コード例 #1
0
def test_anisotropic_xi_calculation_det(rnd_data1, rnd_data2, rnd_data3,
                                        rnd_data4, rnd_data5, rnd_data6):
    """
    Random epsilon tensor, Random k vector and n unit vector in z direction.
    Determinant of the propagator from numerical calculations
    via np.einsum and from analytical expression given below should coincide.
    The test should work for real and complex epsilon and k values.
    """
    lc = LocalCoordinates("1")
    myeps = rnd_data1 + complex(0, 1) * rnd_data2
    ((epsxx, epsxy, epsxz), (epsyx, epsyy, epsyz), (epszx, epszy, epszz)) = \
        tuple(myeps)
    m = AnisotropicMaterial(lc, myeps)
    n = np.zeros((3, 5))
    n[2, :] = 1.
    x = np.zeros((3, 5))
    k = rnd_data3 + complex(0, 1) * rnd_data4
    xi = rnd_data5 + complex(0, 1) * rnd_data6
    kpa = k - np.sum(n * k, axis=0) * n
    kx = kpa[0]
    ky = kpa[1]
    # TODO: Maybe generalize to arbitrary n vectors
    det_analytical = xi**4*epszz \
                    + xi**3*((epsxz + epszx)*kx + (epsyz + epszy)*ky)\
                    + xi**2*(epsxz*epszx + epsyz*epszy - (epsxx + epsyy)*epszz\
                        + (epsxx + epszz)*kx**2 + (epsxy + epsyx)*kx*ky\
                        + (epsyy + epszz)*ky**2)\
                    + xi*((epsxz + epszx)*kx**3\
                        + (epsxz*epsyx + epsxy*epszx - epsxx*(epsyz + epszy))*ky\
                        + (epsyz + epszy)*kx**2*ky + (epsyz + epszy)*ky**3\
                        + kx*(-(epsxz*epsyy) + epsxy*epsyz - epsyy*epszx\
                            + epsyx*epszy + (epsxz + epszx)*ky**2))\
                    -(epsxz*epsyy*epszx) + epsxy*epsyz*epszx\
                    + epsxz*epsyx*epszy - epsxx*epsyz*epszy\
                    - epsxy*epsyx*epszz + epsxx*epsyy*epszz + epsxx*kx**4\
                    + (epsxy + epsyx)*kx**3*ky \
                    + (epsxy*epsyx - epsxx*epsyy + epsyz*epszy - epsyy*epszz)*ky**2 \
                    + epsyy*ky**4 + kx**2*(epsxy*epsyx + epsxz*epszx \
                        - epsxx*(epsyy + epszz) + (epsxx + epsyy)*ky**2)\
                    + kx*((epsyz*epszx + epsxz*epszy \
                        - (epsxy + epsyx)*epszz)*ky + (epsxy + epsyx)*ky**3)
    should_be_zero = det_analytical - m.calcXiDetNorm(xi, x, n, kpa)
    assert np.allclose(should_be_zero, 0)
コード例 #2
0
def test_anisotropic_xi_calculation_polynomial_zeros(rnd_data1, rnd_data2,
                                                     rnd_data3, rnd_data4,
                                                     rnd_data5):
    """
    Random epsilon tensor, random k vector and random n unit vector.
    Check whether the roots calculated give really zero for the determinant.
    The test should work for real and complex epsilon and k values.
    """
    lc = LocalCoordinates("1")
    myeps = rnd_data1 + complex(0, 1) * rnd_data2
    # ((epsxx, epsxy, epsxz), (epsyx, epsyy, epsyz), (epszx, epszy, epszz)) = \
    #     tuple(myeps)
    m = AnisotropicMaterial(lc, myeps)
    n = rnd_data3
    n = n / np.sqrt(np.sum(n * n, axis=0))
    x = np.zeros((3, 5))
    k = rnd_data4 + complex(0, 1) * rnd_data5
    kpa = k - np.sum(n * k, axis=0) * n
    should_be_zero = np.ones((4, 5), dtype=complex)
    xiarray = m.calcXiNormZeros(x, n, kpa)
    for i in range(4):
        should_be_zero[i, :] = m.calcXiDetNorm(xiarray[i], x, n, kpa)
    assert np.allclose(should_be_zero, 0)