コード例 #1
0
def check_flagged_region(mosaicname, ra, dec, maj, min, pa, plot=False):

    mosaicfile = get_mosaic_name(mosaicname)

    maj = np.max((maj, 0.001))
    lhdu = extract_subim(mosaicfile, ra, dec, 2 * maj, verbose=False)

    if lhdu is None:
        print mosaicname, ra, dec, maj
        return True

    region = pyregion.parse('fk5;ellipse({ra},{dec},{a},{b},{pa})'.format(
        ra=ra, dec=dec, a=maj, b=min, pa=pa - 90))

    data = lhdu[0].data
    region_mask = region.get_mask(lhdu[0])

    flagged = np.any(np.isnan(data[region_mask]))

    if plot:
        plt.figure()
        plt.subplot(131)
        plt.imshow(data)
        plt.subplot(132)
        plt.imshow(region_mask)
        plt.subplot(133)
        plt.imshow(data * region_mask)

    return flagged
コード例 #2
0
def ellipses_from_coordinates(coordinates):

    """
    This function creates a region consisting of ellipses, based on a list of coordinates
    :param coordinates: the list of coordinates for the different ellipses
    :return: the region of ellipses
    """

    # Initialize the region string
    region_string = "# Region file format: DS9 version 3.0\n"
    region_string += "global color=green\n"
    region_string += "image\n"

    # Loop over the objects in the coordinates list, adding a line for each one
    for object in coordinates:

        if type(object).__name__ == "Gaussian2D": line = "ellipse(" + str(object.x_mean.value) + "," + str(object.y_mean.value) + "," + str(object.x_stddev.value) + "," + str(object.y_stddev.value) + ",0.0)\n"
        elif type(object).__name__ == "AiryDisk2D":
            # see https://en.wikipedia.org/wiki/Airy_disk#Approximation_using_a_Gaussian_profile and
            # http://astropy.readthedocs.org/en/latest/api/astropy.modeling.functional_models.AiryDisk2D.html#astropy.modeling.functional_models.AiryDisk2D
            sigma = 0.42 * object.radius.value * 0.81989397882
            line = "ellipse(" + str(object.x_0.value) + "," + str(object.y_0.value) + "," + str(sigma) + "," + str(sigma) + ",0.0)\n"
        else: raise ValueError("Models other than Gaussian2D and AiryDisk2D are not yet supported")

        region_string += line

    # Parse the region string into a region object
    region = pyregion.parse(region_string)

    # Return the region
    return region
コード例 #3
0
ファイル: photom.py プロジェクト: javierblasco/repipy
def positions_of_stars_from_ds9(image_name, message, catalogue_name):
    # Display image
    d = ds9.ds9()
    d.set("file " + image_name)

    # Tell the user to select the regions
    answer = False
    while answer == False:
        window = myWindow(message)
        window.box()
        try:
            region = pyregion.parse(d.get("region"))
            answer = True
        except ValueError:  # No regions defined
                print "\n There is no region loaded in the image! \n"

    coords_RADEC = [cc.coord_list[0:2] for cc in region]

    #hdr = fits.getheader(image_name)
    #w = wcs.WCS(hdr)
    #coords_RADEC = w.all_pix2world(xyout,1)
    with open(catalogue_name, 'w') as fd:
        for reg in coords_RADEC:
            fd.write(" {0}  {1} \n".format(*reg))
    return region
コード例 #4
0
ファイル: reflectionAngle.py プロジェクト: enhsin/junGravLens
def filterImage(maskFileName, imageFileName, filterType):
    imgList = []
    imgData, _ = readFitsImage(imageFileName)
    xlim, ylim = imgData.shape
    if filterType == "REG":
        reg = open(maskFileName, 'r').read()

        hdulist = pyfits.open(imageFileName)
        maskData = pyregion.parse(reg).get_mask(hdu=hdulist[0])
        #maskData = writeMaskFile(maskData, 'mask.fits')
    if filterType == "FITS":
        maskData, _ = readFitsImage(maskFileName)
        assert (maskData.shape == imgData.shape
                ), "Mask shape does not match image shape!"

    if filterType == "NONE":
        maskData = np.ones((xlim, ylim))

    for i in range(xlim):
        for j in range(ylim):
            if maskData[i][j] != 0:
                if (i + j) % 2 == 1:
                    type = 'v'
                else:
                    type = 'o'
                #type = 'v'
                imgList.append((j, i, imgData[i][j], type))

    return imgList
コード例 #5
0
ファイル: fitsRegions.py プロジェクト: giacomov/XtDac
    def __init__(self, X, Y, t, header, regionDefinition):

        self.X = X
        self.Y = Y
        self.t = t

        self.regions = [pyregion.parse(regionDefinition).as_imagecoord(header)]
コード例 #6
0
ファイル: xtcheesemask.py プロジェクト: giacomov/XtDac
    def _parseLines(self, lines, headerWCS):

        regDefinitions = filter(lambda x: x != 'fk5\n', lines)

        if len(regDefinitions) > 0:
            # Extract all circle(ra,dec,radius) expressions
            # (catch the warnings generated by pyregion, which are
            # harmless)

            with warnings.catch_warnings():

                warnings.filterwarnings(action="ignore",
                                        category=AstropyDeprecationWarning)
                warnings.filterwarnings(action="ignore",
                                        category=FITSFixedWarning)

                regions = pyregion.parse(
                    " ".join(lines)).as_imagecoord(headerWCS)

            self.filter = regions

            self.n = len(regions)

        else:

            # There are no regions!

            self.filter = None

            self.n = 0
コード例 #7
0
def maskFits(regFile, imageFile):
    f1 = open(regFile,'r')
    reg = f1.read() 

    hdulist = pyfits.open(imageFile) 
    h = pyfits.getheader(imageFile)
    hdr = h.copy()
    matrix =hdulist[0].data
    r = pyregion.parse(reg)
    Xrange = matrix.shape[0]
    Yrange = matrix.shape[1]
    
    mask = r.get_mask(hdu=hdulist[0])
    new_matrix = np.zeros((Xrange,Yrange))
    mask_matrix = np.ones((Xrange,Yrange))
    for i in range(Xrange):
        for j in range(Yrange):
            if(mask[i,j]!=True):
                mask_matrix[i,j] = 0 
                new_matrix[i,j]=matrix[i,j]
    # write out the new fits file.
    imageName = imageFile.split('.')
    outName = imageName[0] + "_masked." +imageName[1]
    hdu=fits.PrimaryHDU(new_matrix)
    hdu.writeto(outName,clobber='true')

    hdu_mask=fits.PrimaryHDU(mask_matrix)
    hdu_mask.writeto("mask.fits",clobber='true')

    f1.close()
    hdulist.close()
コード例 #8
0
def test_estimate_cdelt():
    l, b = 0, 0

    # This is the ra,dec of l,b=0,0
    ra, dec = 266.404497776, -28.9364329295

    # This is 'almost' the ra,dec of l,b=0,0 - works
    # ra,dec=266.40,-28.93

    wcs = pywcs.WCS(naxis=2)

    wcs.wcs.crpix = [5.5, 5.5]
    wcs.wcs.cdelt = [0.1, -0.1]
    wcs.wcs.crval = [l, b]
    wcs.wcs.ctype = ["GLON-ZEA".encode("ascii"), "GLAT-ZEA".encode("ascii")]

    import pyregion.wcs_helper as wcs_helper
    proj = wcs_helper.get_kapteyn_projection(wcs)
    cdelt = wcs_helper.estimate_cdelt(proj, 5.5, 5.5)

    assert np.allclose([cdelt], [0.1])

    region_string = "fk5; circle(%s, %s, 0.5000)" % (ra, dec)
    reg = pyregion.parse(region_string).as_imagecoord(wcs)

    assert np.allclose([reg[0].coord_list[-1]], [0.5 / 0.1])
コード例 #9
0
ファイル: test_wcs_helper.py プロジェクト: astrodsg/pyregion
def test_estimate_cdelt():
    l,b=0,0

    # This is the ra,dec of l,b=0,0
    ra,dec=266.404497776,-28.9364329295

    # This is 'almost' the ra,dec of l,b=0,0 - works
    # ra,dec=266.40,-28.93

    wcs = pywcs.WCS(naxis=2)

    wcs.wcs.crpix = [5.5, 5.5]
    wcs.wcs.cdelt = [0.1, -0.1]
    wcs.wcs.crval = [l, b]
    wcs.wcs.ctype = ["GLON-ZEA".encode("ascii"), "GLAT-ZEA".encode("ascii")]

    import pyregion.wcs_helper as wcs_helper
    proj = wcs_helper.get_kapteyn_projection(wcs)
    cdelt = wcs_helper.estimate_cdelt(proj, 5.5, 5.5)
    
    assert np.allclose([cdelt], [0.1])

    region_string="fk5; circle(%s, %s, 0.5000)" % (ra,dec)
    reg = pyregion.parse(region_string).as_imagecoord(wcs)

    assert np.allclose([reg[0].coord_list[-1]], [0.5/0.1])
コード例 #10
0
def load_regions(region_file):
    with open(region_file) as f:
        region_string = f.read()
    # Workaround for bug in pyregion.parse when color is of form '#fff'
    region_string = region_string.replace('color=#', 'color=')
    regions = pyregion.parse(region_string)
    return regions
コード例 #11
0
def pix_val_in_reg(reg_ds9, coord, fits_data, fits_head):
    """
    get the pixel values in the region reg_ds9 
    :param reg_ds9: ds9 region in the format of e.g., 'ellipse(a, b, ...', no header
    :param coord: the coordinate system of the region, e.g. 'galactic', 'icrs', etc
    :param fits_img: the fits image
    :return: an numpy array containing the values of pixels within the region
    """
    n_pix_y, n_pix_x = fits_data.shape

    # create a filter using the region
    r = pyregion.parse(coord+';' + reg_ds9).as_imagecoord(fits_head)
    reg_filter = r.get_filter()

    # read the numbers in the region
    splits = reg_ds9.split(',')
    # degree; the Galactic longitude of the center if the region is ellipse, circle or box;
    # one point if the region is polygon
    head = splits[0].split('(') 
    region_type = head[0]
    
    if region_type == 'polygon':
        coords = []
        coords.append(head[1])
        n = len(splits)
        for i in range(1, n-1):
            coords.append(splits[i])
        tail = splits[-1].split(')')[0]
        coords.append(tail)

    coords = [float(i) for i in coords]
    glons = coords[0::2]
    glats = coords[1::2]

    glon = np.mean(glons)
    glat = np.mean(glats)

    glon_delta = (max(glons) - min(glons)) / 2.
    glat_delta = (max(glats) - min(glats)) / 2.

    l_box = max(glon_delta, glat_delta) * 1.2

    # create a box to search pix in the region
    w = wcs.WCS(fits_head)
    bottom_left = w.wcs_world2pix(glon + l_box, glat - l_box, 1)
    up_right = w.wcs_world2pix(glon - l_box, glat + l_box, 1)

    # get the mean; avoid the pix number out of bounds
    i_min = int(max(bottom_left[0], 0))
    i_max = int(min(up_right[0], n_pix_x))
    j_min = int(max(bottom_left[1], 0))
    j_max = int(min(up_right[1], n_pix_y))

    pix_val = []
    for i in range(i_min, i_max):
        for j in range(j_min, j_max):
            if reg_filter.inside1(i, j):
                pix_val.append(fits_data[j, i])

    return np.asarray(pix_val)
コード例 #12
0
ファイル: commons.py プロジェクト: cheng109/junLensCode
def filterImage(maskFileName, imageFileName, filterType):
    imgList = []
    imgData, _ = readFitsImage(imageFileName)
    xlim, ylim = imgData.shape
    if filterType=="REG":
        reg = open(maskFileName, 'r').read()

        hdulist = pyfits.open(imageFileName)
        maskData = pyregion.parse(reg).get_mask(hdu=hdulist[0])
        maskData = writeMaskFile(maskData, 'mask.fits')
    if filterType=="FITS":
        maskData, _= readFitsImage(maskFileName)
        assert (maskData.shape==imgData.shape), "Mask shape does not match image shape!"

    if filterType=="NONE":
        maskData = np.ones((xlim, ylim))

    for i in range(xlim):
        for j in range(ylim):
            if maskData[i][j]!=0:
                if (i+j)%2 ==1:
                    type = 'v'
                else:
                    type = 'o'
                #type = 'v'
                imgList.append((j,i, imgData[i][j], type))

    return imgList
コード例 #13
0
ファイル: misc.py プロジェクト: cevans216/yt
def ds9_region(ds, reg, obj=None, field_parameters=None):
    r"""
    Create a data container from a ds9 region file. Requires the pyregion
    package (https://pyregion.readthedocs.io/en/latest/) to be installed.

    Parameters
    ----------
    ds : FITSDataset
        The Dataset to create the region from.
    reg : string
        The filename of the ds9 region, or a region string to be parsed.
    obj : data container, optional
        The data container that will be used to create the new region.
        Defaults to ds.all_data.
    field_parameters : dictionary, optional
        A set of field parameters to apply to the region.

    Examples
    --------

    >>> ds = yt.load("m33_hi.fits")
    >>> circle_region = ds9_region(ds, "circle.reg")
    >>> print(circle_region.quantities.extrema("flux"))
    """
    import pyregion

    from yt.frontends.fits.api import EventsFITSDataset

    if os.path.exists(reg):
        r = pyregion.open(reg)
    else:
        r = pyregion.parse(reg)
    reg_name = reg
    header = ds.wcs_2d.to_header()
    # The FITS header only contains WCS-related keywords
    header["NAXIS1"] = nx = ds.domain_dimensions[ds.lon_axis]
    header["NAXIS2"] = ny = ds.domain_dimensions[ds.lat_axis]
    filter = r.get_filter(header=header)
    mask = filter.mask((ny, nx)).transpose()
    if isinstance(ds, EventsFITSDataset):
        prefix = "event_"
    else:
        prefix = ""

    def _reg_field(field, data):
        i = data[prefix + "xyz"[ds.lon_axis]].d.astype("int") - 1
        j = data[prefix + "xyz"[ds.lat_axis]].d.astype("int") - 1
        new_mask = mask[i, j]
        ret = np.zeros(data[prefix + "x"].shape)
        ret[new_mask] = 1.0
        return ret

    ds.add_field(("gas", reg_name), sampling_type="cell", function=_reg_field)
    if obj is None:
        obj = ds.all_data()
    if field_parameters is not None:
        for k, v in field_parameters.items():
            obj.set_field_parameter(k, v)
    return obj.cut_region(["obj['%s'] > 0" % (reg_name)])
コード例 #14
0
ファイル: shells.py プロジェクト: jrobbfed/carma
def subcubes_from_ds9(cube, region_file='../nro_maps/SouthShells.reg', pad_factor=1., shape='exact'):
    """
    Extracts subcubes using the ds9 region file.
    
    Parameters
    ----------
    cube : SpectralCube, str
        The cube to be chopped. Must be type spectral_cube.SpectralCube or str filename.
    region_file : str
        Path to a ds9 region file.
    pad_factor : float, optional
        Expand the subcube around the region by this factor.
    shape : {'square', 'exact'}
        The shape of the subcube returned. 'square' returns the
        smallest square subcube that contains the region.
        'exact' returns only the pixels contained within the region.
    
    Returns
    -------
    subcubes: list of SpectralCube of SpectralCube
    """
    from spectral_cube import SpectralCube
    import pyregion

    try:
        #If cube is a str filename, read a SpectralCube.
        cube = SpectralCube.read(cube)
    except ValueError:
        pass

    if shape == 'square':
        import astropy.units as u
        subcube_list = []
        region_list = pyregion.open(region_file)
        for region in region_list:
            half_width = region.coord_list[2] * pad_factor * u.deg
            ra_center = region.coord_list[0] * u.deg
            dec_center = region.coord_list[1] * u.deg
            ra_range = [ra_center - half_width, ra_center + half_width]
            dec_range = [dec_center - half_width, dec_center + half_width]
            #print(ra_range, dec_range)
            subcube_list.append(cube.subcube(ra_range[1], ra_range[0], dec_range[0], dec_range[1]))
    if shape == 'exact':
        region_list = pyregion.open(region_file)
        subcube_list = []
        for region in region_list:
            
            if pad_factor != 1.:
                new_string = '{};{}({},{},{}")'.format(region.coord_format, region.name,
                                region.coord_list[0], region.coord_list[1],
                                region.coord_list[2]*3600.*pad_factor)
                region = pyregion.parse(new_string)[0]
                
            subcube_list.append(cube.subcube_from_ds9region(pyregion.ShapeList([region])))
    if len(subcube_list) == 1:
        return subcube_list[0]
    else:
        return subcube_list
コード例 #15
0
def cross_match_CSAR(getsources_core_catalog = '/mnt/scratch-lustre/jkeown/Getsources/Extract/cep1157/120115_flat/combo/+catalogs/L1157.sw.final.reliable.ok.cat', CSAR_catalog = '/mnt/scratch-lustre/jkeown/DS9_regions/L1157/CSAR/CEPl1157_CSAR.dat', high_res_coldens_image = '/mnt/scratch-lustre/jkeown/Getsources/Prepare/Images/cep1157/080615/cep1157_255_mu.image.resamp.fits', CSAR_core_indices='L1157_matched_CSAR_cores.dat'):
	# Import getsources "good core" data table
	cores_array1 = numpy.loadtxt(getsources_core_catalog,comments='!')
	
	good_core_indices = good_cores_getsources.get_good_cores(getsources_core_catalog)
	cores_array = cores_array1[numpy.array(good_core_indices)]

	### Import the CSAR catalog 
	### ***MAKE SURE FIRST TWO COLUMNS OF "CSAR_catalog" FILE ARE X_POSITION AND Y_POSITION OF SOURCE IN DECIMAL DEGREES***
	CSAR_array = numpy.loadtxt(CSAR_catalog,comments='#')
	#print CSAR_array
	CSAR_positions = numpy.column_stack((CSAR_array[:,0], CSAR_array[:,1])) 
	#print CSAR_positions
	w = wcs.WCS(high_res_coldens_image)
	pos_pix = w.wcs_world2pix(CSAR_positions, 1)

	### Loop through the potential matched cores identified in the step above.
	counter = 0
	matched_cores = []
	for line in cores_array:	

		x_coor = str(line[3])
		y_coor = str(line[4])
	
		### Create a DS9 region string for the core's getsources ellipse, 
		### from which a mask will be created. 
		region = ('fk5;ellipse(' + x_coor + ', ' + y_coor + ', ' + str((line[50]/2.0)/3600.) + ', ' + 
		str((line[51]/2.0)/3600.) + ', ' + str(line[52]+90.0)+')')
	
		r = pyregion.parse(region)
		f=fits.open(high_res_coldens_image)
		mymask = r.get_mask(hdu=f[0])
		f.close()
		newmask=mymask
		### Set all values outside the core's ellipse to zero, 
		### all values inside the ellipse are set to one.
		newmask=numpy.where(newmask==0,0,1)
		mask_shape = numpy.shape(newmask)
		### Loop through the CSAR catalog
		### If any CSAR cores fall within a getsources core's ellipse, 
		### store the getsources core's index
		match_counter=0
		for i in pos_pix:
			ypos = int(round(i[1],0))-1
			xpos = int(round(i[0],0))-1
			if ypos<=mask_shape[0] and xpos<=mask_shape[1]:
				if newmask[ypos][xpos]==1 and match_counter==0:
					matched_cores.append(counter)
					# match_counter prevents counting indices twice 
					# if two CSAR cores fall within getsources ellipse
					match_counter+=1	
		#print len(matched_cores)
		counter += 1

	print 'CSAR_matched:total ratio =' + str(round(float(len(matched_cores)) / float(len(cores_array[:,0])),3))
	### Save the CSAR matched core indices to a file
	#numpy.savetxt(CSAR_core_indices, matched_cores, fmt='%i')
	return numpy.array(matched_cores)
コード例 #16
0
def parse(region_string):

    """
    This function is a simple wrapper around the pyregion.parse function, to contain
    :param region_string:
    :return:
    """

    # Parse the region string and create a region
    return pyregion.parse(region_string)
コード例 #17
0
def draw_ellipse(ax, center, region_string):

    header = ax.projection._pywcs.to_header()

    cel_ax['fk5'].plot([center.ra()],[center.dec()],'r+', zorder=10, markersize=20)

    reg = pyregion.parse(region_string).as_imagecoord(header)
    patch_list, artist_list = reg.get_mpl_patches_texts()
    for p in patch_list:
        p.set_zorder(10)
        ax.add_patch(p)
コード例 #18
0
    def get_max_intensity(source, pyfits, roi, colorbar_radius=None):
        """ Return the maximum value in the pyfits file either 
            within the extended source's size or otherwise
            within the 68% containment radius of the PSF (at
            the lowest energy). """
        try:
            import pyregion
        except:
            return pyfits[0].data.max()

        if source is None and colorbar_radius is None:
            return pyfits[0].data.max()

        if colorbar_radius is not None:
            ra, dec = roi.roi_dir.ra(), roi.roi_dir.dec()
            reg = pyregion.parse("fk5; circle(%.4f, %.4f, %.4f)" %
                                 (ra, dec, colorbar_radius))
            extensionmask = reg.get_mask(pyfits[0])

        elif hasattr(source, 'spatial_model'):
            # For extended sources,
            # Get the maximum intensity value inside
            # the spatial model's extension
            extension_string = '\n'.join(
                region_writer.unparse_extension(source.spatial_model,
                                                r68=True))
            reg = pyregion.parse(extension_string)
            extensionmask = reg.get_mask(pyfits[0])
        else:
            extensionmask = False  # no mask

        # Get the maximum intensity inside the PSF (in lowest bin)
        emin = roi.bin_edges[0]
        ra, dec = source.skydir.ra(), source.skydir.dec()
        r68 = roi.sa.psf.inverse_integral(emin, 1,
                                          68)  # 1=front entering events
        reg = pyregion.parse("fk5; circle(%.4f, %.4f, %.4f)" % (ra, dec, r68))
        psfmask = reg.get_mask(pyfits[0])

        # use whatever region mask is bigger
        return pyfits[0].data[psfmask | extensionmask].max()
コード例 #19
0
def ds9_region(ds, reg, obj=None, field_parameters=None):
    r"""
    Create a data container from a ds9 region file. Requires the pyregion
    package (http://leejjoon.github.io/pyregion/) to be installed.

    Parameters
    ----------
    ds : FITSDataset
        The Dataset to create the region from.
    reg : string
        The filename of the ds9 region, or a region string to be parsed.
    obj : data container, optional
        The data container that will be used to create the new region.
        Defaults to ds.all_data.
    field_parameters : dictionary, optional
        A set of field parameters to apply to the region.

    Examples
    --------

    >>> ds = yt.load("m33_hi.fits")
    >>> circle_region = ds9_region(ds, "circle.reg")
    >>> print circle_region.quantities.extrema("flux")
    """
    import pyregion
    if os.path.exists(reg):
        r = pyregion.open(reg)
    else:
        r = pyregion.parse(reg)
    reg_name = reg
    filter = r.get_filter(header=ds.wcs_2d.to_header())
    nx = ds.domain_dimensions[ds.lon_axis]
    ny = ds.domain_dimensions[ds.lat_axis]
    mask = filter.mask((ny, nx)).transpose()

    def _reg_field(field, data):
        i = data["xyz"[ds.lon_axis]].ndarray_view().astype("int") - 1
        j = data["xyz"[ds.lat_axis]].ndarray_view().astype("int") - 1
        new_mask = mask[i, j]
        ret = data["zeros"].copy()
        ret[new_mask] = 1.
        return ret

    ds.add_field(("gas", reg_name), function=_reg_field)
    if obj is None:
        obj = ds.all_data()
    if field_parameters is not None:
        for k, v in field_parameters.items():
            obj.set_field_parameter(k, v)
    return obj.cut_region(["obj['%s'] > 0" % (reg_name)])
コード例 #20
0
def get_rms_map(infilename,ds9region,outfilename):

    polylist = convert_regionfile_to_poly(ds9region)
    hdu=fits.open(infilename)
    hduflat = flatten(hdu)
    map=hdu[0].data

    for direction,ds9region in enumerate(polylist):
        r = pyregion.parse(ds9region)
        manualmask = r.get_mask(hdu=hduflat)
        rmsval = get_rms_array(hdu[0].data[0][0][np.where(manualmask == True)])
        hdu[0].data[0][0][np.where(manualmask == True)] = rmsval
        print 'RMS = %s for direction %i'%(rmsval,direction)
    hdu.writeto(outfilename,clobber=True)
コード例 #21
0
    def reg2sl(self):
        """Convert a region file to a starlist."""
        import pyregion
        import astropy.coordinates as coord
        import astropy.units as u
        print(
            "Converting '{input:s}' ds9 region file to '{output:s}' starlist.".
            format(**vars(self.opts)))
        with open(self.opts.input, 'r') as regionfile:
            regions = pyregion.parse(regionfile.read())
        with open(self.opts.output, 'w') as starlist:
            for i, region in enumerate(regions):

                if region.coord_format != 'fk5':
                    self.log.critical("Coordinate system {!r} unkown!".format(
                        region.coord_format))
                    break

                # We only parse circles!
                if region.name == 'circle':

                    # Parse the location
                    ra, dec = region.coord_list[0:2]
                    loc = coord.FK5(ra=ra, dec=dec, unit=(u.degree, u.degree))
                    if "text" in region.attr[1]:
                        name = region.attr[1]["text"]
                    else:
                        name = "Target%d" % i

                    # Handle comments
                    comments = region.comment.split()
                    for comment in comments:
                        if comment.startswith("text={"):
                            comments.remove(comment)

                    # Write out the starlist line
                    starlist.write(
                        "{name:<15s} {ra:s} {dec:s} {epoch:.0f} {keywords:s}".
                        format(
                            name=name.strip(),
                            ra=loc.ra.format(u.hour, sep=" ", pad=True),
                            dec=loc.dec.format(sep=" ", alwayssign=True),
                            epoch=loc.equinox.jyear,
                            keywords=" ".join(comments),
                        ))
                    starlist.write("\n")
                else:
                    self.log.warning(
                        "Region {!r} not parsed. It is not a circle.".format(
                            region))
コード例 #22
0
ファイル: auxcodes.py プロジェクト: mhardcastle/ddf-pipeline
def get_rms_map(infilename,ds9region,outfilename):

    polylist = convert_regionfile_to_poly(ds9region)
    hdu=fits.open(infilename)
    hduflat = flatten(hdu)
    map=hdu[0].data

    for direction,ds9region in enumerate(polylist):
        print direction,ds9region
        r = pyregion.parse(ds9region)
        manualmask = r.get_mask(hdu=hduflat)
        rmsval = get_rms_array(hdu[0].data[0][0][np.where(manualmask == True)])
        hdu[0].data[0][0][np.where(manualmask == True)] = rmsval
        print 'RMS = %s for direction %i'%(rmsval,direction)
    hdu.writeto(outfilename,clobber=True)
コード例 #23
0
def ds9_region(ds, reg, obj=None, field_parameters=None):
    r"""
    Create a data container from a ds9 region file. Requires the pyregion
    package (http://leejjoon.github.io/pyregion/) to be installed.

    Parameters
    ----------
    ds : FITSDataset
        The Dataset to create the region from.
    reg : string
        The filename of the ds9 region, or a region string to be parsed.
    obj : data container, optional
        The data container that will be used to create the new region.
        Defaults to ds.all_data.
    field_parameters : dictionary, optional
        A set of field parameters to apply to the region.

    Examples
    --------

    >>> ds = yt.load("m33_hi.fits")
    >>> circle_region = ds9_region(ds, "circle.reg")
    >>> print circle_region.quantities.extrema("flux")
    """
    import pyregion
    if os.path.exists(reg):
        r = pyregion.open(reg)
    else:
        r = pyregion.parse(reg)
    reg_name = reg
    filter = r.get_filter(header=ds.wcs_2d.to_header())
    nx = ds.domain_dimensions[ds.lon_axis]
    ny = ds.domain_dimensions[ds.lat_axis]
    mask = filter.mask((ny,nx)).transpose()
    def _reg_field(field, data):
        i = data["xyz"[ds.lon_axis]].ndarray_view().astype("int")-1
        j = data["xyz"[ds.lat_axis]].ndarray_view().astype("int")-1
        new_mask = mask[i,j]
        ret = data["zeros"].copy()
        ret[new_mask] = 1.
        return ret
    ds.add_field(("gas",reg_name), function=_reg_field)
    if obj is None:
        obj = ds.all_data()
    if field_parameters is not None:
        for k,v in field_parameters.items():
            obj.set_field_parameter(k,v)
    return obj.cut_region(["obj['%s'] > 0" % (reg_name)])
コード例 #24
0
ファイル: photom.py プロジェクト: javierblasco/repipy
def mask_from_ds9(image_name, message):
    # Display image
    d = ds9.ds9()
    d.set("file " + image_name)

    # Tell the user to select the regions
    answer = False
    while answer == False:
        window = myWindow(message)
        window.box()
        try:
            region = pyregion.parse(d.get("region"))
            answer = True
        except ValueError:  # No regions defined
            print "\n There is no region loaded in the image! \n"
    return region
コード例 #25
0
def ellipses(ra_list, dec_list, height_list, width_list, angle_list):

    # Initialize the region string
    region_string = "# Region file format: DS9 version 3.0\n"
    region_string += "global color=green\n"
    region_string += "fk5\n"

    for ra, dec, height, width, angle in zip(ra_list, dec_list, height_list, width_list, angle_list):

        line = "fk5;ellipse(%s,%s,%.2f\",%.2f\",%s)\n" % (ra, dec, height, width, angle)
        region_string += line

    region = pyregion.parse(region_string)

    # Return the region
    return region
コード例 #26
0
def circles(ra_list, dec_list, radius_list):

    # Initialize the region string
    region_string = "# Region file format: DS9 version 3.0\n"
    region_string += "global color=green\n"
    region_string += "fk5\n"

    for ra, dec, radius in zip(ra_list, dec_list, radius_list):

        line = "fk5;circle(%s,%s,%.2f\")\n" % (ra, dec, radius)
        region_string += line

    region = pyregion.parse(region_string)

    # Return the region
    return region
コード例 #27
0
def one_ellipse(parameters):

    """
    This function ...
    :param parameters:
    :return:
    """

    # Create a string identifying this ellipse
    region_string = "# Region file format: DS9 version 3.0\n"
    region_string += "global color=green\n"
    region_string += "image\n"
    region_string += "ellipse(" + str(parameters[0]) + "," + str(parameters[1]) + "," + str(parameters[2]) + "," + str(parameters[3]) + "," + str(parameters[4]) + ")\n"

    # Create a region and return it
    return pyregion.parse(region_string)
コード例 #28
0
ファイル: ds9_phot.py プロジェクト: wiai/agpy
def ds9_photometry(xpapoint):
    D = ds9.ds9(xpapoint)
    try:
        reg = pyregion.parse(D.get("regions selected -format ds9 -system wcs -sky fk5 -skyformat sexagesimal"))
    except Exception as ex:
        print ex
        raise ex
    pf = D.get_pyfits()
    ph = pyfits.PrimaryHDU(data=pf[0].data,header=pf[0].header)
    mask = reg.get_mask(ph)
    arr = pf[0].data
    wherenotnan = (arr == arr)
    mask = mask*wherenotnan
    hdr = pf[0].header
    try:
        wcs = pywcs.WCS(hdr.tostring())
    except AttributeError:
        wcs = pywcs.WCS(hdr)
    try:
        try:
            bmaj = float(hdr['BMAJ'])
            bmin = float(hdr['BMIN'])
        except KeyError:
            # VLA imfits
            bmin = None; bmaj = None
            for k,v in hdr.iteritems():
                if numpy.iterable(v) and "BMAJ" in v:
                    bmaj = float(v.split()[3])
                    bmin = float(v.split()[5])
            if bmin is None or bmaj is None:
                raise KeyError("BMIN and BMAJ not found")
        try:
            cd1 = wcs.wcs.cd[0,0]
            cd2 = wcs.wcs.cd[1,1]
        except AttributeError:
            cd1,cd2 = wcs.wcs.cdelt[:2]
        ppbeam = 2*numpy.pi*bmin*bmaj / abs(cd1*cd2) / (8*numpy.log(2))
        #print "CD1: %g  CD2: %g" % (cd1, cd2)
        sys.stdout.write( "BMAJ: %g  BMIN: %g  PPBEAM: %g   SUM/PPBEAM: %g\n" % (bmaj,bmin,ppbeam,arr[mask].sum()/ppbeam) )
    except KeyError:
        print "ds9_phot failed - check for BMAJ/BMIN in header"
        pass
    except Exception as inst:
        print "ds9_phot failed - not a header KeyError, something else"
        print inst.args
        pass
    return arr[mask].sum(),arr[mask].mean(),numpy.median(arr[mask]),arr[mask].std(),mask.sum()
コード例 #29
0
def mask_bright_stars(imagefile,star_region_strings,outputname):
	f = pf.open(imagefile)
	head = f[0].header
	data = f[0].data
	r = pyregion.parse(star_region_strings)
	r2= r.as_imagecoord(head)
	#create the mask
	mymask = r2.get_mask(hdu=f[0])
	#Reverse the True and False
	mymask = np.logical_not(mymask)
	maskint = mymask*1
	#Multiply the mask and the data to cut the stars (where False == 1 i.e., no mask)
	newimage = data * maskint
	#can write directly if you want
	#pf.writeto(outputname, newimage, head)
	#newimage is the data with the stars cut out whereas maskint is the integer mask with a  0 where the stars are masked and 1 everywhere else and head is the appropriate header
	return data, maskint, newimage
コード例 #30
0
    def extract_from_region(cls, specfile, region):
        # Each pixel is in Jy/beam
        # Sum to get Jy.pixel/beam
        # Divide by boxarea to get Jy/beam again
        # Multiply by N_beams = boxarea/area to get Jy
        # sum(box)/boxarea * (boxarea/area) = sum(box)/area

        hdu = fits.open(specfile)
        hdr = hdu[0].header
        cube = hdu[0].data[0, :, :, :]

        vel = get_velocity(hdr)
        beam = extract_beam_info(hdr)
        trimhdu = get_trimmed_HDU(specfile)
        objname = hdr['object']

        with warnings.catch_warnings():
            warnings.simplefilter("ignore")
            try:
                r = pyregion.open(region).as_imagecoord(trimhdu.header)
            except IOError:
                r = pyregion.parse(region).as_imagecoord(trimhdu.header)
            mask = r.get_mask(hdu=hdu[0], shape=cube.shape[-2:])  #hdu=trimhdu)

        flux = np.zeros(vel.shape)
        for i in range(len(vel)):
            im = cube[i, :, :]
            flux[i] = np.sum(im[mask]) / beam['area']

        pix_asec = abs(hdr['CDELT1']) * 3600
        regarea = np.sum(mask) * pix_asec**2
        dv = vel[1] - vel[0]
        vobs = hdr['RESTFRQ']

        spec = dict(velocity=vel, flux=flux)
        kwds = dict(delta_v=dv,
                    area=regarea,
                    pix_asec=pix_asec,
                    restfrq=vobs / 1e9,
                    bmaj=beam['major'],
                    bmin=beam['minor'],
                    bpa=beam['pa'],
                    barea=beam['area'],
                    objname=objname)

        return cls(spec, **kwds)
コード例 #31
0
def get_rms_map2(infilename,ds9region,outfilename):

    runcommand = "MakeMask.py --RestoredIm=%s --OutName=%s.rmsmapmask --Th=%s --Box=50,2 --OutNameNoiseMap='%s.rms'"%(infilename,infilename,3.0,infilename)

    run(runcommand,log=None)

    infilename = '%s.rms.fits.fits'%infilename
    polylist = convert_regionfile_to_poly(ds9region)
    hdu=fits.open(infilename)
    hduflat = flatten(hdu)
    map=hdu[0].data

    for direction,ds9region in enumerate(polylist):
        r = pyregion.parse(ds9region)
        manualmask = r.get_mask(hdu=hduflat)
        rmsval = np.mean(hdu[0].data[0][0][np.where(manualmask == True)])
        hdu[0].data[0][0][np.where(manualmask == True)] = rmsval
        print 'RMS = %s for direction %i'%(rmsval,direction)
    hdu.writeto(outfilename,clobber=True)
コード例 #32
0
ファイル: maskcat.py プロジェクト: saimn/misc-astro
def prior_mask(priorfile, imhdr, struct):
    "Create a binary mask with the prior limits."

    opthdr = fits.getheader(priorfile, 1)
    if opthdr.get('RA_MIN'):
        ramin, ramax, decmin, decmax = [
            opthdr.get(k) for k in ['RA_MIN', 'RA_MAX', 'DEC_MIN', 'DEC_MAX']
        ]
        opt_limits = [
            ramin, decmin, ramin, decmax, ramax, decmax, ramax, decmin, ramin,
            decmin
        ]
        opt_limits = ','.join([str(o) for o in opt_limits])
        region = pyregion.parse('fk5;polygon({0})'.format(opt_limits))
        mask = regions_mask(region, imhdr, struct, dilate=False)
    else:
        mask = None

    return mask
コード例 #33
0
ファイル: starlist.py プロジェクト: alexrudy/pyobserver
 def reg2sl(self):
     """Convert a region file to a starlist."""
     import pyregion
     import astropy.coordinates as coord
     import astropy.units as u
     print("Converting '{input:s}' ds9 region file to '{output:s}' starlist.".format(**vars(self.opts)))
     with open(self.opts.input,'r') as regionfile:
         regions = pyregion.parse(regionfile.read())
     with open(self.opts.output,'w') as starlist:
         for i,region in enumerate(regions):
             
             if region.coord_format != 'fk5':
                 self.log.critical("Coordinate system {!r} unkown!".format(region.coord_format))
                 break
             
             # We only parse circles!
             if region.name == 'circle':
                 
                 # Parse the location
                 ra,dec = region.coord_list[0:2]
                 loc = coord.FK5(ra=ra,dec=dec,unit=(u.degree,u.degree))
                 if "text" in region.attr[1]:
                     name = region.attr[1]["text"]
                 else:
                     name = "Target%d" % i
                 
                 # Handle comments
                 comments = region.comment.split()
                 for comment in comments:
                     if comment.startswith("text={"):
                         comments.remove(comment)
                 
                 # Write out the starlist line
                 starlist.write("{name:<15s} {ra:s} {dec:s} {epoch:.0f} {keywords:s}".format(
                     name = name.strip(),
                     ra = loc.ra.format(u.hour, sep=" ", pad=True),
                     dec = loc.dec.format(sep=" ", alwayssign=True),
                     epoch = loc.equinox.jyear,
                     keywords = " ".join(comments),
                 ))
                 starlist.write("\n")
             else:
                 self.log.warning("Region {!r} not parsed. It is not a circle.".format(region))
コード例 #34
0
ファイル: auxcodes.py プロジェクト: mhardcastle/ddf-pipeline
def get_rms_map2(infilename,ds9region,outfilename):

    runcommand = "MakeMask.py --RestoredIm=%s --OutName=rmsmapmask --Th=%s --Box=50,2 --OutNameNoiseMap=%s.noise"%(infilename,3.0,infilename)

    run(runcommand,log=None)

    infilename = '%s.noise.fits'%infilename
    polylist = convert_regionfile_to_poly(ds9region)
    hdu=fits.open(infilename)
    hduflat = flatten(hdu)
    map=hdu[0].data

    for direction,ds9region in enumerate(polylist):
        print direction,ds9region
        r = pyregion.parse(ds9region)
        manualmask = r.get_mask(hdu=hduflat)
        rmsval = np.mean(hdu[0].data[0][0][np.where(manualmask == True)])
        hdu[0].data[0][0][np.where(manualmask == True)] = rmsval
        print 'RMS = %s for direction %i'%(rmsval,direction)
    hdu.writeto(outfilename,clobber=True)
コード例 #35
0
ファイル: event_list.py プロジェクト: ilaudy/pyxsim
 def filter_events(self, region):
     """
     Filter events using a ds9 *region*. Requires the `pyregion <http://pyregion.readthedocs.org/en/latest/>`_ package.
     Returns a new :class:`~pyxsim.event_list.EventList`.
     """
     import pyregion
     import os
     if os.path.exists(region):
         reg = pyregion.open(region)
     else:
         reg = pyregion.parse(region)
     r = reg.as_imagecoord(header=self.wcs.to_header())
     f = r.get_filter()
     idxs = f.inside_x_y(self["xpix"], self["ypix"])
     if idxs.sum() == 0:
         raise RuntimeError("No events are inside this region!")
     new_events = {}
     for k, v in self.items():
         new_events[k] = v[idxs]
     return EventList(new_events, self.parameters)
コード例 #36
0
    def _sum_flux(self, ds9_string, data, header):
        '''
        Adds the flux from each pixel within the region in order to get the total flux for the region.
        
        :param ds9_string: The information for a region in a string format 
        :param data: The data array of the visit file to be examined
        :param header: The header of the visit file to be examined
        
        :return sum_flux: The total flux for this region
        '''

        reg_definition = 'icrs;%s' % ds9_string.replace(" ", "")
        reg = pyregion.parse(reg_definition).as_imagecoord(header)
        filt = reg.get_filter()

        mask = filt.mask(data)

        sum_flux = np.sum(data[mask])

        return sum_flux
コード例 #37
0
    def __init__(self, x, y, r, ds9_string=None):
        '''
        Constructs a CircularRegion object.

        :param x: The horizontal location of the center of the region
        :param y: The vertical location of the center of the region
        :param r: Radius
		  of the region if it is a circle (in pixels)
        '''

        self._x = x
        self._y = y
        self._radius_pixels = r

        self._mask = None

        self._ds9_string = ds9_string

        if self._ds9_string is not None:

            self._pyregion = pyregion.parse(self._ds9_string)
コード例 #38
0
def make_predict_mask(infilename, ds9region, outfilename, npix_out=10000):
    """
    Make mask that is `infilename` everywhere except in regions specified by `ds9region` which is zero.
    :param infilename:
    :param ds9region:
    :param outfilename:
    :return:
    """
    logger.info('Making: {}'.format(outfilename))
    npix_in = getimsize(infilename)
    s = "image;box({},{},{},{},0)".format(npix_in // 2, npix_in // 2, npix_out, npix_out)
    with open(ds9region, 'w') as f:
        f.write(s)
    with fits.open(infilename) as hdu:
        hduflat = flatten(hdu)
        r = pyregion.parse(s)
        manualmask = r.get_mask(hdu=hduflat)
        hdu[0].data[0][0][np.where(manualmask == True)] = 0.0
        hdu.writeto(outfilename, overwrite=True)
    if not os.path.isfile(outfilename):
        raise IOError("Did not successfully create {}".format(outfilename))
コード例 #39
0
def pix_val_in_reg_old(reg_ds9, coord, fits_data, fits_head):
    """
    get the pixel values in the region reg_ds9 
    :param reg_ds9: ds9 region in the format of e.g., 'ellipse(a, b, ...', no header
    :param coord: the coordinate system of the region, e.g. 'galactic', 'icrs', etc
    :param fits_img: the fits image
    :return: an numpy array containing the values of pixels within the region
    """
    n_pix_y, n_pix_x = fits_data.shape

    # create a filter using the region
    r = pyregion.parse(coord+';' + reg_ds9).as_imagecoord(fits_head)
    reg_filter = r.get_filter()

    # read the numbers in the region
    splits = reg_ds9.split(',')

    # degree; the Galactic longitude of the center if the region is ellipse, circle or box;
    # one point if the region is polygon
    glon = float(splits[0].split('(')[1])
    glat = float(splits[1])  # degree
    l_box = 1.5  # degree, to make sure all pix in a region are included
    # create a box to search pix in the region
    w = wcs.WCS(fits_head)
    bottom_left = w.wcs_world2pix(glon + l_box, glat - l_box, 1)
    up_right = w.wcs_world2pix(glon - l_box, glat + l_box, 1)

    # get the mean; avoid the pix number out of bounds
    i_min = int(max(bottom_left[0], 0))
    i_max = int(min(up_right[0], n_pix_x))
    j_min = int(max(bottom_left[1], 0))
    j_max = int(min(up_right[1], n_pix_y))

    pix_val = []
    for i in range(i_min, i_max):
        for j in range(j_min, j_max):
            if reg_filter.inside1(i, j):
                pix_val.append(fits_data[j, i])

    return np.asarray(pix_val)
コード例 #40
0
ファイル: trace_path.py プロジェクト: henedler/scripts
def beam_ellipse(ra, dec, image):
    """
    Return pyregion ellpse regon coresponding to the image beam at ra, dec
    Parameters
    ----------
    ra: float, ra in degrees
    dec: float, dec in degrees
    image: obj, lib_fits.Image

    Returns
    -------
    beam_ellipse: obj, pyregion region
    """
    b = image.get_beam()
    ra = Angle(str(ra) + 'd', unit=u.deg).to_string(sep=':', unit=u.hour)
    dec = Angle(dec, unit=u.deg).to_string(sep=':')
    fact = 1 / np.sqrt(
        4 * np.log(2)
    )  # this factor is needed to make the pixels in the beam area match the beam_area from the lib_fits function. Not sure why...
    ell_str = f"fk5;ellipse({ra}, {dec}, {b[0]*3600*fact}\", {b[1]*3600*fact}\", {b[2]})"
    reg_obj = pyregion.parse(ell_str)
    return reg_obj
コード例 #41
0
except IOError as e:
    print 'FATAL ERROR: ',e
    sys.exit()

try:
    rm=radiomap(f,verbose=True)
except RadioError as e:
    print 'FATAL ERROR: ',e
    sys.exit()

#print 'Frequency is %g Hz' % rm.frq 

# now apply regions

if b_region:
    bg_ir=pyregion.parse(b_region).as_imagecoord(rm.headers[0])
    bg=applyregion(rm,bg_ir)
    print 'Pixels in background region',bg.pixels
    for i in range(rm.nchans):
        print '%8.4g Hz Background rms is %f Jy/beam' % (rm.frq[i],bg.rms[i])
        print '             Background mean is',bg.mean[i],'Jy/beam'
    noise=bg.rms
else:
    if bgsub:
        raise Error('Background subtraction requested but no bg region')
    noise=None

fg_ir=pyregion.parse(f_region).as_imagecoord(rm.headers[0])
if bgsub:
    fg=applyregion(rm,fg_ir,offsource=noise,background=bg.mean)
else:
コード例 #42
0
def cross_match(getsources_core_catalog = '/mnt/scratch-lustre/jkeown/Getsources/Extract/cep1157/120115_flat/combo/+catalogs/L1157.sw.final.reliable.ok.cat', YSO_catalog = '/mnt/scratch-lustre/jkeown/Getsources/Extract/cep1157/120115_flat/combo_proto/+catalogs/L1157.sw.final.reliable.ok.cat', high_res_coldens_image = '/mnt/scratch-lustre/jkeown/Getsources/Prepare/Images/cep1157/080615/cep1157_255_mu.image.resamp.fits', proto_core_indices='L1157_matched_protostellar_cores.dat'):
	# Import getsources "good core" data table
	cores_array1 = numpy.loadtxt(getsources_core_catalog,comments='!')
	
	good_core_indices = good_cores_getsources.get_good_cores(getsources_core_catalog)
	cores_array = cores_array1[numpy.array(good_core_indices)]

	NO,    XCO_P,   YCO_P,  WCS_ACOOR,  WCS_DCOOR,  SIG_GLOB,  FG,  GOOD, SIG_MONO01, FM01, FXP_BEST01, FXP_ERRO01, FXT_BEST01, FXT_ERRO01, AFWH01, BFWH01, THEP01, SIG_MONO02, FM02, FXP_BEST02, FXP_ERRO02, FXT_BEST02, FXT_ERRO02, AFWH02, BFWH02, THEP02, SIG_MONO03, FM03, FXP_BEST03, FXP_ERRO03, FXT_BEST03, FXT_ERRO03, AFWH03, BFWH03, THEP03, SIG_MONO04, FM04, FXP_BEST04, FXP_ERRO04, FXT_BEST04, FXT_ERRO04, AFWH04, BFWH04, THEP04, SIG_MONO05, FM05, FXP_BEST05, FXP_ERRO05, FXT_BEST05, FXT_ERRO05, AFWH05, BFWH05, THEP05, SIG_MONO06, FM06, FXP_BEST06, FXP_ERRO06, FXT_BEST06, FXT_ERRO06, AFWH06, BFWH06, THEP06, SIG_MONO07, FM07, FXP_BEST07, FXP_ERRO07, FXT_BEST07, FXT_ERRO07, AFWH07, BFWH07, THEP07 = numpy.loadtxt(YSO_catalog,comments='!', unpack=True)

	good_proto_indices = good_protostars_getsources.get_good_protostars(YSO_catalog)

	#print len(good_proto_indices)

	### Loop through entire core catalog to find cores that are close to YSOs.
	### This step significantly reduces the time it would take to run through 
	### entire catalog.

	potential_matches = []
	count = 0
	for line in cores_array:
		match_counter=0
		for i in good_proto_indices:
			distance = ((line[3]-WCS_ACOOR[i])**2 + (line[4]-WCS_DCOOR[i])**2)**0.5
			if distance < 200.0/3600. and match_counter==0:
				# matched_counter prevents counting indices twice 
				# if two YSO candidates fall within getsources ellipse
				potential_matches.append(count)
				match_counter+=1
		count += 1
	#print len(potential_matches)

	### Loop through the potential matched cores identified in the step above.
	matched_cores = []
	matched_cores_proto_index = []
	for value in potential_matches:	
		line = cores_array[value]
	
		x_coor = str(line[3])
		y_coor = str(line[4])
	
		### Create a DS9 region string for the core's getsources ellipse, 
		### from which a mask will be created. 
		region = ('fk5;ellipse(' + x_coor + ', ' + y_coor + ', ' + str((line[50]/2.0)/3600.) + ', ' + 
		str((line[51]/2.0)/3600.) + ', ' + str(line[52]+90.0)+')')
	
		r = pyregion.parse(region)
		f=fits.open(high_res_coldens_image)
		mymask = r.get_mask(hdu=f[0])
		f.close()
		newmask=mymask
		### Set all values outside the core's ellipse to zero, 
		### all valus inside the ellipse are set to one.
		newmask=numpy.where(newmask==0,0,1)

		### Loop through the 70 micron point sources
		### If any fall within a core's ellipse, store that core's index
		match_counter=0
		good_protostar_index = 0
		for i in good_proto_indices:
			if newmask[int(round(YCO_P[i],0))-1][int(round(XCO_P[i],0))-1]!=0 and match_counter==0:
				matched_cores.append(value)
				matched_cores_proto_index.append(good_protostar_index)
				# matched_counter prevents counting indices twice 
				# if two YSO candidates fall within getsources ellipse
				match_counter+=1
				good_protostar_index+=1
			else: 
				good_protostar_index+=1
		#print len(matched_cores)

	#print matched_cores
	#print matched_cores_proto_index

	### Save the protostellar core indices to a file
	#numpy.savetxt(proto_core_indices, matched_cores, fmt='%i')
	# Return indices of matched cores and protostars from the "good" lists of each
	# i.e., The indices are the index from the "good" lists and not the unprocessed original, total getsources list
	return numpy.column_stack((numpy.array(matched_cores), numpy.array(matched_cores_proto_index)))
コード例 #43
0
ファイル: region_to_query.py プロジェクト: inonchiu/agpy
import pyregion
import webbrowser
import numpy as np


xpa = sys.argv[1]
dd = ds9.ds9(xpa)

if len(sys.argv) > 2:
    regionid = int(sys.argv[2])
else:
    # use the most recent region
    regionid = -1

rstringlist = dd.get('regions -system wcs -prop select 1')
regions = pyregion.parse(rstringlist)
if len(regions) == 0:
    sys.exit("No regions found")


reg = regions[regionid]

coord_fmt = 'Gal' if reg.coord_format == 'galactic' else 'fk5'
coord = reg.coord_list[:2]

url = "http://simbad.u-strasbg.fr/simbad/sim-coo?CooFrame={frame}&Coord={coord}".format(frame=coord_fmt,
                                                                                        coord='{0} {1}'.format(*coord))

if reg.name == 'circle':
    radius = reg.coord_list[2]
    url += "&Radius={radius}&Radius.unit=deg".format(radius=radius)
コード例 #44
0
                          format='ascii.ipac')
#dendromask = fits.open('dendrograms_min1mJy_diff1mJy_mask_pruned.fits')

for spw in (0,1,2,3):
    cube = SpectralCube.read(tmplt.format(spw))
    print(cube)

    #mask_reproj = FITS_tools.hcongrid.hastrom(dendromask[0].data.astype('float'),
    #                                          dendromask[0].header,
    #                                          FITS_tools.strip_headers.flatten_header(cube.header))
    #rmask = np.round(mask_reproj.data).astype('int')

    for row in pruned_ppcat:
        name = row['_idx']
        print("Extracting {0} from {1}".format(name, spw))
        SL = pyregion.parse("fk5; circle({0},{1},0.5\")"
                            .format(row['x_cen'], row['y_cen']))

        #mask = rmask == name
        #dend_inds = np.where(mask)

        #view = (slice(None), # all spectral channels
        #        slice(dend_inds[0].min(), dend_inds[0].max()+1),
        #        slice(dend_inds[1].min(), dend_inds[1].max()+1),
        #       )
        #sc = cube[view].with_mask(mask[view[1:]])
        sc = cube.subcube_from_ds9region(SL)
        spec = sc.mean(axis=(1,2))
        spec.meta['beam'] = radio_beam.Beam(major=np.nanmedian([bm.major.to(u.deg).value for bm in spec.beams]),
                                            minor=np.nanmedian([bm.minor.to(u.deg).value for bm in spec.beams]),
                                            pa=np.nanmedian([bm.pa.to(u.deg).value for bm in spec.beams]),
                                           )
コード例 #45
0
ファイル: __init__.py プロジェクト: bsipocz/pyregion
    ss = rp.parse(s)
    sss1 = rp.convert_attr(ss)
    sss2 = _check_wcs(sss1)
    sss3 = rp.sky_to_image(sss2, header, rot_wrt_axis=rot_wrt_axis)

    return rp.filter_shape(sss3)


def get_mask(region, hdu, origin=1):
    """
    f = pyfits.read("test.fits")
    reg = read_region_as_imagecoord(s, f[0].header)
    mask = get_mask(reg, f[0])
    """
    from pyregion.region_to_filter import as_region_filter

    data = hdu.data
    region_filter = as_region_filter(region, origin=origin)
    mask = region_filter.mask(data)
    return mask


if __name__ == '__main__':
    #reg = pyregion.open("../mos_fov.reg")
    import pyregion
    proposed_fov = 'fk5;circle(290.96388,14.019167,843.31194")'
    reg = pyregion.parse(proposed_fov)
    reg_imagecoord = reg.as_imagecoord(header)
    patches, txts = reg.get_mpl_patches_texts()
    m = reg.get_mask(hdu=f[0])
コード例 #46
0
ファイル: catalogs.py プロジェクト: brechmos-stsci/drizzlepac
    def _combine_exclude_mask(self, mask):
        # create masks from exclude/include regions and combine it with the
        # input DQ mask:
        #
        regmask = None
        if self.src_find_filters is not None and \
           'region_file' in self.src_find_filters:
            reg_file_name = self.src_find_filters['region_file']
            if not os.path.isfile(reg_file_name):
                raise IOError("The 'exclude' region file '{:s}' does not exist."
                              .format(reg_file_name))
        else:
            return mask

        # get data image size:
        (img_ny, img_nx) = self.source.shape

        # find out if user provided a region file or a mask FITS file:
        reg_file_ext = os.path.splitext(reg_file_name)[-1]
        if reg_file_ext.lower().strip() in ['.fits', '.fit'] and \
           basicFITScheck(reg_file_name):
            # likely we are dealing with a FITS file.
            # check that the file is a simple with 2 axes:
            hdulist = fits.open(reg_file_name)
            extlist = get_extver_list(hdulist,extname=None)
            for ext in extlist:
                usermask = hdulist[ext].data
                if usermask.shape == (img_ny, img_nx):
                    regmask = usermask.astype(np.bool)
                    break
            hdulist.close()
            if regmask is None:
                raise ValueError("None of the image-like extensions in the "
                                 "user-provided exclusion mask '{}' has a "
                                 "correct shape".format(reg_file_name))

        else:
            # we are dealing with a region file:
            reglist = pyregion.open(reg_file_name)

            ## check that regions are in image-like coordinates:
            ##TODO: remove the code below once 'pyregion' package can correctly
            ##      (DS9-like) convert sky coordinates to image coordinates for all
            ##      supported shapes.
            #if not all([ (x.coord_format == 'image' or \
            #              x.coord_format == 'physical') for x in reglist]):
            #    print("WARNING: Some exclusion regions are in sky coordinates.\n"
            #          "         These regions will be ignored.")
            #    # filter out regions in sky coordinates:
            #    reglist = pyregion.ShapeList(
            #        [x for x in reglist if x.coord_format == 'image' or \
            #         x.coord_format == 'physical']
            #    )

            #TODO: comment out next lines if we do not support region files
            #      in sky coordinates and uncomment previous block:
            # Convert regions from sky coordinates to image coordinates:
            auxwcs    = _AuxSTWCS(self.wcs)
            reglist = reglist.as_imagecoord(auxwcs, rot_wrt_axis=2)

            # if all regions are exclude regions, then assume that the entire image
            # should be included and that exclude regions exclude from this
            # rectangular region representing the entire image:
            if all([x.exclude for x in reglist]):
                # we slightly widen the box to make sure that
                # the entire image is covered:
                imreg = pyregion.parse("image;box({:.1f},{:.1f},{:d},{:d},0)"
                                       .format((img_nx+1)/2.0, (img_ny+1)/2.0,
                                               img_nx+1, img_ny+1)
                                       )

                reglist = pyregion.ShapeList(imreg + reglist)

            # create a mask from regions:
            regmask = np.asarray(
                reglist.get_mask(shape=(img_ny, img_nx)),
                dtype=np.bool
            )

        if mask is not None and regmask is not None:
            mask = np.logical_and(regmask, mask)
        else:
            mask = regmask

        #DEBUG:
        if mask is not None:
            fn = os.path.splitext(self.fname)[0] + '_srcfind_mask.fits'
            fits.writeto(fn, mask.astype(dtype=np.uint8), clobber=True)

        return mask
コード例 #47
0
def auto_zoomed_cores(getsources_core_catalog = '/mnt/scratch-lustre/jkeown/Getsources/Extract/cep1157/120115_flat/combo/+catalogs/L1157.sw.final.reliable.ok.cat', YSO_catalog = '/mnt/scratch-lustre/jkeown/Getsources/Extract/cep1157/120115_flat/combo_proto/+catalogs/L1157.sw.final.reliable.ok.cat', core_figure_directory = '/mnt/scratch-lustre/jkeown/DS9_regions/HGBS_pipeline/L1157/core_figures/', Herschel_70um_image='/mnt/scratch-lustre/jkeown/Getsources/Prepare/Images/cep1157/080615/cepL1157_070_mu_emission.image.resamp.fits', Herschel_160um_image='/mnt/scratch-lustre/jkeown/Getsources/Prepare/Images/cep1157/080615/cepL1157_160_mu_emission.image.resamp.fits', Herschel_250um_image='/mnt/scratch-lustre/jkeown/Getsources/Prepare/Images/cep1157/080615/cep1157_250_mu.image.resamp.fits', Herschel_350um_image='/mnt/scratch-lustre/jkeown/Getsources/Prepare/Images/cep1157/080615/cep1157_350_mu.image.resamp.fits', Herschel_500um_image='/mnt/scratch-lustre/jkeown/Getsources/Prepare/Images/cep1157/080615/cep1157_500_mu.image.resamp.fits', Herschel_coldens_image='/mnt/scratch-lustre/jkeown/Getsources/Prepare/Images/cep1157/080615/cep1157_255_mu.image.resamp.fits', distance=325.):

	# Import getsources "good core" data table
	cores_array1 = numpy.loadtxt(getsources_core_catalog,comments='!')
	good_core_indices = good_cores_getsources.get_good_cores(getsources_core_catalog)
	cores_array = cores_array1[numpy.array(good_core_indices)]

	core_center_RA = cores_array[:,3]
	core_center_Dec = cores_array[:,4]
	
	core_index = 1
	for line in cores_array:

		x_coor = str(line[3])
		y_coor = str(line[4])
		AFWHM_array = [line[14], line[23], line[41], line[59], line[68], line[50]] # 70,160,250,350,500,coldens
		BFWHM_array = [line[15], line[24], line[42], line[60], line[69], line[51]]
		Theta_array = [line[16], line[25], line[43], line[61], line[70], line[52]]
		SIG_array = [line[8], line[17], line[35], line[53], line[62], line[44]]
		images_array = [Herschel_70um_image, Herschel_160um_image, Herschel_250um_image, 
				Herschel_350um_image, Herschel_500um_image, Herschel_coldens_image]
		wavelengths = ['070', '160', '250', '350', '500', '255']
		maximums = numpy.zeros(len(AFWHM_array))
		minimums = numpy.zeros(len(AFWHM_array))
		counter = 0
		for i in wavelengths:
			### Create a DS9 region string for the core's getsources ellipse, 
			### from which a mask will be created. 
			region = ('fk5;box(' + x_coor + ', ' + y_coor + ', ' + str(0.05) + ', ' + 
			str(0.05) + ', ' + str(0.0)+')')
			r = pyregion.parse(region)

			f = fits.open(images_array[counter])
			header_primary = fits.getheader(images_array[counter])
			data = fits.getdata(images_array[counter])

			mymask = r.get_mask(hdu=f[0])
			newmask=numpy.where(mymask!=0)
			maximums[counter] = max(data[newmask])
			minimums[counter] = min(data[newmask])
			f.close()
			newmask2=numpy.where(mymask==0, 0, data)
			fits.writeto(i + '_contour_mask.fits', newmask2, header_primary, clobber=True)
			counter+=1
	
		microns = ['mu_070', 'mu_160', 'mu_250', 'mu_350', 'mu_500', 'mu_255']
		v_max = maximums
		v_min = minimums
		contour_levels = [(maximums[0]*0.3,maximums[0]*0.5,maximums[0]*0.7,maximums[0]*0.9),
		(maximums[1]*0.3,maximums[1]*0.5,maximums[1]*0.7,maximums[1]*0.9),
		(maximums[2]*0.3,maximums[2]*0.5,maximums[2]*0.7,maximums[2]*0.9),
		(maximums[3]*0.3,maximums[3]*0.5,maximums[3]*0.7,maximums[3]*0.9),
		(maximums[4]*0.3,maximums[4]*0.5,maximums[4]*0.7,maximums[4]*0.9),
		(maximums[5]*0.3,maximums[5]*0.5,maximums[5]*0.7,maximums[5]*0.9)]

		fig = plt.figure(figsize=(8,5.5))

		f=0
		for i in wavelengths:
			microns[f]=aplpy.FITSFigure(i + '_contour_mask.fits', figure=fig, subplot=(2,3,f+1))
			microns[f].recenter(line[3],line[4],0.025)
			microns[f].show_contour(i + '_contour_mask.fits', colors=('white', 'white', 'white','grey'), levels=contour_levels[f], overlap=True)
			microns[f].show_colorscale(cmap='gist_stern', vmin=v_min[f], vmax=v_max[f])
			#microns[f].show_regions('/mnt/scratch-lustre/jkeown/DS9_regions/HGBS_pipeline/L1157/L1157_core_SED/255_all_cores_good.reg')
			microns[f].add_colorbar()
			if f==2 or f==5:
				microns[f].colorbar.set_axis_label_text('MJy/sr')
				
			scale = str('{:.2f}'.format(2*(distance*numpy.tan(numpy.radians(0.5*(1.0/60.))))))
			if f==0:
				microns[f].add_scalebar((1./60.), path_effects=[Patheffects.withStroke(linewidth=3, foreground='white')])
				microns[f].scalebar.show(1./60.)  # length in degrees (one arcminute)
				microns[f].scalebar.set_corner('top left')
				microns[f].scalebar.set_label('1' + "'" + ' = ' + scale + ' pc')
			if SIG_array[f]>5.:
				line_type = 'solid'
			else:
				line_type = 'dashed'	
			microns[f].show_ellipses(line[3], line[4], AFWHM_array[f]/3600., BFWHM_array[f]/3600., Theta_array[f]+90., color='#00FF00', zorder=10, linewidth=1.0, linestyle=line_type)
			#microns[f].show_markers(line[3], line[4], c='#00FF00', marker='x', zorder=10, linewidths=1.5,s=20)
			#microns[f].show_markers(line[3], line[4], c='black', marker='x', zorder=9, linewidths=2.0,s=30)
			microns[f].tick_labels.hide() 
			microns[f].axis_labels.hide()
			#microns[f].set_title('L' + name)
			if i=='255':
				microns[f].add_label(0.3,0.1,'N$_{H2}$',relative=True, path_effects=[Patheffects.withStroke(linewidth=3, foreground='white')])
			else:
				microns[f].add_label(0.3,0.1,i + ' $\mu$' + 'm',relative=True, path_effects=[Patheffects.withStroke(linewidth=3, foreground='white')])
			f=f+1
		fig.subplots_adjust(hspace=0.05, wspace=0.35)
		fig.canvas.draw()
		fig.suptitle('Core Number ' + str(core_index) + ' - RA: ' + str(line[3]) + ' Dec: ' + str(line[4]))
		fig.savefig(core_figure_directory + 'core' +str(core_index) + '.pdf')
		print 'Core Number = ' + str(core_index)
		for i in range(6):
			microns[i].close()
		core_index = core_index + 1
コード例 #48
0
ファイル: apphot.py プロジェクト: robbarnsley/ncr-ui
import pyregion
from astropy import units as u
from astropy.coordinates import SkyCoord

from photutils import CircularAperture
from photutils import aperture_photometry

fits = sys.argv[1]
reg = sys.argv[2]
rtn_type = sys.argv[3]

hdu = pyfits.open(fits)
data = hdu[0].data
hdr = hdu[0].header

r = pyregion.parse(reg)[0]
r_name          = r.name
r_format        = r.coord_format
r_coordlist     = r.coord_list

x_px = r_coordlist[0]-1 # ds9 region is one-indexed
y_px = r_coordlist[1]-1 # ds9 region is one-indexed
pixscale = hdr['CDELT1']

ap = []
radii = []
last_ap_flux = 0
for i, radius in enumerate(r_coordlist[3:]):
  apertures = CircularAperture([(x_px, y_px)], r=radius)
  phot_table = aperture_photometry(data, apertures)
  this_ap_flux = float(phot_table['aperture_sum'][0])
コード例 #49
0
from astropy.wcs import WCS
from astropy.wcs.utils import pixel_to_skycoord, skycoord_to_pixel
import pyregion

try:
    knot_region_file = sys.argv[1]
    line_id = sys.argv[2]
    region_frame = sys.argv[3]
except IndexError:
    sys.exit("Usage: {} KNOT_REGION_FILE (ha|nii) (linear|image)".format(sys.argv[0]))

with open(knot_region_file) as f:
    knot_region_string = f.read()
# Workaround for bug in pyregion.parse when color is of form '#fff'
knot_region_string = knot_region_string.replace("color=#", "color=")
knot_regions = pyregion.parse(knot_region_string)

knot_dict = {
    knot.attr[1]["text"]: pyregion.ShapeList([knot])
    for knot in knot_regions
    if "text" in knot.attr[1] and knot.name == "ellipse"
}

tab = Table.read("alba-knots-frompdf.tab", format="ascii", delimiter="\t")
vcol = {"ha": "V(Ha)", "nii": "V([N II])"}
wcol = {"ha": "W(Ha)", "nii": "W([N II])"}

imhdu = fits.open("new-slits-{}-allvels.fits".format(line_id))["scaled"]
imwcs = WCS(imhdu.header)

ny, nx = imhdu.data.shape
コード例 #50
0
ファイル: demo_filter_mask.py プロジェクト: astropy/pyregion
import matplotlib.pyplot as plt
import pyregion

region = """
image
circle(100, 100, 80)
box(200, 150, 150, 120, 0)
"""

r = pyregion.parse(region)
mask_1or2 = r.get_mask(shape=(300, 300))

myfilter = r.get_filter()
mask_1and2 = (myfilter[0] & myfilter[1]).mask((300, 300))

plt.subplot(121).imshow(mask_1or2, origin="lower", interpolation="nearest")
plt.subplot(122).imshow(mask_1and2, origin="lower", interpolation="nearest")
plt.show()