def test_gauss_uncert(self): sigma = utils.fwhm2sigma(41627.730557884883) if (sys.version_info < (2, 6) or (sys.version_info >= (3, 0) and sys.version_info < (3, 4))): res, stddev, count = kd_tree.resample_gauss(self.tswath, self.tdata, self.tgrid, 100000, sigma, with_uncert=True) else: with warnings.catch_warnings(record=True) as w: res, stddev, count = kd_tree.resample_gauss(self.tswath, self.tdata, self.tgrid, 100000, sigma, with_uncert=True) self.assertFalse( len(w) != 1, 'Failed to create neighbour warning') self.assertFalse(('Searching' not in str( w[0].message)), 'Failed to create correct neighbour warning') expected_res = 2.20206560694 expected_stddev = 0.707115076173 expected_count = 3 self.assertAlmostEqual(res[0], expected_res, 5, 'Failed to calculate gaussian weighting with uncertainty') self.assertAlmostEqual(stddev[0], expected_stddev, 5, 'Failed to calculate uncertainty for gaussian weighting') self.assertEqual( count[0], expected_count, 'Wrong data point count for gaussian weighting with uncertainty')
def test_gauss_uncert(self): sigma = utils.fwhm2sigma(41627.730557884883) with catch_warnings() as w: res, stddev, count = kd_tree.resample_gauss(self.tswath, self.tdata, self.tgrid, 100000, sigma, with_uncert=True) self.assertTrue(len(w) > 0, 'Failed to create neighbour warning') self.assertTrue((any('Searching' in str(_w.message) for _w in w)), 'Failed to create correct neighbour warning') expected_res = 2.20206560694 expected_stddev = 0.707115076173 expected_count = 3 self.assertAlmostEqual( res[0], expected_res, 5, 'Failed to calculate gaussian weighting with uncertainty') self.assertAlmostEqual( stddev[0], expected_stddev, 5, 'Failed to calculate uncertainty for gaussian weighting') self.assertEqual( count[0], expected_count, 'Wrong data point count for gaussian weighting with uncertainty')
def test_gauss_fwhm(self): data = numpy.fromfunction(lambda y, x: (y + x)*10**-5, (5000, 100)) lons = numpy.fromfunction(lambda y, x: 3 + (10.0/100)*x, (5000, 100)) lats = numpy.fromfunction(lambda y, x: 75 - (50.0/5000)*y, (5000, 100)) swath_def = geometry.SwathDefinition(lons=lons, lats=lats) if sys.version_info < (2, 6): res = kd_tree.resample_gauss(swath_def, data.ravel(),\ self.area_def, 50000, utils.fwhm2sigma(41627.730557884883), segments=1) else: with warnings.catch_warnings(record=True) as w: res = kd_tree.resample_gauss(swath_def, data.ravel(),\ self.area_def, 50000, utils.fwhm2sigma(41627.730557884883), segments=1) self.failIf(len(w) != 1, 'Failed to create neighbour radius warning') self.failIf(('Possible more' not in str(w[0].message)), 'Failed to create correct neighbour radius warning') cross_sum = res.sum() expected = 4872.81050892 self.assertAlmostEqual(cross_sum, expected,\ msg='Swath resampling gauss failed')
def test_gauss_fwhm(self): data = numpy.fromfunction(lambda y, x: (y + x) * 10 ** -5, (5000, 100)) lons = numpy.fromfunction( lambda y, x: 3 + (10.0 / 100) * x, (5000, 100)) lats = numpy.fromfunction( lambda y, x: 75 - (50.0 / 5000) * y, (5000, 100)) swath_def = geometry.SwathDefinition(lons=lons, lats=lats) if (sys.version_info < (2, 6) or (sys.version_info >= (3, 0) and sys.version_info < (3, 4))): res = kd_tree.resample_gauss(swath_def, data.ravel(), self.area_def, 50000, utils.fwhm2sigma(41627.730557884883), segments=1) else: with warnings.catch_warnings(record=True) as w: res = kd_tree.resample_gauss(swath_def, data.ravel(), self.area_def, 50000, utils.fwhm2sigma(41627.730557884883), segments=1) self.assertFalse( len(w) != 1, 'Failed to create neighbour radius warning') self.assertFalse(('Possible more' not in str( w[0].message)), 'Failed to create correct neighbour radius warning') cross_sum = res.sum() expected = 4872.81050892 self.assertAlmostEqual(cross_sum, expected, msg='Swath resampling gauss failed')
def test_gauss_uncert(self): sigma = utils.fwhm2sigma(41627.730557884883) with catch_warnings() as w: res, stddev, count = kd_tree.resample_gauss(self.tswath, self.tdata, self.tgrid, 100000, sigma, with_uncert=True) self.assertTrue(len(w) > 0) self.assertTrue((any('Searching' in str(_w.message) for _w in w))) expected_res = 2.20206560694 expected_stddev = 0.707115076173 expected_count = 3 self.assertAlmostEqual(res[0], expected_res, 5) self.assertAlmostEqual(stddev[0], expected_stddev, 5) self.assertEqual(count[0], expected_count)
def test_gauss_fwhm(self): data = numpy.fromfunction(lambda y, x: (y + x) * 10 ** -5, (5000, 100)) lons = numpy.fromfunction( lambda y, x: 3 + (10.0 / 100) * x, (5000, 100)) lats = numpy.fromfunction( lambda y, x: 75 - (50.0 / 5000) * y, (5000, 100)) swath_def = geometry.SwathDefinition(lons=lons, lats=lats) with catch_warnings() as w: res = kd_tree.resample_gauss(swath_def, data.ravel(), self.area_def, 50000, utils.fwhm2sigma(41627.730557884883), segments=1) self.assertFalse(len(w) != 1) self.assertFalse(('Possible more' not in str(w[0].message))) cross_sum = res.sum() expected = 4872.8100353517921 self.assertAlmostEqual(cross_sum, expected)
def test_gauss_uncert(self): sigma = utils.fwhm2sigma(41627.730557884883) with catch_warnings(UserWarning) as w: res, stddev, count = kd_tree.resample_gauss(self.tswath, self.tdata, self.tgrid, 100000, sigma, with_uncert=True) self.assertTrue(len(w) > 0) self.assertTrue((any('Searching' in str(_w.message) for _w in w))) expected_res = 2.20206560694 expected_stddev = 0.707115076173 expected_count = 3 self.assertAlmostEqual(res[0], expected_res, 5) self.assertAlmostEqual(stddev[0], expected_stddev, 5) self.assertEqual(count[0], expected_count)
def test_gauss_fwhm(self): data = np.fromfunction(lambda y, x: (y + x) * 10 ** -5, (5000, 100)) lons = np.fromfunction( lambda y, x: 3 + (10.0 / 100) * x, (5000, 100)) lats = np.fromfunction( lambda y, x: 75 - (50.0 / 5000) * y, (5000, 100)) swath_def = geometry.SwathDefinition(lons=lons, lats=lats) with catch_warnings(UserWarning) as w: res = kd_tree.resample_gauss(swath_def, data.ravel(), self.area_def, 50000, utils.fwhm2sigma(41627.730557884883), segments=1) self.assertFalse(len(w) != 1) self.assertFalse(('Possible more' not in str(w[0].message))) cross_sum = res.sum() expected = 4872.8100353517921 self.assertAlmostEqual(cross_sum, expected)
def test_gauss_uncert(self): sigma = utils.fwhm2sigma(41627.730557884883) with catch_warnings() as w: res, stddev, count = kd_tree.resample_gauss(self.tswath, self.tdata, self.tgrid, 100000, sigma, with_uncert=True) self.assertTrue( len(w) > 0, 'Failed to create neighbour warning') self.assertTrue((any('Searching' in str(_w.message) for _w in w)), 'Failed to create correct neighbour warning') expected_res = 2.20206560694 expected_stddev = 0.707115076173 expected_count = 3 self.assertAlmostEqual(res[0], expected_res, 5, 'Failed to calculate gaussian weighting with uncertainty') self.assertAlmostEqual(stddev[0], expected_stddev, 5, 'Failed to calculate uncertainty for gaussian weighting') self.assertEqual( count[0], expected_count, 'Wrong data point count for gaussian weighting with uncertainty')