def test_first_hyperpolarizability_shg_rhf_wigner_explicit_psi4numpy_pyscf_large(): mol = molecule_physicists_water_augccpvdz() mol.build() mf = pyscf.scf.RHF(mol) mf.kernel() C = utils.fix_mocoeffs_shape(mf.mo_coeff) E = utils.fix_moenergies_shape(mf.mo_energy) occupations = occupations_from_pyscf_mol(mol, C) nocc_alph, nvirt_alph, _, _ = occupations nov_alph = nocc_alph * nvirt_alph norb = nocc_alph + nvirt_alph # calculate linear response vectors for electric dipole operator f1 = 0.0773178 f2 = 2 * f1 frequencies = [f1, f2] calculator = electric.Polarizability( Program.PySCF, mol, cphf.CPHF(solvers.ExactInv(C, E, occupations)), C, E, occupations, frequencies=frequencies, ) calculator.form_operators() calculator.run(hamiltonian=Hamiltonian.RPA, spin=Spin.singlet) calculator.form_results() polarizability_1 = calculator.polarizabilities[0] polarizability_2 = calculator.polarizabilities[1] print("polarizability: {} a.u.".format(f1)) print(polarizability_1) print("polarizability: {} a.u. (frequency doubled)".format(f2)) print(polarizability_2) # each operator contains multiple sets of response vectors, one # set of components for each frequency assert isinstance(calculator.driver.solver.operators, list) assert len(calculator.driver.solver.operators) == 1 operator = calculator.driver.solver.operators[0] rhsvecs = operator.mo_integrals_ai_supervector_alph assert isinstance(operator.rspvecs_alph, list) assert len(operator.rspvecs_alph) == 2 rspvecs_1 = operator.rspvecs_alph[0] rspvecs_2 = operator.rspvecs_alph[1] ## Form the full [norb, norb] representation of everything. # Response vectors: transform X_{ia} and Y_{ia} -> U_{p,q} # 0. 'a' is fast index, 'i' slow # 1. rspvec == [X Y] # 2. U_{p, q} -> zero # 3. place X_{ia} into U_{i, a} # 4. place Y_{ia} into U_{a, i} ncomp = rhsvecs.shape[0] rspmats_1 = np.zeros(shape=(ncomp, norb, norb)) rspmats_2 = np.zeros(shape=(ncomp, norb, norb)) for i in range(ncomp): rspvec_1 = rspvecs_1[i, :, 0] rspvec_2 = rspvecs_2[i, :, 0] x_1 = rspvec_1[:nov_alph] y_1 = rspvec_1[nov_alph:] x_2 = rspvec_2[:nov_alph] y_2 = rspvec_2[nov_alph:] x_full_1 = utils.repack_vector_to_matrix(x_1, (nvirt_alph, nocc_alph)) y_full_1 = utils.repack_vector_to_matrix(y_1, (nvirt_alph, nocc_alph)) x_full_2 = utils.repack_vector_to_matrix(x_2, (nvirt_alph, nocc_alph)) y_full_2 = utils.repack_vector_to_matrix(y_2, (nvirt_alph, nocc_alph)) rspmats_1[i, :nocc_alph, nocc_alph:] = y_full_1.T rspmats_1[i, nocc_alph:, :nocc_alph] = x_full_1 rspmats_2[i, :nocc_alph, nocc_alph:] = y_full_2.T rspmats_2[i, nocc_alph:, :nocc_alph] = x_full_2 rhsmats = np.zeros(shape=(ncomp, norb, norb)) for i in range(ncomp): rhsvec = rhsvecs[i, :, 0] rhsvec_top = rhsvec[:nov_alph] rhsvec_bot = rhsvec[nov_alph:] rhsvec_top_mat = utils.repack_vector_to_matrix(rhsvec_top, (nvirt_alph, nocc_alph)) rhsvec_bot_mat = utils.repack_vector_to_matrix(rhsvec_bot, (nvirt_alph, nocc_alph)) rhsmats[i, :nocc_alph, nocc_alph:] = rhsvec_top_mat.T rhsmats[i, nocc_alph:, :nocc_alph] = rhsvec_bot_mat polarizability_full_1 = np.empty_like(polarizability_1) polarizability_full_2 = np.empty_like(polarizability_2) for a in (0, 1, 2): for b in (0, 1, 2): polarizability_full_1[a, b] = 2 * np.trace(np.dot(rhsmats[a].T, rspmats_1[b])) polarizability_full_2[a, b] = 2 * np.trace(np.dot(rhsmats[a].T, rspmats_2[b])) np.testing.assert_almost_equal(polarizability_1, -polarizability_full_1) np.testing.assert_almost_equal(polarizability_2, -polarizability_full_2) # V_{p,q} <- full MO transformation of right hand side integrals_ao = operator.ao_integrals integrals_mo = np.empty_like(integrals_ao) for i in range(ncomp): integrals_mo[i] = (C[0].T).dot(integrals_ao[i]).dot(C[0]) G_1 = np.empty_like(rspmats_1) G_2 = np.empty_like(rspmats_2) C = mf.mo_coeff # TODO I feel as though if I have all the MO-basis two-electron # integrals, I shouldn't need another JK build. for i in range(ncomp): V = integrals_mo[i] Dl_1 = (C[:, :nocc_alph]).dot(rspmats_1[i, :nocc_alph, :]).dot(C.T) Dr_1 = (-C).dot(rspmats_1[i, :, :nocc_alph]).dot(C[:, :nocc_alph].T) D_1 = Dl_1 + Dr_1 Dl_2 = (C[:, :nocc_alph]).dot(rspmats_2[i, :nocc_alph, :]).dot(C.T) Dr_2 = (-C).dot(rspmats_2[i, :, :nocc_alph]).dot(C[:, :nocc_alph].T) D_2 = Dl_2 + Dr_2 J_1, K_1 = mf.get_jk(mol, D_1, hermi=0) J_2, K_2 = mf.get_jk(mol, D_2, hermi=0) F_AO_1 = 2 * J_1 - K_1 F_AO_2 = 2 * J_2 - K_2 F_MO_1 = (C.T).dot(F_AO_1).dot(C) F_MO_2 = (C.T).dot(F_AO_2).dot(C) G_1[i] = V + F_MO_1 G_2[i] = V + F_MO_2 E_diag = np.diag(E[0, ...]) epsilon_1 = G_1.copy() epsilon_2 = G_2.copy() for i in range(ncomp): eoU_1 = (E_diag[..., np.newaxis] + f1) * rspmats_1[i] Ue_1 = rspmats_1[i] * E_diag[np.newaxis, ...] epsilon_1[i] += eoU_1 - Ue_1 eoU_2 = (E_diag[..., np.newaxis] + f2) * rspmats_2[i] Ue_2 = rspmats_2[i] * E_diag[np.newaxis, ...] epsilon_2[i] += eoU_2 - Ue_2 # Assume some symmetry and calculate only part of the tensor. hyperpolarizability = np.zeros(shape=(6, 3)) off1 = [0, 1, 2, 0, 0, 1] off2 = [0, 1, 2, 1, 2, 2] for r in range(6): b = off1[r] c = off2[r] for a in range(3): tl1 = np.trace(rspmats_2[a].T.dot(G_1[b]).dot(rspmats_1[c])[:nocc_alph, :nocc_alph]) tl2 = np.trace(rspmats_1[c].dot(G_1[b]).dot(rspmats_2[a].T)[:nocc_alph, :nocc_alph]) tl3 = np.trace(rspmats_2[a].T.dot(G_1[c]).dot(rspmats_1[b])[:nocc_alph, :nocc_alph]) tl4 = np.trace(rspmats_1[b].dot(G_1[c]).dot(rspmats_2[a].T)[:nocc_alph, :nocc_alph]) tl5 = np.trace(rspmats_1[c].dot(-G_2[a].T).dot(rspmats_1[b])[:nocc_alph, :nocc_alph]) tl6 = np.trace(rspmats_1[b].dot(-G_2[a].T).dot(rspmats_1[c])[:nocc_alph, :nocc_alph]) tr1 = np.trace( rspmats_1[c].dot(rspmats_1[b]).dot(-epsilon_2[a].T)[:nocc_alph, :nocc_alph] ) tr2 = np.trace( rspmats_1[b].dot(rspmats_1[c]).dot(-epsilon_2[a].T)[:nocc_alph, :nocc_alph] ) tr3 = np.trace( rspmats_1[c].dot(rspmats_2[a].T).dot(epsilon_1[b])[:nocc_alph, :nocc_alph] ) tr4 = np.trace( rspmats_2[a].T.dot(rspmats_1[c]).dot(epsilon_1[b])[:nocc_alph, :nocc_alph] ) tr5 = np.trace( rspmats_1[b].dot(rspmats_2[a].T).dot(epsilon_1[c])[:nocc_alph, :nocc_alph] ) tr6 = np.trace( rspmats_2[a].T.dot(rspmats_1[b]).dot(epsilon_1[c])[:nocc_alph, :nocc_alph] ) tl = tl1 + tl2 + tl3 + tl4 + tl5 + tl6 tr = tr1 + tr2 + tr3 + tr4 + tr5 + tr6 hyperpolarizability[r, a] = -2 * (tl - tr) # pylint: disable=C0326 ref = np.array( [ [0.00000000, 0.00000000, 1.92505358], [0.00000000, 0.00000000, -31.33652886], [0.00000000, 0.00000000, -13.92830863], [0.00000000, 0.00000000, 0.00000000], [-1.80626084, 0.00000000, 0.00000000], [0.00000000, -31.13504192, 0.00000000], ] ) ref_avgs = np.array([0.00000000, 0.00000000, 45.69300223]) ref_avg = 45.69300223 diff = np.abs(ref - hyperpolarizability) print("abs diff") print(diff) thresh = 2.5e-04 assert np.all(diff < thresh) print("hyperpolarizability: SHG, (-{}; {}, {}), symmetry-unique components".format(f2, f1, f1)) print(hyperpolarizability) print("ref") print(ref) # Transpose all frequency-doubled quantities (+2w) to get -2w. for i in range(ncomp): rspmats_2[i] = rspmats_2[i].T G_2[i] = -G_2[i].T epsilon_2[i] = -epsilon_2[i].T # Assume some symmetry and calculate only part of the tensor. This # time, work with the in-place manipulated quantities (this tests # their correctness). mU = (rspmats_2, rspmats_1) mG = (G_2, G_1) me = (epsilon_2, epsilon_1) hyperpolarizability = np.zeros(shape=(6, 3)) off1 = [0, 1, 2, 0, 0, 1] off2 = [0, 1, 2, 1, 2, 2] for r in range(6): b = off1[r] c = off2[r] for a in range(3): tl1 = np.trace(mU[0][a].dot(mG[1][b]).dot(mU[1][c])[:nocc_alph, :nocc_alph]) tl2 = np.trace(mU[1][c].dot(mG[1][b]).dot(mU[0][a])[:nocc_alph, :nocc_alph]) tl3 = np.trace(mU[0][a].dot(mG[1][c]).dot(mU[1][b])[:nocc_alph, :nocc_alph]) tl4 = np.trace(mU[1][b].dot(mG[1][c]).dot(mU[0][a])[:nocc_alph, :nocc_alph]) tl5 = np.trace(mU[1][c].dot(mG[0][a]).dot(mU[1][b])[:nocc_alph, :nocc_alph]) tl6 = np.trace(mU[1][b].dot(mG[0][a]).dot(mU[1][c])[:nocc_alph, :nocc_alph]) tr1 = np.trace(mU[1][c].dot(mU[1][b]).dot(me[0][a])[:nocc_alph, :nocc_alph]) tr2 = np.trace(mU[1][b].dot(mU[1][c]).dot(me[0][a])[:nocc_alph, :nocc_alph]) tr3 = np.trace(mU[1][c].dot(mU[0][a]).dot(me[1][b])[:nocc_alph, :nocc_alph]) tr4 = np.trace(mU[0][a].dot(mU[1][c]).dot(me[1][b])[:nocc_alph, :nocc_alph]) tr5 = np.trace(mU[1][b].dot(mU[0][a]).dot(me[1][c])[:nocc_alph, :nocc_alph]) tr6 = np.trace(mU[0][a].dot(mU[1][b]).dot(me[1][c])[:nocc_alph, :nocc_alph]) tl = [tl1, tl2, tl3, tl4, tl5, tl6] tr = [tr1, tr2, tr3, tr4, tr5, tr6] hyperpolarizability[r, a] = -2 * (sum(tl) - sum(tr)) assert np.all(np.abs(ref - hyperpolarizability) < thresh) # Assume no symmetry and calculate the full tensor. hyperpolarizability_full = np.zeros(shape=(3, 3, 3)) # components x, y, z for ip, p in enumerate(list(product(range(3), range(3), range(3)))): a, b, c = p tl, tr = [], [] # 1st tuple -> index a, b, c (*not* x, y, z!) # 2nd tuple -> index frequency (0 -> -2w, 1 -> +w) for iq, q in enumerate(list(permutations(zip(p, (0, 1, 1)), 3))): d, e, f = q tlp = (mU[d[1]][d[0]]).dot(mG[e[1]][e[0]]).dot(mU[f[1]][f[0]]) tle = np.trace(tlp[:nocc_alph, :nocc_alph]) tl.append(tle) trp = (mU[d[1]][d[0]]).dot(mU[e[1]][e[0]]).dot(me[f[1]][f[0]]) tre = np.trace(trp[:nocc_alph, :nocc_alph]) tr.append(tre) hyperpolarizability_full[a, b, c] = -2 * (sum(tl) - sum(tr)) print("hyperpolarizability: SHG, (-{}; {}, {}), full tensor".format(f2, f1, f1)) print(hyperpolarizability_full) # Check that the elements of the reduced and full tensors are # equivalent. for r in range(6): b = off1[r] c = off2[r] for a in range(3): diff = hyperpolarizability[r, a] - hyperpolarizability_full[a, b, c] # TODO why not 14? assert abs(diff) < 1.0e-13 # Compute averages and compare to reference. avgs, avg = utils.form_first_hyperpolarizability_averages(hyperpolarizability_full) assert np.allclose(ref_avgs, avgs, rtol=0, atol=1.0e-3) assert np.allclose([ref_avg], [avg], rtol=0, atol=1.0e-3) print(avgs) print(avg) return
def test_first_hyperpolarizability_static_rhf_wigner_explicit(): mol = molecule_water_sto3g_angstrom() mol.build() mf = pyscf.scf.RHF(mol) mf.kernel() C = utils.fix_mocoeffs_shape(mf.mo_coeff) E = utils.fix_moenergies_shape(mf.mo_energy) occupations = utils.occupations_from_pyscf_mol(mol, C) nocc_alph, nvirt_alph, _, _ = occupations nov_alph = nocc_alph * nvirt_alph norb = nocc_alph + nvirt_alph # calculate linear response vectors for electric dipole operator calculator = electric.Polarizability(Program.PySCF, mol, C, E, occupations, frequencies=[0.0]) calculator.form_operators() calculator.run() calculator.form_results() polarizability = calculator.polarizabilities[0] print("polarizability (static)") print(polarizability) operator = calculator.driver.solver.operators[0] rhsvecs = operator.mo_integrals_ai_supervector_alph rspvecs = operator.rspvecs_alph[0] ## Form the full [norb, norb] representation of everything. # Response vectors: transform X_{ia} and Y_{ia} -> U_{p,q} # 0. 'a' is fast index, 'i' slow # 1. rspvec == [X Y] # 2. U_{p, q} -> zero # 3. place X_{ia} into U_{i, a} # 4. place Y_{ia} into U_{a, i} ncomp = rhsvecs.shape[0] rspmats = np.zeros(shape=(ncomp, norb, norb)) for i in range(ncomp): rspvec = rspvecs[i, :, 0] x = rspvec[:nov_alph] y = rspvec[nov_alph:] x_full = utils.repack_vector_to_matrix(x, (nvirt_alph, nocc_alph)) y_full = utils.repack_vector_to_matrix(y, (nvirt_alph, nocc_alph)) rspmats[i, :nocc_alph, nocc_alph:] = x_full.T rspmats[i, nocc_alph:, :nocc_alph] = y_full rhsmats = np.zeros(shape=(ncomp, norb, norb)) for i in range(ncomp): rhsvec = rhsvecs[i, :, 0] rhsvec_top = rhsvec[:nov_alph] rhsvec_bot = rhsvec[nov_alph:] rhsvec_top_mat = utils.repack_vector_to_matrix(rhsvec_top, (nvirt_alph, nocc_alph)) rhsvec_bot_mat = utils.repack_vector_to_matrix(rhsvec_bot, (nvirt_alph, nocc_alph)) rhsmats[i, :nocc_alph, nocc_alph:] = rhsvec_top_mat.T rhsmats[i, nocc_alph:, :nocc_alph] = rhsvec_bot_mat polarizability_full = np.empty_like(polarizability) for a in (0, 1, 2): for b in (0, 1, 2): polarizability_full[a, b] = 2 * np.trace(rhsmats[a, ...].T.dot( rspmats[b, ...])) np.testing.assert_almost_equal(polarizability, polarizability_full) # V_{p,q} <- full MO transformation of right hand side integrals_ao = operator.ao_integrals integrals_mo = np.empty_like(integrals_ao) for i in range(ncomp): integrals_mo[i, ...] = (C[0, ...].T).dot(integrals_ao[i, ...]).dot(C[0, ...]) G = np.empty_like(rspmats) C = mf.mo_coeff # TODO I feel as though if I have all the MO-basis two-electron # integrals, I shouldn't need another JK build. for i in range(ncomp): V = integrals_mo[i, ...] Dl = (C[:, nocc_alph:].dot( utils.repack_vector_to_matrix(rspvecs[i, :nov_alph, 0], (nvirt_alph, nocc_alph))).dot( C[:, :nocc_alph].T)) J, K = mf.get_jk(mol, Dl, hermi=0) F_AO = -(4 * J - K - K.T) F_MO = (C.T).dot(F_AO).dot(C) G[i, ...] = V + F_MO E_diag = np.diag(E[0, ...]) epsilon = G.copy() omega = 0 for i in range(ncomp): eoU = (E_diag[..., np.newaxis] + omega) * rspmats[i, ...] Ue = rspmats[i, ...] * E_diag[np.newaxis, ...] epsilon[i, ...] += eoU - Ue # Assume some symmetry and calculate only part of the tensor. hyperpolarizability = np.zeros(shape=(6, 3)) off1 = [0, 1, 2, 0, 0, 1] off2 = [0, 1, 2, 1, 2, 2] for r in range(6): b = off1[r] c = off2[r] for a in range(3): tl1 = 2 * np.trace(rspmats[a, ...].dot(G[b, ...]).dot( rspmats[c, ...])[:nocc_alph, :nocc_alph]) tl2 = 2 * np.trace(rspmats[a, ...].dot(G[c, ...]).dot( rspmats[b, ...])[:nocc_alph, :nocc_alph]) tl3 = 2 * np.trace(rspmats[c, ...].dot(G[a, ...]).dot( rspmats[b, ...])[:nocc_alph, :nocc_alph]) tr1 = np.trace(rspmats[c, ...].dot(rspmats[b, ...]).dot( epsilon[a, ...])[:nocc_alph, :nocc_alph]) tr2 = np.trace(rspmats[b, ...].dot(rspmats[c, ...]).dot( epsilon[a, ...])[:nocc_alph, :nocc_alph]) tr3 = np.trace(rspmats[c, ...].dot(rspmats[a, ...]).dot( epsilon[b, ...])[:nocc_alph, :nocc_alph]) tr4 = np.trace(rspmats[a, ...].dot(rspmats[c, ...]).dot( epsilon[b, ...])[:nocc_alph, :nocc_alph]) tr5 = np.trace(rspmats[b, ...].dot(rspmats[a, ...]).dot( epsilon[c, ...])[:nocc_alph, :nocc_alph]) tr6 = np.trace(rspmats[a, ...].dot(rspmats[b, ...]).dot( epsilon[c, ...])[:nocc_alph, :nocc_alph]) tl = tl1 + tl2 + tl3 tr = tr1 + tr2 + tr3 + tr4 + tr5 + tr6 hyperpolarizability[r, a] = 2 * (tl - tr) # pylint: disable=C0326 ref = np.array([ [-8.86822254, 0.90192130, -0.50796586], [1.98744058, 5.13635628, -2.95319400], [0.66008119, 1.62699646, -0.85632412], [0.90192130, 1.98744058, -1.09505123], [-0.50796586, -1.09505123, 0.66008119], [-1.09505123, -2.95319400, 1.62699646], ]) ref_avgs = np.array([6.22070078, -7.66527404, 4.31748398]) ref_avg = 10.77470242 thresh = 1.5e-4 assert np.all(np.abs(ref - hyperpolarizability) < thresh) print("hyperpolarizability (static), symmetry-unique components") print(hyperpolarizability) # Assume no symmetry and calculate the full tensor. hyperpolarizability_full = np.zeros(shape=(3, 3, 3)) for p in product(range(3), range(3), range(3)): a, b, c = p tl, tr = 0, 0 for q in permutations(p, 3): d, e, f = q tl += np.trace(rspmats[d, ...].dot(G[e, ...]).dot( rspmats[f, ...])[:nocc_alph, :nocc_alph]) tr += np.trace(rspmats[d, ...].dot(rspmats[e, ...]).dot( epsilon[f, ...])[:nocc_alph, :nocc_alph]) hyperpolarizability_full[a, b, c] = 2 * (tl - tr) print("hyperpolarizability (static), full tensor") print(hyperpolarizability_full) # Check that the elements of the reduced and full tensors are # equivalent. thresh = 1.0e-14 for r in range(6): b = off1[r] c = off2[r] for a in range(3): diff = hyperpolarizability[r, a] - hyperpolarizability_full[a, b, c] assert abs(diff) < thresh # Compute averages and compare to reference. # This is the slow way. # avgs = [] # for i in range(3): # avg_c = 0 # for j in range(3): # avg_c += hyperpolarizability_full[i, j, j] + hyperpolarizability_full[j, i, j] + hyperpolarizability_full[j, j, i] # avgs.append((-1/3) * avg_c) # print(np.asarray(avgs)) x = hyperpolarizability_full # This is the simplest non-einsum way. # avgs = (-1 / 3) * np.asarray([np.trace(x[i, :, :] + x[:, i, :] + x[:, :, i]) for i in range(3)]) # This is the best way. avgs = (-1 / 3) * (np.einsum("ijj->i", x) + np.einsum("jij->i", x) + np.einsum("jji->i", x)) # print(list(set([''.join(p) for p in list(permutations('ijj', 3))]))) assert np.allclose(ref_avgs, avgs, rtol=0, atol=1.0e-3) avg = np.sum(avgs**2)**(1 / 2) assert np.allclose([ref_avg], [avg], rtol=0, atol=1.0e-3) print(avgs) print(avg) utils_avgs, utils_avg = utils.form_first_hyperpolarizability_averages(x) assert np.allclose(avgs, utils_avgs, rtol=0, atol=1.0e-13) assert np.allclose([avg], [utils_avg], rtol=0, atol=1.0e-13) return