コード例 #1
0
    def __init__(self, logger: logging.Logger):
        """Authenticates Robinhood object and gathers the portfolio information to store it in a variable.

        Args:
            logger: Takes the class ``logging.Logger`` as an argument.
        """
        rh = Robinhood()
        rh.login(username=env.robinhood_user,
                 password=env.robinhood_pass,
                 qr_code=env.robinhood_qr)
        raw_result = rh.positions()
        self.logger = logger
        self.result = raw_result['results']
        self.rh = rh
コード例 #2
0
def robinhood() -> None:
    """Gets investment details from robinhood API."""
    if not all([env.robinhood_user, env.robinhood_pass, env.robinhood_qr]):
        logger.warning("Robinhood username, password or QR code not found.")
        support.no_env_vars()
        return

    sys.stdout.write("\rGetting your investment details.")
    rh = Robinhood()
    rh.login(username=env.robinhood_user,
             password=env.robinhood_pass,
             qr_code=env.robinhood_qr)
    raw_result = rh.positions()
    result = raw_result["results"]
    stock_value = watcher(rh, result)
    speaker.speak(text=stock_value)
コード例 #3
0
ファイル: robinhood.py プロジェクト: thevickypedia/stock_hawk
import requests
from pyrh import Robinhood

from aws_client import AWSClients

current_time = datetime.now(pytz.timezone('US/Central'))
dt_string = current_time.strftime("%A, %B %d, %Y %I:%M %p")

robinhood_user = AWSClients().robinhood_user()
robinhood_pass = AWSClients().robinhood_pass()
robinhood_qr = AWSClients().robinhood_qr()
rh = Robinhood()
rh.login(username=robinhood_user,
         password=robinhood_pass,
         qr_code=robinhood_qr)
raw_result = rh.positions()
result = raw_result['results']


def market_status():
    url = requests.get('https://www.nasdaqtrader.com/trader.aspx?id=Calendar')
    today = date.today().strftime("%B %d, %Y")
    if today in url.text:
        # doesn't return anything which exits the code
        print(f'{today}: The markets are closed today.')
    else:
        # you can return any random value but it should return something
        return True


def watcher():
コード例 #4
0
from pyrh import Robinhood
from datetime import datetime

import argparse

parser = argparse.ArgumentParser()
parser.add_argument('--username', required=True)
parser.add_argument('--password', required=True)
args = vars(parser.parse_args())

# !!!!!! change the username and passs, be careful when paste the code to public
rh = Robinhood(username=args["username"], password=args["password"])
rh.login()

# trade history
keys, orders = rh.trade_history()
with open(f"tade_history_{datetime.today().strftime('%Y-%m-%d')}.csv",
          "w") as output_file:
    dict_writer = csv.DictWriter(output_file, keys)
    dict_writer.writeheader()
    dict_writer.writerows(orders)
# position data
positions, raw = rh.positions()
keys = ['symbol', 'quantity', 'price', 'created', 'updated']
with open(f"position_{datetime.today().strftime('%Y-%m-%d')}.csv",
          "w") as output_file:
    dict_writer = csv.DictWriter(output_file, keys)
    dict_writer.writeheader()
    dict_writer.writerows(positions)
コード例 #5
0
def watcher():
    global graph_msg, graph_min, graph_max
    rh = Robinhood()
    rh.login(username=rh_user, password=rh_pass, qr_code=rh_qr)
    raw_result = rh.positions()
    result = raw_result['results']
    shares_total = []
    port_msg = f"Your portfolio ({rh.get_account()['account_number']}):\n"
    loss_output = 'Loss:'
    profit_output = 'Profit:'
    loss_total = []
    profit_total = []
    graph_msg = None  # initiates a variable graph_msg as None for looped condition below
    n = 0
    n_ = 0
    for data in result:
        share_id = str(data['instrument'].split('/')[-2])
        buy = round(float(data['average_buy_price']), 2)
        shares_count = int(data['quantity'].split('.')[0])
        if shares_count != 0:
            n = n + 1
            n_ = n_ + shares_count
        else:
            continue
        raw_details = rh.get_quote(share_id)
        share_name = raw_details['symbol']
        call = raw_details['instrument']
        share_full_name = loads(get(call).text)['simple_name']
        total = round(shares_count * float(buy), 2)
        shares_total.append(total)
        current = round(float(raw_details['last_trade_price']), 2)
        current_total = round(shares_count * current, 2)
        difference = round(float(current_total - total), 2)
        if difference < 0:
            loss_output += (
                f'\n{share_full_name}:\n{shares_count} shares of {share_name} at ${buy} Currently: ${current}\n'
                f'Total bought: ${total} Current Total: ${current_total}'
                f'\nLOST ${-difference}\n')
            loss_total.append(-difference)
        else:
            profit_output += (
                f'\n{share_full_name}:\n{shares_count} shares of {share_name} at ${buy} Currently: ${current}\n'
                f'Total bought: ${total} Current Total: ${current_total}'
                f'\nGained ${difference}\n')
            profit_total.append(difference)
        if graph_min and graph_max:
            graph_min = float(graph_min)
            graph_max = float(graph_max)
            if difference > graph_max or difference < -graph_min:
                time_now = datetime.now()
                metrics = time_now - timedelta(days=7)
                numbers = []
                historic_data = (rh.get_historical_quotes(
                    share_name, '10minute', 'week'))
                historical_values = historic_data['results'][0]['historicals']
                for close_price in historical_values:
                    numbers.append(round(float(close_price['close_price']), 2))
                fig, ax = plt.subplots()
                if difference > graph_max:
                    plt.title(
                        f"Stock Price Trend for {share_full_name}\nShares: {shares_count}  Profit: ${difference}"
                    )
                elif difference < graph_min:
                    plt.title(
                        f"Stock Price Trend for {share_full_name}\nShares: {shares_count}  LOSS: ${-difference}"
                    )
                plt.xlabel(
                    f"1 Week trend with 10 minutes interval from {metrics.strftime('%m-%d %H:%M')} to "
                    f"{time_now.strftime('%m-%d %H:%M')}")
                plt.ylabel('Price in USD')
                ax.plot(numbers, linewidth=1.5)
                if not path.isdir('img'):
                    mkdir('img')
                fig.savefig(f"img/{share_full_name}.png", format="png")
                plt.close(
                )  # close plt to avoid memory exception when more than 20 graphs are generated
                # stores graph_msg only if a graph is generated else graph_msg remains None
                if not graph_msg:  # used if not to avoid storing the message repeatedly
                    graph_msg = f"Attached are the graphs for stocks which exceeded a profit of " \
                                f"${graph_max} or deceeded a loss of ${graph_min}"
        elif not graph_msg:  # used elif not to avoid storing the message repeatedly
            graph_msg = "Add the env variables for <graph_min> and <graph_max> to include a graph of previous " \
                        "week's trend."

    lost = round(fsum(loss_total), 2)
    gained = round(fsum(profit_total), 2)
    port_msg += f'The below values will differ from overall profit/loss if shares were purchased ' \
                f'with different price values.\nTotal Profit: ${gained}\nTotal Loss: ${lost}\n'
    net_worth = round(float(rh.equity()), 2)
    output = f'Total number of stocks purchased: {n}\n'
    output += f'Total number of shares owned: {n_}\n\n'
    output += f'Current value of your total investment is: ${net_worth}\n'
    total_buy = round(fsum(shares_total), 2)
    output += f'Value of your total investment while purchase is: ${total_buy}\n'
    total_diff = round(float(net_worth - total_buy), 2)
    if total_diff < 0:
        output += f'Overall Loss: ${total_diff}'
    else:
        output += f'Overall Profit: ${total_diff}'
    yesterday_close = round(float(rh.equity_previous_close()), 2)
    two_day_diff = round(float(net_worth - yesterday_close), 2)
    output += f"\n\nYesterday's closing value: ${yesterday_close}"
    if two_day_diff < 0:
        output += f"\nCurrent Dip: ${two_day_diff}"
    else:
        output += f"\nCurrent Spike: ${two_day_diff}"
    if not graph_msg:  # if graph_msg was not set above
        graph_msg = f"You have not lost more than ${graph_min} or gained more than " \
                    f"${graph_max} to generate a graph."

    return port_msg, profit_output, loss_output, output, graph_msg