コード例 #1
0
def test_pset_msstatistics_save_data(_iraf_pset_init, _data):
    """Expect a task can save data into a PSET
    """
    # run msstat, which sets egstp values
    # check PSET egstp's values
    iraf.msstatistics('dev$pix')
    iraf.egstp.lParam()
    assert iraf.egstp.npix == 262144, str(iraf.egstp.npix)
    assert iraf.egstp.min == -1.0, str(iraf.egstp.min)
    assert iraf.egstp.max == 19936.0, str(iraf.egstp.max)
    assert iraf.egstp.sum == 28394234.0, str(iraf.egstp.sum)

    # reset PSET egstp's values
    _unlearn_egstp(iraf.egstp)
    iraf.egstp.lParam()
    assert iraf.egstp.npix == 0, str(iraf.egstp.npix)
    assert iraf.egstp.min == 0.0, str(iraf.egstp.min)
    assert iraf.egstp.max == 0.0, str(iraf.egstp.max)
    assert iraf.egstp.sum == 0.0, str(iraf.egstp.sum)

    # run msstat again
    iraf.msstatistics('dev$pix')

    # recheck PSET egstp's values
    iraf.egstp.lParam()
    assert iraf.egstp.npix == 262144, str(iraf.egstp.npix)
    assert iraf.egstp.min == -1.0, str(iraf.egstp.min)
    assert iraf.egstp.max == 19936.0, str(iraf.egstp.max)
    assert iraf.egstp.sum == 28394234.0, str(iraf.egstp.sum)
コード例 #2
0
def test_pset_msstatistics_191(_iraf_pset_init, _data):
    """Expect egstp to be properly cleared and used again
    NOTE: Referenced issue, 191, is no longer available (trac).
    """
    # Regression test to make sure a task can be sent an unadorned PSET
    # par as a regular function argument (without scope/PSET name given).
    # This regression-tests #191.

    # repeat first call to msstat, verify correct results and that we did
    # not hit anything which exists due to previous calls
    iraf.msstat(_data['pset']['input1'], arrays='science', clarray='science')
    iraf.egstp.lParam()

    assert iraf.egstp.npix == 277704, str(iraf.egstp.npix)
    _assertApproxEqual(iraf.egstp.min, 1116.0)
    _assertApproxEqual(iraf.egstp.max, 14022.0)
    _assertApproxEqual(iraf.egstp.sum, 321415936.0)

    _unlearn_egstp(iraf.egstp)
    iraf.msstatistics(_data['pset']['input1'], arrays='science', clarray='error')
    iraf.egstp.lParam()

    assert iraf.egstp.npix == 0,  str(iraf.egstp.npix)
    assert iraf.egstp.min == 0.0, str(iraf.egstp.min)
    assert iraf.egstp.max == 0.0, str(iraf.egstp.max)
    assert iraf.egstp.sum == 0.0, str(iraf.egstp.sum)

    _unlearn_egstp(iraf.egstp)
    iraf.msstat(_data['pset']['input1'], arrays='science', clarray='science')
    iraf.egstp.lParam()

    assert iraf.egstp.npix == 277704, str(iraf.egstp.npix)
    _assertApproxEqual(iraf.egstp.min, 1116.0)
    _assertApproxEqual(iraf.egstp.max, 14022.0)
    _assertApproxEqual(iraf.egstp.sum, 321415936.0)
コード例 #3
0
def test_task_min_match(_iraf_pset_init, _data):
    # Determine whether pyraf can use min-matching to resolve the task
    # (msstatistics -> msstat)
    #
    # Note:
    # iraf.task does not raise an exception if it fails due to invalid input to
    # the function. We're scanning stdout/err here as a stop gap measure.

    stdout, stderr = StringIO(), StringIO()
    iraf.msst(_data['pset']['input1'], arrays='science', clarray='science',
              StdoutAppend=stdout, StderrAppend=stderr)
    iraf.mssta(_data['pset']['input1'], arrays='science', clarray='science',
               StdoutAppend=stdout, StderrAppend=stderr)
    iraf.msstat(_data['pset']['input1'], arrays='science', clarray='science',
                StdoutAppend=stdout, StderrAppend=stderr)
    iraf.msstati(_data['pset']['input1'], arrays='science', clarray='science',
                 StdoutAppend=stdout, StderrAppend=stderr)
    iraf.msstatis(_data['pset']['input1'], arrays='science', clarray='science',
                  StdoutAppend=stdout, StderrAppend=stderr)
    iraf.msstatist(_data['pset']['input1'], arrays='science', clarray='science',
                   StdoutAppend=stdout, StderrAppend=stderr)
    iraf.msstatisti(_data['pset']['input1'], arrays='science', clarray='science',
                    StdoutAppend=stdout, StderrAppend=stderr)
    iraf.msstatistic(_data['pset']['input1'], arrays='science', clarray='science',
                     StdoutAppend=stdout, StderrAppend=stderr)
    iraf.msstatistics(_data['pset']['input1'], arrays='science', clarray='science',
                      StdoutAppend=stdout, StderrAppend=stderr)

    assert "ERROR" not in stdout.getvalue()
    assert not stderr.getvalue()
コード例 #4
0
def test_pset_msstatistics_zeroed_error_array(_iraf_pset_init, _data):
    """Expect zeros
    """
    # Run and get data for retval from error arrays (which are empty)
    #     arrays='science' (check "science" arrays only)
    #    clarray='error'   (return data to egstp from final "error" array)
    # so, since the 'error' arrays are empty (and unchecked), expect all zeroes
    iraf.msstatistics(_data['pset']['input1'], arrays='science', clarray='error')
    iraf.egstp.lParam()

    assert iraf.egstp.npix == 0,  str(iraf.egstp.npix)
    assert iraf.egstp.min == 0.0, str(iraf.egstp.min)
    assert iraf.egstp.max == 0.0, str(iraf.egstp.max)
    assert iraf.egstp.sum == 0.0, str(iraf.egstp.sum)
コード例 #5
0
def test_pset_msstatistics_science_array(_iraf_pset_init, _data):
    """Expect decent data
    """
    # Run msstat, which sets egstp values.  Test PSET par passing to task
    # command function as a task top-level par passing msstat.nsstatpar.arrays
    # and msstat.nsstatpar.clarray, as if they were just msstat pars...
    #     arrays='science' (check "science" arrays only)
    #    clarray='science' (return data to egstp from final "error" array)
    # So, expect vals from second (final) science array.

    iraf.msstatistics(_data['pset']['input1'], arrays='science', clarray='science')
    iraf.egstp.lParam()

    assert iraf.egstp.npix == 277704, str(iraf.egstp.npix)
    _assertApproxEqual(iraf.egstp.min, 1116.0)
    _assertApproxEqual(iraf.egstp.max, 14022.0)
    _assertApproxEqual(iraf.egstp.sum, 321415936.0)