コード例 #1
0
ファイル: test_arima.py プロジェクト: garyForeman/pyramid
def test_corner_cases():
    assert_raises(ValueError,
                  auto_arima,
                  wineind,
                  error_action='some-bad-string')

    # things that produce warnings
    with warnings.catch_warnings(record=False):
        warnings.simplefilter('ignore')

        # show a constant result will result in a quick fit
        _ = auto_arima(np.ones(10), suppress_warnings=True)

        # show the same thing with return_all results in the ARIMA in a list
        _ = auto_arima(np.ones(10),
                       suppress_warnings=True,
                       return_valid_fits=True)
        assert hasattr(_, '__iter__')

        # we did this in 0.1-alpha:
        # show that with <= 3 samples, using a non-aic metric reverts to AIC
        # try:
        #     _ = auto_arima(np.arange(3), information_criterion='bic', seasonal=False, suppress_warnings=True)
        # except ValueError:  # this happens because it can't fit such small data...
        #     pass

    # show we fail for n_iter < 0
    assert_raises(ValueError, auto_arima, np.ones(10), random=True, n_fits=-1)

    # show if max* < start* it breaks:
    assert_raises(ValueError, auto_arima, np.ones(10), start_p=5, max_p=0)
コード例 #2
0
def test_small_samples():
    # if n_samples < 10, test the new starting p, d, Q
    samp = lynx[:8]
    auto_arima(samp,
               suppress_warnings=True,
               stepwise=True,
               error_action='ignore')
コード例 #3
0
ファイル: test_arima.py プロジェクト: garyForeman/pyramid
def test_with_seasonality6():
    # show that we can fit an ARIMA where the max_p|q == start_p|q
    auto_arima(hr,
               start_p=0,
               max_p=0,
               d=0,
               start_q=0,
               max_q=0,
               seasonal=False,
               max_order=np.inf,
               suppress_warnings=True)
コード例 #4
0
ファイル: test_arima.py プロジェクト: jrjdr/pmdarima
def test_failing_model_fit():
    with pytest.raises(ValueError):
        # raise ValueError('non-invertible starting MA parameters found'
        auto_arima(wineind,
                   seasonal=True,
                   suppress_warnings=True,
                   error_action='raise',
                   m=2,
                   random=True,
                   random_state=1,
                   n_fits=2)
コード例 #5
0
def test_many_orders():
    lam = 0.5
    lynx_bc = ((lynx**lam) - 1) / lam
    auto_arima(lynx_bc,
               start_p=1,
               start_q=1,
               d=0,
               max_p=5,
               max_q=5,
               suppress_warnings=True,
               stepwise=True)
コード例 #6
0
    def autoarima(self, data, pre_len=7):
        D_f = nsdiffs(data, m=3, max_D=5, test='ch')
        d_f = ndiffs(data, alpha=0.05, test='kpss', max_d=5)
        if len(data) <= 30:
            seasonal = False
        else:
            seasonal = True
        try:
            stepwise_fit = auto_arima(
                data,
                start_p=0,
                start_q=0,
                max_p=3,
                max_q=3,
                m=12,
                start_P=0,
                seasonal=seasonal,
                d=d_f,
                D=D_f,
                trace=False,
                error_action=
                'ignore',  # don't want to know if an order does not work
                suppress_warnings=True,  # don't want convergence warnings
                stepwise=True)  # set to stepwise
        except:
            stepwise_fit = auto_arima(
                data,
                start_p=0,
                start_q=0,
                max_p=3,
                max_q=0,
                m=12,
                start_P=0,
                seasonal=False,
                d=0,
                D=0,
                trace=False,
                error_action=
                'ignore',  # don't want to know if an order does not work
                suppress_warnings=True,  # don't want convergence warnings
                stepwise=True)  # set to stepwise
        output = stepwise_fit.predict(n_periods=pre_len).tolist()

        self._get_model({
            'model_name': 'autoarima',
            'model': stepwise_fit,
            'pred': output,
            'org_data': data,
            'pre_len': pre_len
        })

        return output
コード例 #7
0
    def train(self, y_train, order=None, seasonal_order=None):
        
        # y_train: training dataset
        # order: ARIMA order. Example: (1,1,0)
        # seasonal: ARIMA seasonal order. Example: (0,1,0)
        stepwise_model = auto_arima(y_train, start_p=0, start_q=1,
                                max_p=6, max_q=3, m=12,
                                start_P=0, seasonal=True,
                                #d=1, D=1, 
                                trace=True,
                                error_action='ignore',  
                                suppress_warnings=True, 
                                stepwise=True) #.fit(y_train)

        warnings.filterwarnings("ignore") # specify to ignore warning messages
        self.model = sm.tsa.statespace.SARIMAX(y_train,
                                        order=stepwise_model.order,
                                        seasonal_order=stepwise_model.seasonal_order,
                                        enforce_stationarity=False,
                                        enforce_invertibility=False
                                        ).fit(disp=False)
        
        self.model_params = (stepwise_model.order, stepwise_model.seasonal_order)
        

        return self.model
コード例 #8
0
ファイル: evaluation.py プロジェクト: BoyuanWei/EMDtest
def gaojier(differsets):
    forecast_result = []
    for loop in np.arange(len(differsets)):
        data = differsets[loop]
        fittedmodel = auto_arima(
            data,
            start_p=1,
            start_q=1,
            max_p=6,
            max_q=6,
            max_d=6,
            max_order=None,
            seasonal=False,
            m=1,
            test='adf',
            trace=False,
            error_action=
            'ignore',  # don't want to know if an order does not work
            suppress_warnings=True,  # don't want convergence warnings
            stepwise=True,
            information_criterion='bic',
            njob=-1)  # set to stepwise
        y_hat = fittedmodel.predict(1)[0]
        forecast_result.append(y_hat)
    return forecast_result
コード例 #9
0
def a_arima(timeseries):

    stepwise_model = auto_arima(timeseries,
                                start_p=1,
                                start_q=1,
                                max_p=3,
                                max_q=3,
                                m=12,
                                start_P=0,
                                seasonal=True,
                                d=1,
                                D=1,
                                trace=True,
                                error_action='ignore',
                                suppress_warnings=True,
                                stepwise=True)
    print(stepwise_model.aic())
    # Train the Model
    stepwise_model.fit(train)

    # Forecast
    future_forecast = stepwise_model.predict(n_periods=182)
    future_forecast
    future_forecast = pd.DataFrame(future_forecast,
                                   index=test.index,
                                   column=['Prediction'])
    pd.concat([test, future_forecast], axis=1).iplot()
コード例 #10
0
    def fit(self):
        self.model = auto_arima(self.__data, start_p=1, start_q=1,
                                max_p=3, max_q=3, m=12,
                                start_P=0, seasonal=True,
                                d=1, D=1, trace=True,
                                error_action='ignore',
                                suppress_warnings=True,
                                stepwise=True)

        print('Best found AIC: %f' % (self.model.aic()))
        print('Arima model (%d, %d, %d) x (%d, %d, %d, %d) ' % (self.model.order[0],
              self.model.order[1], self.model.order[2],
              self.model.seasonal_order[0], self.model.seasonal_order[1],
              self.model.seasonal_order[2], self.model.seasonal_order[3]))

        # self.train = self.__data.loc['1985-01-01':'2016-12-01']
        # self.test = self.__data.loc['2015-01-01':]

        if self._comparing:
            line_to_write = 'AIC : {}, model ({}, {}, {}) x ({}, {}, {}, {})'.format(
                self.model.aic(), self.model.order[0],
                self.model.order[1], self.model.order[2],
                self.model.seasonal_order[0], self.model.seasonal_order[1],
                self.model.seasonal_order[2], self.model.seasonal_order[3])
            self.save_aic(self.__data.index[0], self.__data.index[-1], line_to_write)

        self.results = self.model.fit(self.__data)
コード例 #11
0
ファイル: main.py プロジェクト: DejanS24/ML_Project
def auto_arima_predict(data):

    l = len(data)
    if l < 4293:
        train = data[:round(l * 4 / 5)]
        valid = data[round(l * 4 / 5):]
    else:
        train = data[-4293:l - 973]
        valid = data[-973:]

    training = train['Close']
    validation = valid['Close']

    model = auto_arima(training, start_p=1, start_q=1, max_p=3, max_q=3, m=12, start_P=0, seasonal=True, d=1, D=1,
                       trace=True, error_action='ignore', suppress_warnings=True)
    model.fit(training)

    forecast = model.predict(n_periods=round(len(data)*1/5))
    forecast = pd.DataFrame(forecast, index=valid.index, columns=['Prediction'])

    plt.plot(train['Close'])
    plt.plot(valid['Close'])
    plt.plot(forecast['Prediction'])
    plt.show()

    print(np.sqrt(np.mean(np.power((np.array(valid['Close'])-np.array(forecast['Prediction'])), 2))))

    return forecast['Prediction']
コード例 #12
0
    def fit(self, train_size='2016-12-01'):
        self.model = auto_arima(self.__data, start_p=1, start_q=1,
                                         max_p=3, max_q=3, m=12,
                                         start_P=0, seasonal=True,
                                         d=1, D=1, trace=True,
                                         error_action='ignore',
                                         suppress_warnings=True,
                                         stepwise=True)

        print('Best found AIC: %f' % (self.model.aic()))
        print('Arima model (%d, %d, %d) x (%d, %d, %d, %d) ' % (self.model.order[0],
              self.model.order[1], self.model.order[2],
              self.model.seasonal_order[0], self.model.seasonal_order[1],
              self.model.seasonal_order[2], self.model.seasonal_order[3]))

        # self.train = self.__data.loc['1985-01-01':'2016-12-01']
        # self.test = self.__data.loc['2015-01-01':]

        self.train = self.__data[:train_size]
        if type(train_size) is str:
            index = len(self.__data)
            index = list(self.__data.index).index(pd.to_datetime(train_size))
            if index >= 30:
                index -= 30
        elif train_size >= 30:
            index = train_size - 30
        else:
            index = train_size
        self.test = self.__data[index:]

        self.model.fit(self.train)
コード例 #13
0
  def auto(self, **kwargs):
    """This method finds the best arima.

    @see pyrmid.arima.auto_arima

    Parameters
    ----------

    Returns
    -------
    """
    # Library.
    from pyramid.arima import auto_arima
    from pyramid.arima.arima import ARIMA

    # Compute auto_arima.
    results = auto_arima(**kwargs)

    # Return a single PyramidWrapper object.
    if isinstance(results, ARIMA):
      return [self.from_instance(results)]

    # Return an array of PyramidWrapper objects.
    if isinstance(results, list):
      return [PyramidWrapper().from_instance(a) for a in results]
コード例 #14
0
    def auto_fit_(self, init_p, init_q, max_p, max_q, m, init_P, d, D,
                  seasonal, stepwise):
        """
        Tunning the parameters of ARIMA 
        
        """

        #Creating train and test sets
        train_size = int(0.8 * len(self.timeseries))
        train = self.timeseries[0:train_size]

        stepwise_fit = auto_arima(
            train,
            start_p=init_p,
            start_q=init_q,
            max_p=max_p,
            max_q=max_q,
            m=m,
            start_P=init_P,
            seasonal=True,
            d=d,
            D=D,
            trace=True,
            error_action=
            'ignore',  # don't want to know if an order does not work
            suppress_warnings=True,  # don't want convergence warnings
            stepwise=stepwise)  # set to stepwise

        return stepwise_fit.summary()
コード例 #15
0
def auto_arimax(X, test_split=0.2):
    # Do : data['Date'] = data['Date'].astype('datetime64[ns]')
    # data.set_index("Date", inplace = True)
    # Before sending data. The x axis labels wont get plotted  if not done.
    # plt.imsave() outside this function to save plot

    test_samples = int(X.shape[0] * test_split)
    train_data, test_data = X[:-test_samples], X[-test_samples:]
    train_data.columns = ["Training Data"]
    test_data.columns = ["Test Data"]

    stepwise_model = auto_arima(X,
                                start_p=1,
                                start_q=1,
                                max_p=3,
                                max_q=3,
                                m=12,
                                start_P=0,
                                seasonal=True,
                                d=1,
                                D=1,
                                trace=True,
                                error_action='ignore',
                                suppress_warnings=True,
                                stepwise=True)
    stepwise_model.fit(train_data)

    predictions = stepwise_model.predict(n_periods=len(test_data))
    predictions = pd.DataFrame(predictions,
                               index=test_data.index,
                               columns=['Prediction'])
    result = pd.concat([train_data, test_data, predictions], axis=1)
    result.plot()

    return rmse(np.array(test_data).flatten(), np.array(predictions).flatten())
コード例 #16
0
def multi_process(i, df, date):
    try:
        df2 = df.loc[df['Stock Symbol'] == i].drop(columns='Stock Symbol')
        df2.isnull().sum()
        df2['Date'] = pd.to_datetime(df2['Date'],
                                     format='%Y-%m-%d',
                                     errors='coerce')
        df2t = df2[df2['Date'] <= date].iloc[-713:, ]
        df2v = df2[df2['Date'] > date].iloc[:1, ]
        df2t = df2t.set_index('Date')
        df2t_2 = df2t.diff().dropna()
        df2v = df2v.set_index('Date')

        model = auto_arima(df2t_2,
                           trace=False,
                           error_action='ignore',
                           suppress_warnings=True)
        model.fit(df2t_2)

        next_day_forecast = model.predict(
            n_periods=1)[0] + df2t.iloc[-1:, ].values[0][0]
        AIC = model.aic()
        next_day_value = df2v.iloc[:1, ].values[0][0]
        last_day_value = df2t.iloc[-1:, ].values[0][0]
        l = [i, last_day_value, next_day_forecast, AIC, next_day_value]
        return l
    except:
        print('Error with ', i)
コード例 #17
0
ファイル: test_arima.py プロジェクト: garyForeman/pyramid
def test_with_seasonality5():
    # can we fit the same thing with an exogenous array of predictors?
    # also make it stationary and make sure that works...
    all_res = auto_arima(wineind,
                         start_p=1,
                         start_q=1,
                         max_p=2,
                         max_q=2,
                         m=12,
                         start_P=0,
                         seasonal=True,
                         n_jobs=1,
                         d=1,
                         D=None,
                         error_action='ignore',
                         suppress_warnings=True,
                         stationary=True,
                         random=True,
                         random_state=42,
                         return_valid_fits=True,
                         n_fits=5,
                         exogenous=rs.rand(wineind.shape[0], 4))  # only fit 2

    # show it is a list
    assert hasattr(all_res, '__iter__')
コード例 #18
0
ファイル: test_arima.py プロジェクト: garyForeman/pyramid
def test_the_r_src():
    # this is the test the R code provides
    fit = ARIMA(order=(2, 0, 1), trend='c', suppress_warnings=True).fit(abc)

    # the R code's AIC = ~135
    assert abs(135 - fit.aic()) < 1.0

    # the R code's BIC = ~145
    assert abs(145 - fit.bic()) < 1.0

    # R's coefficients:
    #     ar1      ar2     ma1    mean
    # -0.6515  -0.2449  0.8012  5.0370

    # note that statsmodels' mean is on the front, not the end.
    params = fit.params()
    assert_almost_equal(params,
                        np.array([5.0370, -0.6515, -0.2449, 0.8012]),
                        decimal=2)

    # > fit = forecast::auto.arima(abc, max.p=5, max.d=5, max.q=5, max.order=100, stepwise=F)
    fit = auto_arima(abc,
                     max_p=5,
                     max_d=5,
                     max_q=5,
                     max_order=100,
                     seasonal=False,
                     trend='c',
                     suppress_warnings=True,
                     error_action='ignore')

    # this differs from the R fit with a slightly higher AIC...
    assert abs(137 - fit.aic()) < 1.0  # R's is 135.28
コード例 #19
0
    def train(self, base_dataset, start_date=None, end_date=None):
        """
        Trains the model.

        :param Dataset base_dataset: The dataset used to extract the training set
                                     in accordance with the date range. 
        :param start_date: The minimum date for the records used in the training set.
        :type start_date: datetime.datetime or None
        :param end_date: The maximum date for the records used in the training set.
        :type end_date: datetime.datetime or None
        """
        if start_date is not None and end_date is not None and start_date > end_date:
            raise ValueError('Invalid training date range')

        training_set = base_dataset.getDataframe(ticker_symbol=self.ticker_symbol,
                                                 from_date=start_date, to_date=end_date)
        self.training_start = min(training_set.date)
        self.training_end = max(training_set.date)

        # Pre-Processing
        # ARIMA only receives as sequence of value in the training,
        # then only the sequence of closing prices is needed
        training_set = training_set.close

        self.model = auto_arima(training_set,
                                start_p=1, start_q=1, max_p=3, max_q=3, m=12, start_P=0,
                                seasonal=True, d=1, D=1, trace=True,
                                error_action='ignore', suppress_warnings=True)
        self.model.fit(training_set)
コード例 #20
0
ファイル: prediction.py プロジェクト: TomaszMichalski/rqa
def calculate_prediction_data_arima(past_data, date_to):
    result = dict()
    for col in past_data.keys():
        if len(list(past_data[col].keys())) > 0:
            result[col] = dict()
            factor = pd.DataFrame.from_dict(past_data[col], orient='index')
            factor.index = pd.to_datetime(factor.index)
            stepwise_model = auto_arima(factor,
                                        start_p=1,
                                        start_q=1,
                                        max_p=3,
                                        max_q=3,
                                        m=12,
                                        start_P=0,
                                        seasonal=True,
                                        d=1,
                                        D=1,
                                        trace=True,
                                        error_action='ignore',
                                        suppress_warnings=True,
                                        stepwise=True)
            stepwise_model.fit(factor)
            future = stepwise_model.predict(
                n_periods=util.get_prediction_periods(date_to))
            future_dt = util.get_prediction_datetimes_dt(
                datetime.now(), date_to)
            for i in range(len(future_dt)):
                result[col][future_dt[i].strftime(
                    consts.DATE_FORMAT)] = future[i]

    result = filter_unrealistic_values(result)

    return result
コード例 #21
0
 def fit(self):  #训练模型
     # self.fittedModel = auto_arima(y=self.ts_train)
     self.fittedModel = auto_arima(
         y=self.ts_train,
         start_p=self.start_p,
         start_q=self.start_q,
         max_p=self.max_p,
         max_q=self.max_q,
         max_d=self.max_d,
         max_order=self.max_order,
         seasonal=self.seasonal,
         m=self.m,
         # start_P=2,
         # start_Q=0,
         # D=1,
         # max_Q=0,
         maxiter=1000,
         test='adf',
         trace=False,
         error_action=
         'ignore',  # don't want to know if an order does not work
         suppress_warnings=True,  # don't want convergence warnings
         stepwise=self.stepwise,
         information_criterion='bic',
         njob=-1)
コード例 #22
0
def ArimaxKLX(trainDF, predDF):
    TrainExogenous = {'Month' : trainDF['MonthYear'].dt.month, 'Year' : trainDF['MonthYear'].dt.year}
    TrainExogenousDF = pd.DataFrame(TrainExogenous)
    TestExogenous = {'Month' : predDF['MonthYear'].dt.month, 'Year' : predDF['MonthYear'].dt.year}
    TestExogenousDF = pd.DataFrame(TestExogenous)
    arimax_fit = auto_arima(trainDF['OrderQuantity'],
                           exogenous=TrainExogenousDF,
                           start_p=0,
                           start_q=0,
                           max_p=6,
                           max_d=2,
                           max_q=6,
                           start_P=0,
                           start_Q=0,
                           max_P=6,
                           max_D=2,
                           max_Q=6,
                           max_order=6,                            
                           seasonal=True,
                           stationary=False,
                           information_criterion='aic',
                           stepwise=False,
                           trace=False,
                           test='adf',
                           seasonal_test='ocsb',                        
                           error_action='ignore',  
                           suppress_warnings=True, 
                           enforce_stationarity=False)
    ArimaxForecast = arimax_fit.predict(len(predDF), exogenous=TestExogenousDF)
    ArimaxForecast = np.round(ArimaxForecast, 0)
    ArimaxForecast = np.clip(ArimaxForecast, 0, np.max(ArimaxForecast))
    return ArimaxForecast
コード例 #23
0
def predicting(data, pltname):
    data = data[['_time', 'cycles']]
    original = data['cycles']
    n = len(data)
    #print("length of datta",n)
    forecast_out = int(math.ceil(0.2 * (n)))
    #print("forecat_out",forecast_out)
    data['label'] = data['cycles'].shift(-forecast_out)
    data.dropna(inplace=True)
    original = data['cycles']
    original = original.to_frame(name='cycles')
    d1 = data[
        'label']  #this step changesa dataframe object into that of a series.series object
    d1 = d1.to_frame(
        name='label')  #thus need to convert it back into a dataframe object
    data = data['label']
    data = data.to_frame(name='label')
    #print("last value maam",data.iat[len(data)-1,0])

    #divide into train and validation set
    #train = data[:int(0.8*(len(data)))]
    #test = data[int(0.8*(len(data))):]

    model = auto_arima(data,
                       trace=True,
                       start_p=0,
                       start_q=0,
                       start_P=0,
                       start_Q=0,
                       max_p=3,
                       max_q=3,
                       max_P=3,
                       max_Q=3,
                       seasonal=True,
                       stepwise=False,
                       suppress_warnings=True,
                       D=1,
                       max_D=10,
                       error_action='ignore',
                       approximation=False)
    #change 3 to 10
    #fitting model
    model.fit(data)
    #print(model.summary())
    y_pred = model.predict(n_periods=forecast_out)
    y_pred = pd.DataFrame(y_pred, columns=['label'])
    #print("first element",y_pred.iat[0,0])
    conn = pd.concat([d1, y_pred], axis=0)
    n = conn.size - forecast_out
    plt.figure(0)
    plt.plot(original[:n], conn[:n], 'y')
    diff = original.iat[len(original) - 1,
                        0] - original.iat[len(original) - forecast_out, 0]
    plt.plot(original[-forecast_out:] + diff, conn[-forecast_out:], 'r')
    plt.savefig("/Users/Arunima_Sharma/Desktop/py/flask/static/" + pltname)
    plt.show()
    return y_pred
コード例 #24
0
def test_with_seasonality3():
    # show we can estimate D even when it's not there...
    auto_arima(
        wineind,
        start_p=1,
        start_q=1,
        max_p=2,
        max_q=2,
        m=12,
        start_P=0,
        seasonal=True,
        d=1,
        D=None,
        error_action='ignore',
        suppress_warnings=True,
        trace=True,  # get the coverage on trace
        random_state=42,
        stepwise=True)
コード例 #25
0
def forecast_traces(balances, weeks=52) -> List[Scatter]:
    """
    Forecast next weeks based on balance history with ARIMA
    """

    last_balance_date = balances.index.max()
    last_balance = balances.loc[last_balance_date]
    X_forecast = list(pd.date_range(last_balance_date, periods=weeks,
                                    freq='W'))

    model = auto_arima(balances,
                       trend=[1, 1],
                       error_action='ignore',
                       suppress_warnings=True)
    forecast = model.predict(n_periods=weeks)

    # error estimation
    model_error = np.std(model.resid())
    sampling_error = np.sqrt(balances.var() / len(balances))
    forecast_error = 2 * np.sqrt(model_error**2 + sampling_error**2)

    forecast_upper = forecast + forecast_error
    forecast_lower = forecast - forecast_error
    bad_forecast = np.min(forecast) < balances.loc[last_balance_date]

    balances_forecast = Scatter(
        name='forecast',
        x=X_forecast,
        y=[last_balance] + list(forecast),
        mode='lines',
        line={
            'dash': 'dash',
            'color': color('EXP') if bad_forecast else color('INC')
        },
        opacity=0.8)
    balances_forecast_upper = Scatter(name='',
                                      x=X_forecast,
                                      y=[last_balance] + list(forecast_upper),
                                      fill='tonexty',
                                      fillcolor=(color(
                                          'EXP' if bad_forecast else 'INC',
                                          alpha=0.2)),
                                      line={'color': 'transparent'},
                                      showlegend=False)
    balances_forecast_lower = Scatter(name='',
                                      x=X_forecast,
                                      y=[last_balance] + list(forecast_lower),
                                      fill='tozeroy',
                                      fillcolor='#8881',
                                      line={'color': 'transparent'},
                                      showlegend=False)

    return [
        balances_forecast_lower,
        balances_forecast_upper,
        balances_forecast,
    ]
コード例 #26
0
ファイル: test_arima.py プロジェクト: jrjdr/pmdarima
def test_force_polynomial_error():
    x = np.array([1, 2, 3, 4, 5, 6])
    d = 2
    xreg = None

    with pytest.raises(ValueError) as ve:
        auto_arima(x, d=d, D=0, seasonal=False, exogenous=xreg)
        assert 'simple polynomial' in str(ve), str(ve)

    # but it should pass when xreg is not none
    xreg = rs.rand(x.shape[0], 2)
    _ = auto_arima(x,
                   d=d,
                   D=0,
                   seasonal=False,
                   exogenous=xreg,
                   error_action='ignore',
                   suppress_warnings=True)
コード例 #27
0
def fitFunc(yvals, ndays):
    model = auto_arima(yvals, trace=True, error_action='ignore', suppress_warnings=True)
    model.fit(yvals)

    n_periods = ndays
    forecast = model.predict(n_periods)
    oned = range(len(yvals), len(yvals) + len(forecast))
    oned2 = range(0, len(yvals))
    return [forecast[-1], oned2, yvals, oned, forecast]
コード例 #28
0
ファイル: BuildModel.py プロジェクト: ssdcxylx/ai_learning
def build_arima_model(data, p=0, d=0, q=0, predict=False, show_qqplot=False):
    forest_date = [
        x.strftime('%Y-%m-%d')
        for x in list(pd.date_range(start='2014-09-01', end='2014-09-30'))
    ]
    if p == 0 and d == 0 and q == 0:
        model = auto_arima(data)
        model.fit(data)
    else:
        model = sm.tsa.ARIMA(data, order=(p, d, q))
        results = model.fit()
        # 滚动预测
        # forest = []
        # for i in range(0, len(forest_date)-7):
        #     if i % 7 == 0:
        #         temp = []
        #         temp += results.forecast(steps=7)[0].tolist()
        #         temp_pd = pd.Series(temp, index=pd.to_datetime(forest_date[i:i + 7]))
        #         img = img.append(temp_pd)
        #         forest += temp
        #         model = None
        #         model = sm.tsa.ARIMA(img, order=(p, d, q))
        #         results = model.fit()
        # forest += results.forecast(steps=2)[0].tolist()
    if show_qqplot:
        resid = results.resid.values
        for i in range(0, len(resid)):
            resid[i] = round(resid[i], 8)
        qqplot(resid)
    # 模型历史数据预测
    if predict:
        if p == 0 and d == 0 and q == 0:
            predict = model.predict_in_sample(start=0, end=151, dynamic=False)
        else:
            predict = results.predict(start=str('2014-04-03'),
                                      end=str('2014-08-30'),
                                      dynamic=False)
        predict_date = [
            x.strftime('%Y-%m-%d')
            for x in list(pd.date_range(start='2014-04-01', end='2014-08-30'))
        ]
        predict_df = pd.DataFrame({'forest': predict},
                                  index=pd.to_datetime(predict_date))
        fig, ax = plt.subplots(figsize=(12, 8))
        ax = data.plot(ax=ax)
        ax = predict_df.plot(ax=ax)
    if p == 0 and d == 0 and q == 0:
        forest = model.predict(n_periods=30)
    else:
        forest = results.forecast(steps=30)[0]
    forest_df = pd.DataFrame({'forest': forest},
                             index=pd.to_datetime(forest_date))
    fig, ax = plt.subplots(figsize=(12, 8))
    ax = data.plot(ax=ax)
    ax = forest_df.plot(ax=ax)
    plt.show()
    return forest_df
コード例 #29
0
ファイル: test_arima.py プロジェクト: garyForeman/pyramid
def test_many_orders():
    # show that auto-arima can't fit this data for some reason...
    lam = 0.5
    lynx_bc = ((lynx**lam) - 1) / lam

    failed = False
    try:
        auto_arima(lynx_bc,
                   start_p=1,
                   start_q=1,
                   d=0,
                   max_p=5,
                   max_q=5,
                   n_jobs=-1,
                   suppress_warnings=True,
                   maxiter=10)  # shorter max iter
    except ValueError:
        failed = True
    assert failed
コード例 #30
0
def arimamodelling(timeseries):
    automodel = auto_arima(timeseries,
                           start_p=1,
                           start_q=1,
                           max_p=10,
                           max_q=10,
                           trace=True,
                           error_action='ignore',
                           suppress_warnings=True)
    return automodel
コード例 #31
0
ファイル: ARIMA.py プロジェクト: MANURAJ1/test
data1 = data1.iloc[:, 1:37]
no_of_column=len(data1.columns)

forecasted=pd.DataFrame()

for row in data1.iloc[0:20,:].iterrows():
    index, data = row
    if(np.sum(data[no_of_column-3:no_of_column])==0):
        print("Next")
        continue

    data=data.replace(0,np.median(data))
    stepwise_model = auto_arima(data, start_p=1, start_q=1,
                           max_p=3, max_q=3, m=12,
                           start_P=0, seasonal=True,
                           d=1, D=1, trace=True,
                           error_action='ignore',  
                           suppress_warnings=True, 
                           stepwise=True)
    print(index)
    print(row)
    stepwise_model.aic()
    future_forecast = stepwise_model.predict(n_periods=12)
    forecasted=forecasted.append(pd.Series(future_forecast),ignore_index=True)
    
    # Example
    plt.plot(data)
    plt.plot(future_forecast)
    print(future_forecast)