTGAIN"]
		
		sstr = 	",".join(slis[:10])
		imcombine(sstr, "Sky-%s-%s.fits" % (chip, filt))
		
		# Normalize
		iraf.iterstat("Sky-%s-%s.fits" % (chip, filt))
		iraf.imarith("Sky-%s-%s.fits" % (chip, filt), "/", 
			         iraf.iterstat.median, "Sky-%s-%s.fits" % (chip, filt))
			         
	# Subtract sky frame (and dark!)
	imlist = glob.glob("fb[0-9]*T[0-9]*%so_img_1.fits" % chip)
	for im in imlist:
		if not os.path.exists("s%s" % im):
		
			iraf.iterstat(im)
			iraf.imarith("Sky-%s-%s.fits" % (chip, filt), "*", iraf.iterstat.median,
			             "temp.fits")
			iraf.imarith(im, "-", "temp.fits", "s%s" % im)
			os.remove("temp.fits")
			fimg = pyfits.open("s%s" % im, "update")
			fimg[0].header["SKYMED"] = iraf.iterstat.median
			fimg[0].header["SKYSIG"] = iraf.iterstat.sigma
			fimg[0].header["SKYSUB"] = 1
			fimg.flush()
								
	# Remove cosmic rays
	imlist = glob.glob("sfb[0-9]*T[0-9]*%so_img_1.fits" % chip)
	for im in imlist:
		if not os.path.exists("c%s" % im):
			fimg = pyfits.open(im)
			iraf.lacos_im(im, "c%s" % im, "c%s.mask.fits" % im[:-5],
			              gain=hdr['SOFTGAIN'], readn=0.0, statsec="*,*",
			              skyval=fimg[0].header["SKYMED"], sigclip=4.5, 
			              sigfrac=0.5, objlim=1.0, niter=3, verbose=no)

	# Add WCS keywords
	clis = glob.glob("csfb[0-9]*T[0-9]*%so_img_1.fits" % chip)
	for im in clis:
	
		fimg = pyfits.open(im, mode='update')
		if fimg[0].header.get("RA")==None:
		
			ra0 = fimg[0].header["STRCURA"]; dec0 = fimg[0].header["STRCUDE"]
			nax = [fimg[0].header["NAXIS1"], fimg[0].header["NAXIS2"]]
			fimg[0].header["RA"] = ra0
			fimg[0].header["DEC"] = dec0		
			fimg[0].header["PIXSCALE"] = RATIRPIXSCALE[chip]
			fimg[0].header["PIXSCAL1"] = RATIRPIXSCALE[chip]
			fimg[0].header["PIXSCAL2"] = RATIRPIXSCALE[chip]
			fimg[0].header["CTYPE1"] = "RA---TAN"
			fimg[0].header["CTYPE2"] = "DEC--TAN"
			fimg[0].header["WCSDIM"] = 2
			fimg[0].header["WAT0_001"] = "system=image"
			fimg[0].header["WAT1_001"] = "wtype=tan axtype=ra"
			fimg[0].header["WAT2_001"] = "wtype=tan axtype=dec"
			fimg[0].header["LTM1_1"] = 1.0
			fimg[0].header["LTM2_2"] = 1.0	
			fimg[0].header["CRPIX1"] = nax[0] / 2.0
			fimg[0].header["CRPIX2"] = nax[1] / 2.0
			fimg[0].header["CRVAL1"] = ra0
			fimg[0].header["CRVAL2"] = dec0
			fimg[0].header["CD1_1"] = -RATIRPIXSCALE[chip] / 3600.0
			fimg[0].header["CD1_2"] = 0.0
			fimg[0].header["CD2_1"] = 0.0
			fimg[0].header["CD2_2"] = RATIRPIXSCALE[chip] / 3600.0
			
		fimg.flush()
		
	# Crude astrometry
	for im in clis:
	
		if not os.path.exists("a%s" % im):
			os.system("python %s %s" % (PYASTROM, im))
				
	# Refine Astrometry
	o1 = open("daofind.param", "w")
	o1.write("NUMBER\nXWIN_IMAGE\nYWIN_IMAGE\nMAG_AUTO\nFLAGS\nA_IMAGE\nB_IMAGE\n")
	o1.write("ELONGATION\nFWHM_IMAGE\nXWIN_WORLD\nYWIN_WORLD\n")
	o1.write("ERRAWIN_IMAGE\nERRBWIN_IMAGE\nERRTHETAWIN_IMAGE\nERRAWIN_WORLD\n")
	o1.write("ERRBWIN_WORLD\nERRTHETAWIN_WORLD\nFLUX_AUTO\nFLUX_RADIUS\nFLUXERR_AUTO")
	o1.close()
	
	o2 = open("default.conv", "w")
	o2.write("CONV NORM\n# 5x5 convolution mask of a gaussian PSF with FWHM = 3.0 pixels.\n0.092163 0.221178 0.296069 0.221178 0.092163\n0.221178 0.530797 0.710525 0.530797 0.221178\n0.296069 0.710525 0.951108 0.710525 0.296069\n0.221178 0.530797 0.710525 0.530797 0.221178\n0.092163 0.221178 0.296069 0.221178 0.092163")
	o2.close()
	
	alis = glob.glob("acsfb[0-9]*T[0-9]*%so_img_1.fits" % chip)
	for im in alis:
	
		# Detect sources
		os.system("sex -CATALOG_NAME %s.cat -CATALOG_TYPE FITS_LDAC -PARAMETERS_NAME daofind.param -DETECT_THRESH 2.0 -ANALYSIS_THRESH 2.0 -GAIN_KEY SOFTGAIN -PIXEL_SCALE 0 %s" % (im[:-5], im))
		
	# Run scamp for alignment
	imlist = " ".join(alis)
	os.system("scamp -ASTREF_CATALOG SDSS-R7 -DISTORTDEG 1 -SOLVE_PHOTOM N -SN_THRESHOLDS 3.0,10.0 -CHECKPLOT_DEV NULL %s" % imlist.replace(".fits", ".cat"))
	
	# Update header
	for im in alis:
		os.system("missfits %s" % im)
		os.system("rm %s.head %s.back" % (im[:-5], im))
		
	# Find good images for coadd
	slis = []
	for im in alis:
		hdr = pyfits.getheader(im)
		rms1 = hdr["ASTRRMS1"]; rms2 = hdr["ASTRRMS2"]
		if (rms1 < 1.0e-4) and (rms1 > 5.0e-6) and (rms2 < 1.0e-4) and (rms2 > 5.0e-6):
			slis.append(im)
			
	# Initial (unweighted) coadd
	sstr = " ".join(slis)
	os.system("swarp -GAIN_KEYWORD SOFTGAIN %s" % sstr)
	
	# Identify sources in the coadded frame
	hdr = pyfits.getheader("coadd.fits")
	iqpkg.iqobjs("coadd.fits", 10.0, RATIRSAT[chip], skyval="0.0",
	             pix=RATIRPIXSCALE[chip], gain=hdr["GAIN"], aperture=20.0,
	             wtimage="coadd.weight.fits")
	hdr = pyfits.getheader("coadd.fits")
	cpsfdiam = 1.34 * float(hdr["SEEPIX"])
	iqpkg.iqobjs("coadd.fits", 10.0, RATIRSAT[chip], skyval="0.0",
	             pix=RATIRPIXSCALE[chip], gain=hdr["GAIN"], aperture=cpsfdiam,
	             wtimage="coadd.weight.fits")
	             
	refstars1 = Starlist("coadd.fits.stars")
	refstars1.pix2wcs("coadd.fits")
	truemags = np.array(refstars1.mags())
	maglist = []; errlist = []
	
	# (Relative) Zeropoints for individual images
	for im in slis:
		hdr = pyfits.getheader(im)
		iqpkg.iqobjs(im, 3.0, RATIRSAT[chip], skyval="!SKYMED", 
		       pix=RATIRPIXSCALE[chip], gain=hdr["SOFTGAIN"], aperture=20.0)
		hdr = pyfits.getheader(im)
		psfdiam = 1.34 * float(hdr["SEEPIX"])
		iqpkg.iqobjs(im, 3.0, RATIRSAT[chip], skyval="!SKYMED", 
		       pix=RATIRPIXSCALE[chip], gain=hdr["SOFTGAIN"], aperture=psfdiam)
		stars = Starlist("%s.stars" % im)
		refstars1.wcs2pix(im)
		a,b = stars.match(refstars1,tol=10.0,maxnum=1000)
		newmags = np.zeros(len(refstars1)); newwts = np.zeros(len(refstars1))
		for i in range(len(refstars1)):
			for j in range(len(a)):
				if b[j].mag == truemags[i]:
					newmags[i] = a[j].mag
					newwts[i] = 1.0 / np.power(np.maximum(a[j].magu, 0.01),2)
					continue
		maglist.append(newmags); errlist.append(newwts)
		
	obsmags = np.array(maglist)
	wts = np.array(errlist)
	
	[zpts, scatt, rms] = calc_zpts(truemags, obsmags, wts, sigma=3.0)
	
	# Update headers
	medzp = np.median(zpts)
	for i in range(len(slis)):
		im = slis[i]
		fimg = pyfits.open(im, mode="update")
		fimg[0].header["RELZPT"] = zpts[i]
		fimg[0].header["RELZPTSC"] = scatt[i]
		fimg[0].header["RELZPRMS"] = rms[i]
		fimg[0].header["FLXSCALE"] = 1.0 / np.power(10, (zpts[i] - medzp) / 2.5)
		fimg.flush()
		
	# Final coadd
	os.system("swarp -GAIN_KEYWORD SOFTGAIN %s" % sstr)
	
	# Calibration
	iqpkg.iqobjs("coadd.fits", 10.0, RATIRSAT[chip], skyval="0.0",
	             pix=RATIRPIXSCALE[chip], gain=hdr["GAIN"], aperture=cpsfdiam,
	             wtimage="coadd.weight.fits")
	stars = Starlist("coadd.fits.stars")
	refstars = Starlist(reflist)
	refstars.wcs2pix("coadd.fits")
	refstars.set_mag("%sMAG" % filt.upper())
	truemags = np.array(refstars.mags())
	maglist = []; errlist = []
	
	a,b = stars.match(refstars, tol=10.0, maxnum=1000)
	newmags = np.zeros(len(refstars)); newwts = np.zeros(len(refstars))
	for i in range(len(refstars)):
		for j in range(len(a)):
			if b[j].mag == truemags[i]:
				newmags[i] = a[j].mag
				newwts[i] = 1.0 / np.power(np.maximum(a[j].magu, 0.01),2)
				continue
	maglist.append(newmags); errlist.append(newwts)
	
	obsmags = np.array(maglist)
	wts = np.array(errlist)
	
	[zpts, scatt, rms] = calc_zpts(truemags, obsmags, wts, sigma=3.0)
	fimg = pyfits.open("coadd.fits", mode="update")
	fimg[0].header["ABSZPT"] = zpts[0] + 25
	fimg[0].header["ABSZPTSC"] = scatt[0]
	fimg[0].header["ABZPRMS"] = rms[0]
	
	print "Zeropoint for coadded image: %.3f" % (25.0+zpts[0])
	print "Robust scatter for coadded image: %.3f" % scatt[0]
	print "RMS for coadded image: %.3f" % rms[0]
コード例 #12
0
def psfphot(image,
            clobber=globclob,
            verbose=globver,
            pixtol=3.0,
            maxnpsf=5,
            interact=yes):
    """ perform PSF-based photometry on a single target star (SN?) at RA, Dec and  
        also on a set of comparison stars, using daophot.  simultaneously 
        perform aperture photometry on all the comparison stars (after 
        subtracting off contributions from neighbors) to enable absolute 
        photometry by comparison to aperture photometry of standard stars 
        observed in other fields """

    # Defaults / constants
    psfmult = 5.0  #standard factor (multiplied by fwhm to get psfradius)
    psfmultsmall = 3.0  #similar to psfmult, adjusted for nstar and substar

    # Necessary package
    iraf.imutil()

    # Detect stars
    iqpkg.iqobjs(image, 3.0, 50000.0, wtimage="", skyval="!MEDSKY")

    root = image[:-5]
    [gain, rnoise, fwhm] = get_head(image, ["GAIN", "READNOI", "SEEPIX"])
    fwhm = float(fwhm)
    rnoise = float(rnoise)

    iraf.iterstat(image)

    # Saturation level
    if not check_head(image, "SATURATE"):
        saturate = 60000.0
    else:
        saturate = get_head(image, "SATURATE")

    # Update datapars and daopars
    iraf.datapars.fwhmpsf = fwhm
    iraf.datapars.sigma = iraf.iterstat.sigma
    iraf.datapars.datamin = iraf.iterstat.median - 10 * iraf.iterstat.sigma
    iraf.datapars.datamax = 70000.0
    iraf.datapars.readnoise = rnoise
    iraf.datapars.epadu = gain
    iraf.daopars.psfrad = psfmult * fwhm
    iraf.daopars.fitrad = fwhm
    iraf.daopars.function = "gauss,moffat15,moffat25,lorentz,penny1"

    # coo file
    stars = Starlist("%s.stars" % image)
    outf = open("%s.coo.1" % image[:-5], "w")
    for star in stars:
        outf.write("%10.3f%10.3f\n" % (star.xval, star.yval))
    outf.close()

    #initial photometry
    iraf.daophot.phot(root,
                      'default',
                      'default',
                      aperture=fwhm,
                      verify=no,
                      verbose=verbose)

    iraf.datapars.datamax = 30000.0
    iraf.pstselect(root,
                   'default',
                   'default',
                   maxnpsf,
                   interactive=yes,
                   verify=no,
                   verbose=verbose)

    iraf.psf(root,
             'default',
             'default',
             'default',
             'default',
             'default',
             interactive=interact,
             verify=no,
             verbose=verbose)

    iraf.allstar(root,
                 'default',
                 'default',
                 'default',
                 'default',
                 'default',
                 verify=no,
                 verbose=verbose)

    iraf.iterstat("%s.sub.fits" % root)

    iraf.datapars.sigma = iraf.iterstat.sigma
    iraf.datapars.datamin = iraf.iterstat.median - 10 * iraf.iterstat.sigma

    iraf.datapars.datamax = 70000.0
    iraf.daophot.phot("%s.sub.fits" % root,
                      "SN.coo",
                      'default',
                      'default',
                      aperture=fwhm,
                      verify=no,
                      verbose=verbose)

    iraf.datapars.datamax = 30000.0
    iraf.daopars.fitrad = fwhm * 2.0
    iraf.allstar("%s.sub.fits" % root,
                 'default',
                 "%s.psf.1.fits" % root,
                 'default',
                 'default',
                 'default',
                 verify=no,
                 verbose=no)
コード例 #13
0
def psfphot(inlist,
            ra,
            dec,
            reffilt,
            interact,
            fwhm,
            readnoise,
            gain,
            threshold,
            refimage=None,
            starfile=None,
            maxnpsf=5,
            clobber=globclob,
            verbose=globver,
            skykey='SKYBKG',
            filtkey='FILTER',
            pixtol=3.0):
    """ perform PSF-based photometry on a single target star (SN?) at RA, Dec and  
        also on a set of comparison stars, using daophot.  simultaneously 
        perform aperture photometry on all the comparison stars (after 
        subtracting off contributions from neighbors) to enable absolute 
        photometry by comparison to aperture photometry of standard stars 
        observed in other fields """

    # Defaults / constants
    psfmult = 5.0  #standard factor (multiplied by fwhm to get psfradius)
    psfmultsmall = 3.0  #similar to psfmult, adjusted for nstar and substar

    # Necessary package
    iraf.imutil()

    # Parse inputs
    infiles = iraffiles(inlist)

    # Which file is reffilt?  call it refimage
    if refimage == None:
        for image in infiles:
            if check_head(image, filtkey):
                try:
                    imgfilt = get_head(image, filtkey)
                    if imgfilt == reffilt:
                        refimage = image
                        break
                except:
                    pass

    if not refimage:
        print "BAD USER!  No image corresponds to the filter: %s" % reffilt
        return
    else:
        refroot = 's' + refimage.split('.')[0]

    #first make sure to add back in background of sky
    iraf.iqsubsky(inlist, sub=no, skykey=skykey)

    #put reference image first on list
    infiles.remove(refimage)
    infiles.insert(0, refimage)

    #setup for keywords
    if gain == "!GAIN":
        try:
            gainval = float(get_head(image, gain))
        except:
            print "Bad header keyword for gain."
    else:
        gainval = float(gain)

    if readnoise == "!READNOISE":
        try:
            readval = float(get_head(image, readnoise))
        except:
            print "Bad header keyword for readnoise."
    else:
        readval = float(readnoise)

    # Process each file in turn
    for image in infiles:

        # Check that the image is there
        check_exist(image, "r")

        # Grab image root name
        root = image.split('.')[0]

        # Map image to reference image
        if not (image == refimage):
            [nx, ny] = get_head(image, ['NAXIS1', 'NAXIS2'])
            stars = Starlist(get_head(image, 'STARFILE'))
            refstars = Starlist(get_head(refimage, 'STARFILE'))
            refstars.pix2wcs(refimage)
            refstars.wcs2pix(image)
            match, refmatch = stars.match(refstars, useflags=yes, tol=10.0)
            nstars = len(match)
            if not (nstars > 2):
                print 'Could not find star matches between reference and %s' % image
                infiles.remove(image)
                continue
            refmatch.pix2wcs(image)
            refmatch.wcs2pix(refimage)
            matchfile = open('%s.match' % root, 'w')
            for i in range(len(match)):
                matchfile.write('%10.3f%10.3f%10.3f%10.3f\n' %
                                (refmatch[i].xval, refmatch[i].yval,
                                 match[i].xval, match[i].yval))
            matchfile.close()
            check_exist('%s.geodb' % root, 'w', clobber=clobber)
            iraf.geomap('%s.match' % root,
                        '%s.geodb' % root,
                        1.0,
                        nx,
                        1.0,
                        ny,
                        verbose=no,
                        interactive=no)
            check_exist('s%s.fits' % root, 'w', clobber=clobber)
            iraf.geotran(image,
                         's%s' % root,
                         '%s.geodb' % root,
                         '%s.match' % root,
                         geometry="geometric",
                         boundary="constant",
                         verbose=no)
        else:
            iraf.imcopy(image, 's%s' % root)
        root = 's%s' % root

        #get sky level and calculate sigma
        #if check_head(image, skykey):
        #    try:
        #        sky=float(get_head(image, skykey))
        #    except:
        #        print "No sky levels in header."

        #sigma= (((sky * gainval) + readval**2)**.5) / gainval
        iraf.iterstat(image)

        # Saturation level
        if not check_head(image, "SATURATE"):
            saturate = 60000.0
        else:
            saturate = get_head(image, "SATURATE")

        # Update datapars and daopars
        iraf.datapars.fwhmpsf = fwhm
        iraf.datapars.sigma = iraf.iterstat.sigma
        iraf.datapars.datamin = iraf.iterstat.median - 10 * iraf.iterstat.sigma
        iraf.datapars.datamax = 0.90 * saturate
        iraf.datapars.readnoise = readval
        iraf.datapars.epadu = gainval
        iraf.datapars.filter = filtkey
        iraf.daopars.psfrad = psfmult * fwhm
        iraf.daopars.fitrad = fwhm
        iraf.daopars.function = "gauss,moffat15,moffat25,lorentz,penny1"

        #find stars in image unless a starlist is given
        if image == refimage and starfile == None:
            iraf.daophot.daofind(root,
                                 'refimage.coo.1',
                                 threshold=threshold,
                                 verify=no,
                                 verbose=verbose)
        elif image == refimage:
            shutil.copy(starfile, 'refimage.coo.1')

        #initial photometry
        iraf.daophot.phot(root,
                          'refimage.coo.1',
                          'default',
                          aperture=fwhm,
                          verify=no,
                          verbose=verbose)

        #select stars for psf the first time
        refstarsfile = "refimage.pst.1"
        if image == refimage:
            iraf.pstselect(root,
                           'default',
                           refstarsfile,
                           maxnpsf,
                           interactive=yes,
                           verify=no,
                           verbose=verbose)

        #fit the psf
        iraf.psf(root,
                 'default',
                 refstarsfile,
                 'default',
                 'default',
                 'default',
                 interactive=interact,
                 verify=no,
                 verbose=verbose)

        #identify neighboring/interfering stars to selected stars
        groupingfile = root + ".psg.1"
        iraf.nstar(root,
                   groupingfile,
                   'default',
                   'default',
                   'default',
                   psfrad=psfmultsmall * fwhm,
                   verify=no,
                   verbose=verbose)

        #subtract out neighboring stars from image
        iraf.substar(root,
                     'default',
                     refstarsfile,
                     'default',
                     'default',
                     psfrad=psfmultsmall * fwhm,
                     verify=no,
                     verbose=verbose)

        #repeat psf to get better psf model
        #IRAF's interactive version usually crashes
        subtractedimage = root + ".sub.1"
        iraf.psf(subtractedimage,
                 root + ".nst.1",
                 refstarsfile,
                 '%s.psf.2' % root,
                 '%s.pst.2' % root,
                 '%s.psg.2' % root,
                 interactive=interact,
                 verify=no,
                 verbose=verbose)

        #Need to make sure SN was detected by daofind
        stars = Starlist('%s.mag.1' % root)
        SN = Star(name='SN', radeg=ra, dcdeg=dec, fwhm=2.0, fwhmw=2.0)
        SNlis = Starlist(stars=[SN])
        SNlis.wcs2pix(image)
        if (len(stars.match(SNlis)[0]) == 0):
            #No match - need to add to daofind file
            print "No match!"
            coofile = open('refimage.coo.1', 'a+')
            coofile.write('%10.3f%10.3f%9.3f%8.3f%13.3f%12.3f%8i\n' %
                          (SNlis[0].xval, SNlis[0].yval, 99.999, 0.500, 0.000,
                           0.000, 999))
            coofile.close()

        #repeat aperture photometry to get good comparisons to standard fields
        iraf.daophot.phot(root,
                          'refimage.coo.1',
                          'default',
                          aperture=psfmult * fwhm,
                          verify=no,
                          verbose=verbose)

        # allstar run
        iraf.allstar(root,
                     'default',
                     'default',
                     'default',
                     'default',
                     'default',
                     verify=no,
                     verbose=verbose)
コード例 #14
0
ファイル: iqlmi.py プロジェクト: pradipgatkine/python
def lmi_detrend(imlist,
                otype="OBJECT",
                ppre="p",
                bkey="BIASSEC",
                tkey="TRIMSEC",
                bpre="b",
                bfile="Bias.fits",
                fkey="FILTER",
                fpre="f",
                flatpre="Flat",
                skybkg="SKYBKG",
                skysub="SKYSUB",
                skysig="SKYSIG",
                fpfx="F",
                clobber=globclob,
                verbose=globver):
    '''Identify science frames, pre-process, subtract bias, divide by flat, 
	   and correct for non-linearity.'''

    images = glob.glob(imlist)
    images.sort()

    # Loop through all images
    for im in images:
        hdr = pyfits.getheader(im)
        if hdr['OBSTYPE'] == otype:

            # Preprocess
            preproc(im,
                    fkey=fkey,
                    ppre=ppre,
                    bkey=bkey,
                    tkey=tkey,
                    clobber=clobber,
                    verbose=verbose)

            # Bias subtraction
            lmi_debias("%s%s" % (ppre, im), bpre=bpre, bfile=bfile)

            # Flat field
            lmi_flat("%s%s%s" % (bpre, ppre, im),
                     fpre=fpre,
                     fkey=fkey,
                     flatpre="Flat")

            # Linearity correction
            lmi_lincor("%s%s%s%s" % (fpre, bpre, ppre, im))

            # Write sky values to header
            iraf.iterstat("%s%s%s%s" % (fpre, bpre, ppre, im),
                          verbose=no,
                          prin=no)
            fimg = pyfits.open("%s%s%s%s" % (fpre, bpre, ppre, im),
                               mode="update")
            fimg[0].header[skybkg] = iraf.iterstat.median
            fimg[0].header[skysig] = iraf.iterstat.sigma
            fimg[0].header[skysub] = 0
            fimg.flush()
            fimg.close()

            # Final processed image
            shutil.copy("%s%s%s%s" % (fpre, bpre, ppre, im),
                        "%s%s" % (fpfx, im))

    return
コード例 #15
0
ファイル: iqlmi.py プロジェクト: pradipgatkine/python
def lmi_cals(imlist,
             dobias=yes,
             dobpm=yes,
             doflats=yes,
             btype="BIAS",
             ftype="SKY FLAT",
             fkey="FILTER",
             ppre="p",
             bkey="BIASSEC",
             tkey="TRIMSEC",
             bfile="Bias.fits",
             bpmfile="BPM.pl",
             bpre="b",
             flatpre="Flat",
             clobber=globclob,
             verbose=globver):
    '''Process bias and twilight flats, creating relevant calibration files for
	   nightly processing of LMI data.'''

    images = glob.glob(imlist)
    blist = []
    flist = []

    # Preprocess all the relevant images
    for im in images:
        hdr = pyfits.getheader(im)
        if hdr['OBSTYPE'] == btype:
            blist.append("%s%s" % (ppre, im))
            preproc(im,
                    fkey=fkey,
                    ppre=ppre,
                    bkey=bkey,
                    tkey=tkey,
                    clobber=clobber,
                    verbose=verbose)
        elif hdr['OBSTYPE'] == ftype:
            flist.append("%s%s" % (ppre, im))
            preproc(im,
                    fkey=fkey,
                    ppre=ppre,
                    bkey=bkey,
                    tkey=tkey,
                    clobber=clobber,
                    verbose=verbose)

    if dobias:

        # Setup zerocombine
        zerocombine = iraf.ccdred.zerocombine
        zerocombine.combine = 'median'
        zerocombine.reject = 'avsigclip'
        zerocombine.ccdtype = ''
        zerocombine.process = no
        zerocombine.delete = no
        zerocombine.clobber = no
        zerocombine.scale = 'none'
        zerocombine.statsec = '*'
        zerocombine.nlow = 0
        zerocombine.nhigh = 1
        zerocombine.nkeep = 1
        zerocombine.mclip = yes
        zerocombine.lsigma = 3.0
        zerocombine.hsigma = 3.0
        zerocombine.rdnoise = hdr['RDNOISE']
        zerocombine.gain = hdr['GAIN']
        zerocombine.snoise = 0
        zerocombine.pclip = -0.5
        zerocombine.blank = 0.0

        # Run zerocombine
        bstr = ",".join(blist)
        if os.path.exists(bfile):
            os.remove(bfile)
        zerocombine(input=bstr, output=bfile)

    if dobpm:

        # Setup imcombine
        imcombine = iraf.immatch.imcombine
        imcombine.sigmas = "bsigma.fits"
        imcombine.combine = "median"
        imcombine.reject = "none"
        imcombine.project = no
        imcombine.outtype = "real"
        imcombine.outlimits = ""
        imcombine.offsets = "none"
        imcombine.masktype = "none"
        imcombine.scale = "none"
        imcombine.zero = "none"
        imcombine.weight = "none"

        # Run imcombine
        bstr = ",".join(blist)
        if os.path.exists("junk.fits"):
            os.remove("junk.fits")
        if os.path.exists("bsigma.fits"):
            os.remove("bsigma.fits")
        imcombine(input=bstr, output="junk.fits")

        # Run ccdmask to create BPM file
        if os.path.exists(bpmfile):
            os.remove(bpmfile)
        iraf.ccdred.ccdmask("bsigma.fits",
                            bpmfile,
                            ncmed=7,
                            nlmed=7,
                            ncsig=15,
                            nlsig=15,
                            lsigma=10,
                            hsigma=10,
                            ngood=1,
                            linterp=1,
                            cinterp=1,
                            eqinterp=1)

        os.remove("bsigma.fits")
        os.remove("junk.fits")

    if doflats:

        # Subtract bias images from all flats
        for im in flist:
            lmi_debias(im, bfile=bfile)

        # Loop over filters
        for filt in LMIFILTS:

            # ID files in appropriate filter
            flis = []
            for im in flist:
                hdr = pyfits.getheader(im)
                if hdr[fkey] == filt:
                    flis.append("%s%s" % (bpre, im))

            if flis == []:
                continue

            # Set up flatcombine
            flatcombine = iraf.ccdred.flatcombine
            flatcombine.combine = 'median'
            flatcombine.reject = 'avsigclip'
            flatcombine.ccdtype = ''
            flatcombine.process = no
            flatcombine.scale = 'median'
            flatcombine.statsec = ''
            flatcombine.nlow = 1
            flatcombine.nhigh = 1
            flatcombine.nkeep = 1
            flatcombine.mclip = yes
            flatcombine.lsigma = 3.0
            flatcombine.hsigma = 3.0
            flatcombine.rdnoise = hdr["RDNOISE"]
            flatcombine.gain = hdr["GAIN"]
            flatcombine.snoise = 0.0
            flatcombine.pclip = -0.5
            flatcombine.blank = 1.0

            # Run flatcombine
            fstr = ",".join(flis)
            if os.path.exists("%s-%s.fits" % (flatpre, filt)):
                os.remove("%s-%s.fits" % (flatpre, filt))
            flatcombine(input=fstr, output="%s-%s.fits" % (flatpre, filt))

            # Normalize
            iraf.iterstat.nsigrej = 5.0
            iraf.iterstat.maxiter = 10
            iraf.iterstat.verbose = globver
            iraf.iterstat.lower = INDEF
            iraf.iterstat.upper = INDEF
            iraf.iterstat("%s-%s.fits" % (flatpre, filt), verbose=no, prin=no)
            iraf.imarith("%s-%s.fits" % (flatpre, filt), "/",
                         iraf.iterstat.median, "%s-%s.fits" % (flatpre, filt))

    return
コード例 #16
0
ファイル: psfphot.py プロジェクト: cenko/python
def psfphot(inlist, ra, dec, reffilt, interact, fwhm, readnoise, gain, 
            threshold,refimage=None,starfile=None,maxnpsf=5, 
            clobber=globclob,verbose=globver,skykey='SKYBKG',
            filtkey='FILTER',pixtol=3.0):


    """ perform PSF-based photometry on a single target star (SN?) at RA, Dec and  
        also on a set of comparison stars, using daophot.  simultaneously 
        perform aperture photometry on all the comparison stars (after 
        subtracting off contributions from neighbors) to enable absolute 
        photometry by comparison to aperture photometry of standard stars 
        observed in other fields """

    # Defaults / constants
    psfmult=5.0         #standard factor (multiplied by fwhm to get psfradius)
    psfmultsmall=3.0    #similar to psfmult, adjusted for nstar and substar

    # Necessary package
    iraf.imutil()

    # Parse inputs
    infiles=iraffiles(inlist)

    # Which file is reffilt?  call it refimage
    if refimage==None:
        for image in infiles:
            if check_head(image, filtkey):
                try:
                    imgfilt = get_head(image, filtkey)
                    if imgfilt == reffilt:
                        refimage = image
                        break
                except:
                    pass
            
    if not refimage:
        print "BAD USER!  No image corresponds to the filter: %s" % reffilt
        return
    else:
        refroot='s'+refimage.split('.')[0]

    #first make sure to add back in background of sky
    iraf.iqsubsky(inlist, sub=no, skykey=skykey)

    #put reference image first on list
    infiles.remove(refimage)
    infiles.insert(0,refimage)

    #setup for keywords
    if gain == "!GAIN":
        try: gainval = float(get_head(image, gain))
        except:
            print "Bad header keyword for gain."
    else:
        gainval = float(gain)

    if readnoise == "!READNOISE":
        try: readval = float(get_head(image, readnoise))
        except:
            print "Bad header keyword for readnoise."
    else:
        readval = float(readnoise)

    # Process each file in turn
    for image in infiles:

        # Check that the image is there
        check_exist(image,"r")

        # Grab image root name
        root=image.split('.')[0]

        # Map image to reference image
        if not (image==refimage):
            [nx,ny]=get_head(image,['NAXIS1','NAXIS2'])
            stars=Starlist(get_head(image,'STARFILE'))
            refstars=Starlist(get_head(refimage,'STARFILE'))
            refstars.pix2wcs(refimage)
            refstars.wcs2pix(image)
            match,refmatch=stars.match(refstars,useflags=yes,tol=10.0)
            nstars=len(match)
            if not (nstars>2):
                print 'Could not find star matches between reference and %s' % image
                infiles.remove(image)
                continue
            refmatch.pix2wcs(image)
            refmatch.wcs2pix(refimage)
            matchfile=open('%s.match' % root, 'w')
            for i in range(len(match)):
                matchfile.write('%10.3f%10.3f%10.3f%10.3f\n' % 
                               (refmatch[i].xval,refmatch[i].yval,
                                match[i].xval,match[i].yval))
            matchfile.close()
            check_exist('%s.geodb' % root, 'w', clobber=clobber)
            iraf.geomap('%s.match' % root,'%s.geodb' % root,1.0,nx,1.0,ny,
                        verbose=no,interactive=no)
            check_exist('s%s.fits' % root, 'w', clobber=clobber)
            iraf.geotran(image,'s%s' % root,'%s.geodb' % root,
                         '%s.match' % root,geometry="geometric",
                         boundary="constant",verbose=no)
        else:
            iraf.imcopy(image,'s%s' % root)
        root='s%s' % root
 
        #get sky level and calculate sigma
        #if check_head(image, skykey):
        #    try:
        #        sky=float(get_head(image, skykey))
        #    except:
        #        print "No sky levels in header."

        #sigma= (((sky * gainval) + readval**2)**.5) / gainval        
        iraf.iterstat(image)
        
        # Saturation level
        if not check_head(image, "SATURATE"):
        	saturate = 60000.0
        else:
        	saturate = get_head(image, "SATURATE")
        	        
        # Update datapars and daopars
        iraf.datapars.fwhmpsf=fwhm
        iraf.datapars.sigma=iraf.iterstat.sigma
        iraf.datapars.datamin=iraf.iterstat.median-10*iraf.iterstat.sigma
        iraf.datapars.datamax=0.90*saturate
        iraf.datapars.readnoise=readval
        iraf.datapars.epadu=gainval
        iraf.datapars.filter=filtkey
        iraf.daopars.psfrad=psfmult*fwhm
        iraf.daopars.fitrad=fwhm
        iraf.daopars.function="gauss,moffat15,moffat25,lorentz,penny1"

        #find stars in image unless a starlist is given
        if image==refimage and starfile==None:
            iraf.daophot.daofind(root,'refimage.coo.1',threshold=threshold,verify=no,
                         verbose=verbose)
        elif image==refimage:
            shutil.copy(starfile,'refimage.coo.1')

        #initial photometry
        iraf.daophot.phot(root,'refimage.coo.1','default',aperture=fwhm,verify=no,
                  verbose=verbose)

        #select stars for psf the first time
        refstarsfile = "refimage.pst.1"
        if image == refimage:
            iraf.pstselect(root,'default',refstarsfile,maxnpsf,
                           interactive=yes,verify=no,verbose=verbose)

        #fit the psf
        iraf.psf(root,'default',refstarsfile,'default','default','default',
                 interactive=interact,verify=no,verbose=verbose)

        #identify neighboring/interfering stars to selected stars
        groupingfile = root+".psg.1"
        iraf.nstar(root,groupingfile,'default','default','default',
                   psfrad= psfmultsmall * fwhm,verify=no,verbose=verbose)

        #subtract out neighboring stars from image
        iraf.substar(root,'default',refstarsfile,'default','default',
                     psfrad=psfmultsmall*fwhm,verify=no,verbose=verbose)

        #repeat psf to get better psf model
        #IRAF's interactive version usually crashes
        subtractedimage = root+".sub.1"
        iraf.psf(subtractedimage,root+".nst.1",refstarsfile,'%s.psf.2' % root,
                 '%s.pst.2' % root,'%s.psg.2' % root,interactive=interact,
                 verify=no,verbose=verbose)

        #Need to make sure SN was detected by daofind
        stars=Starlist('%s.mag.1' % root)
        SN=Star(name='SN',radeg=ra,dcdeg=dec,fwhm=2.0,fwhmw=2.0)
        SNlis=Starlist(stars=[SN])
        SNlis.wcs2pix(image)
        if (len(stars.match(SNlis)[0])==0):
            #No match - need to add to daofind file
            print "No match!"
            coofile=open('refimage.coo.1', 'a+')
            coofile.write('%10.3f%10.3f%9.3f%8.3f%13.3f%12.3f%8i\n' % (SNlis[0].xval, SNlis[0].yval,99.999,0.500,0.000,0.000,999))
            coofile.close()    

        #repeat aperture photometry to get good comparisons to standard fields
        iraf.daophot.phot(root,'refimage.coo.1','default',aperture=psfmult*fwhm,
                  verify=no,verbose=verbose)

        # allstar run
        iraf.allstar(root,'default','default','default','default','default',
                     verify=no,verbose=verbose)
コード例 #17
0
ファイル: sst_tools.py プロジェクト: cenko/python
def spitzer_sub(new, newunc, newcov, ref, refunc, refcov, out,
                stamps=None, tmass=None):

    # Remove nan from mosaics
    x = pyfits.open(new)
    y = np.nan_to_num(x[0].data)
    x[0].data = y
    new2 = "n%s" % new
    x.writeto(new2)

    # Find stars in new image
    os.system("$REDUCTION/runsex.pl %s 5.0 -weight %s" % (new2, newcov))

    # Find stars in reference
    os.system("$REDUCTION/runsex.pl %s 5.0 -weight %s" % (ref, refcov))

    # Create file for geotran
    stars = Starlist("%s.stars" % new2)
    refstars = Starlist("%s.stars" % ref)
    refstars.pix2wcs(ref)
    refstars.wcs2pix(new2)
    a,b = stars.match(refstars, maxnum=1000)

    # Create file for geotran
    b.pix2wcs(new2)
    b.wcs2pix(ref)
    refroot = ref.split(".")[0]
    outf = open("%s.match" % refroot, "w")
    for i in range(len(a)):
        outf.write("%10.3f%10.3f%10.3f%10.3f\n" % (a[i].xval, a[i].yval,
                   b[i].xval, b[i].yval))
    outf.close()

    # Geomap and geotran
    [naxis1, naxis2] = get_head(new, ["NAXIS1", "NAXIS2"])
    iraf.geomap("%s.match" % refroot, "%s.db" % refroot, 1, naxis1, 1, naxis2,
                fitgeometry="rotate", interactive=no)
    iraf.geotran(ref, "t%s" % ref, "%s.db" % refroot, "%s.match" % refroot)
    iraf.geotran(refunc, "t%s" % refunc, "%s.db" % refroot, 
                 "%s.match" % refroot)

    # Get stars for PSF matching
    if stamps != None:

        psfstars = Starlist(stamps)
        psfstars.pix2wcs(ref)
        psfstars.wcs2pix(new2)
        outf = open("stamps.lis", "w")
        for star in psfstars:
            outf.write("%10.3f%10.3f\n" % (star.xval, star.yval))
        outf.close()

    # Appropriate parameters
    iraf.iterstat(ref)
    update_head(ref, ["MEDSKY", "SKYSIG"], [iraf.iterstat.median,
                                            iraf.iterstat.sigma])
    [refskybkg, refskysig] = get_head(ref, ["MEDSKY", "SKYSIG"])
    tl = refskybkg - 10 * refskysig; tu = 30000.0
    iraf.iterstat(new)
    update_head(new, ["MEDSKY", "SKYSIG"], [iraf.iterstat.median, 
                                            iraf.iterstat.sigma])
    [newskybkg, newskysig] = get_head(new, ["MEDSKY", "SKYSIG"])
    il = newskybkg - 10 * newskysig; iu = 30000.0
    
    # Run hotpants
    hpcmd = "hotpants -inim %s -tmplim t%s -outim %s -tni t%s -ini %s -nsx 3 -nsy 3 -savexy %s.xy -ko 0 -bgo 0 -oni u%s -n t -tl %.2f -tu %.2f -il %.2f -iu %.2f -r 7.5 -rss 18.0" % (new2, ref, out, refunc, newunc, new2, out, tl, tu, il, iu)
    if stamps != None:
        hpcmd += " -ssf stamps.lis -afssc 0"
    os.system(hpcmd)
    #iraf.imarith(new2, "-", "t%s" % ref, out)

    # Create appropriate weight image
    #iraf.imexpr("sqrt(a**2 + b**2)", "u%s" % out, a=newunc, b=refunc)
    iraf.imarith(1, "/", "u%s" % out, "temp1.fits")
    iraf.imarith("temp1.fits", "/", "u%s" % out, "w%s" % out)
    os.remove("temp1.fits")

    # Pick up candidates
    os.system("$REDUCTION/runsex.pl %s 2.0 -weight w%s" % (out, out))
    stars = Starlist("%s.stars" % out)
    cands = []
    [nax1, nax2] = get_head(ref, ["NAXIS1", "NAXIS2"])
    stars.pix2wcs(new)
    stars.wcs2pix(ref)
    refu = pyfits.open(refunc)
    for star in stars:
        if star.xval > EDGETOL and star.xval < (nax1 - EDGETOL) and star.yval > EDGETOL and star.yval < (nax2 - EDGETOL) and refu[0].data[star.yval,star.xval] != 0 and star.fwhmw > 0.5 and star.fwhmw < 10.0:
            cands.append(star)
    scands = Starlist(stars=cands)

    # Filter out bright stars
    if tmass==None:
        scands.write("cands.reg")
    else:
        stmass = Starlist(tmass)
        stmass.wcs2pix(ref)
        s2cands = scands.nomatch(stmass)
        s2cands.write("cands.reg")
    
    # More comprehensive list
    os.system("$REDUCTION/runsex.pl %s 1.5" % out)
    stars = Starlist("%s.stars" % out)
    cands = []
    [nax1, nax2] = get_head(ref, ["NAXIS1", "NAXIS2"])
    stars.pix2wcs(new)
    stars.wcs2pix(ref)
    refu = pyfits.open(refunc)
    for star in stars:
        if star.xval > EDGETOL and star.xval < (nax1 - EDGETOL) and star.yval > EDGETOL and star.yval < (nax2 - EDGETOL) and refu[0].data[star.yval,star.xval] != 0 and star.fwhmw > 0.5 and star.fwhmw < 10.0:
            cands.append(star)
    scands = Starlist(stars=cands)
    scands.write("cands_all.reg")

    return
コード例 #18
0
def p60sdsssub(inlis,
               refimage,
               ot,
               distortdeg=1,
               scthresh1=3.0,
               scthresh2=10.0,
               tu=50000,
               iu=50000,
               ig=2.3,
               tg=1.0,
               stamps=None,
               nsx=4,
               nsy=4,
               ko=0,
               bgo=0,
               radius=10,
               tlow=None,
               ilow=None,
               sthresh=5.0,
               ng=None,
               aperture=10.0):
    '''P60 Subtraction using SDSS image as reference'''

    images = iraffiles(inlis)
    images.sort()

    # Get WCS center, pixel scale, and pixel extent of reference
    [n1, n2] = get_head(refimage, ['NAXIS1', 'NAXIS2'])
    [[ractr, dcctr]] = impix2wcs(refimage, n1 / 2.0, n2 / 2.0)
    if not (check_head(refimage, 'PIXSCALE')):
        print 'Error: Please add PIXSCALE keyword to reference image'
        return 0
    else:
        pix = get_head(refimage, 'PIXSCALE')

    # Create stamps file
    if not (stamps == None):
        refstars = Starlist(stamps)
        refstars.wcs2pix(refimage)
        outf = open('ref.stamps', 'w')
        for star in refstars:
            outf.write('%.1f\t%.1f\n' % (star.xval, star.yval))
        outf.close()

    # Create OT file
    refstars = Starlist(ot)
    refstars.wcs2pix(refimage)
    outf = open('ref.coo', 'w')
    outf.write('%.2f\t%.2f\n' % (refstars[0].xval, refstars[0].yval))
    outf.close()

    # First get good distortion correction (if succifient number of images)
    #    if len(images)>5:
    #        p60scampall(images, 't20', 'dist', distortdeg=3, scthresh1=3.0,
    #                    scthresh2=10.0)
    #    else:
    #        for image in images:
    #            iraf.imcopy(image, '%s.dist.fits' % image.split('.')[0])

    for image in images:

        root = image.split('.')[0]

        # Subtract sky background if necessary
        [iskysub, iskybkg] = get_head(image, ['SKYSUB', 'SKYBKG'])
        if (iskysub == 1):
            iraf.imarith(image, '+', iskybkg, image)
            update_head(image, 'SKYSUB', 0)

        # First use pre-determined distortion file
        #shutil.copy(distfile, '%s.head' % root)
        #p60swarp(image, '%s.dist.fits' % root, backsub=no)

        # Run scamp
        #p60scamp('%s.dist.fits' % root, refimage=refimage,
        p60scamp('%s.fits' % root,
                 refimage=refimage,
                 distortdeg=distortdeg,
                 scthresh1=scthresh1,
                 scthresh2=scthresh2,
                 rms=True,
                 mask=True)

        # Run Swarp
        #p60swarp('%s.dist.fits' % root, '%s.shift.fits' % root, ractr=ractr,
        p60swarp('%s.fits' % root,
                 '%s.shift.fits' % root,
                 backsub=no,
                 refimage=refimage,
                 rms=True,
                 mask=True)

        # Subtract
        if (ilow == None):
            iraf.iterstat(image)
            ilow = iraf.iterstat.median - 10.0 * iraf.iterstat.sigma
        if (tlow == None):
            iraf.iterstat(refimage)
            tlow = iraf.iterstat.median - 10.0 * iraf.iterstat.sigma
        tu = get_head(refimage, "SATURATE") * 0.90
        iu = get_head(image, "SATURATE") * 0.90
        fwhm = get_head(image, "SEEPIX")
        if fwhm > 15.0:
            radius = 15
        p60hotpants('%s.shift.fits' % root,
                    refimage,
                    '%s.sub.fits' % root,
                    tu=tu,
                    iu=iu,
                    ko=ko,
                    bgo=bgo,
                    nsx=nsx,
                    nsy=nsy,
                    radius=radius,
                    tlow=tlow,
                    ilow=ilow,
                    sthresh=sthresh,
                    ng=ng,
                    stamps="ref.stamps",
                    scimage=no,
                    rms=True)

        # Photometer subtracted image
        #iraf.phot('%s.sub.fits' % root, coords='ref.coo', output='%s.mag' %
        #root, epadu=ig, exposure='', calgorithm='none',
        #salgorithm='median', annulus=30.0, dannulus=10.0,
        #weighting='constant', apertures=aperture, zmag=25.0,
        #interactive=no)

    print "Exiting successfully"
    return
コード例 #19
0
ファイル: kaitutils.py プロジェクト: pradipgatkine/python
def kaitphot(refimage, inlist, sncoo, aperture=10.0, dx=20, dy=20):

    infiles = iraffiles(inlist)

    # Find location of SN
    [[snra, sndec]] = impix2wcs(refimage, sncoo[0], sncoo[1])
    sn = [Star(name="New_SN", xval=sncoo[0], yval=sncoo[1])]
    snstars = Starlist(stars=sn)
    print "Coordinates of new SN: %s %s (J2000.0)" % (snra, sndec)

    # Grab reference rootname
    refroot, null = refimage.split('.')

    # Big loop
    for image in infiles:

        # Image root
        root, null = image.split('.')

        # Grab zeropt and zeropt error from image header
        zp, zpu = get_head(image, [ZPTKEY, ZPUKEY])

        # Detect objects in difference image
        iraf.iqobjs('%s.sub.fits' % root,
                    SIGMA,
                    SATVAL,
                    skyval="0.0",
                    zeropt=float(zp),
                    masksfx=MASKSFX,
                    wtimage="",
                    fwhm=FWHM,
                    pix=PIXSCALE,
                    aperture=2 * FWHM / PIXSCALE,
                    gain=FL_GAIN,
                    minlim=no,
                    clobber=yes,
                    verbose=no)

        # See if object was detected
        stars = Starlist('%s.sub.fits.stars' % root)
        match, snmatch = stars.match(snstars, useflags=yes)

        # If so, use SN magnitude and statistical error
        if len(match):
            snmag = match[0].mag
            snerr = match[0].magu

        # Otherwise calculate upper limit
        else:
            statsec = '[%i:%i,%i:%i]' % (
                int(sncoo[0] - dx / 2), int(sncoo[0] + dx / 2),
                int(sncoo[1] - dy / 2), int(sncoo[1] + dy / 2))
            iraf.iterstat('%s.sub%s' % (root, statsec),
                          nsigrej=5,
                          maxiter=5,
                          prin=no,
                          verbose=no)
            sigma = float(iraf.iterstat.sigma)
            snmag = - 2.5 * log10(3 * sigma * sqrt(pi * power(aperture,2))) + \
                    float(zp)
            snerr = 99.999

        # Want UT of Observation
        [dateobs, ut] = get_head(image, ['DATE-OBS', 'UT'])
        tobs = DateTime(int(dateobs[6:]), int(dateobs[3:5]), int(dateobs[:2]),
                        int(ut[:2]), int(ut[3:5]), int(ut[6:]))

        # Return SN Mag / UL
        print '%s\t%s %.3f %10.3f%10.3f%10.3f%10.3f' % (
            root, tobs.Format("%b"),
            (((tobs.second / 3600.0) + tobs.minute) / 60.0 + tobs.hour) / 24.0
            + tobs.day, snmag, snerr, float(zp), float(zpu))

    print 'Exiting Successfully'
    return