def __init__(self, X_curr, u_curr, X_next, option='GP', inducing_size=100, name='GP_DYNAMICS'): """ :param X_curr: 2 dim tensor array, state at the current time stamp, H by n :param u_curr: 2 dim tensor array, control signal at the current time stamp, H by m :param X_next: 2 dim tensor array, state at the next time stamp, H by n :param option: use full GP or sparse GP :param inducing_size: the number of inducing points if using sparse GP :param name: """ super(GP_DYNAMICS).__init__(name) if option not in ['SSGP', 'GP']: raise ValueError('undefined regression option for gp model!') assert(X_curr.dim() == 2 and u_curr.dim() == 2 and X_next.dim() == 2), "all data inputs can only have 2 dimensions! X_curr: {}, u_curr: {}, X_next: {}".format(X_curr.dim(), u_curr.dim(), X_next.dim()) assert(X_curr.size()[1] == u_curr.size()[1] and u_curr.size()[1] == X_next.size()[1]), "all data inputs need to have the same length! X_curr: {}, " \ "u_curr: {}, X_next: {}".format(X_curr.size(), u_curr.size(), X_next.size()) self.X_hat = torch.cat((X_curr, u_curr)) self.dX = X_next - X_curr self.GP_dyn = [] if option == 'SSGP': for i in range(self.dX.size()[1]): kernel = RBF(input_dim=self.X_hat.size()[1], lengthscale=torch.ones(self.X_hat.size()[1]) * 10., variance=torch.tensor(5.0),name="GPs_dim" + str(i) + "_RBF") range_lis = range(0, self.X_hat.size()[0]) random.shuffle(range_lis) Xu = self.X_hat[range_lis[0:inducing_size], :] # need to set the name for different model, otherwise pyro will clear the parameter storage ssgpmodel = SparseGPRegression(self.X_hat, self.dX[:, i], kernel, Xu, name="SSGPs_model_dim" + str(i), jitter=1e-5) self.GP_dyn.append(ssgpmodel) else: for i in range(self.dX.size()[1]): kernel = RBF(input_dim=self.X_hat.size()[1], lengthscale=torch.ones(self.X_hat.size()[1]) * 10., variance=torch.tensor(5.0), name="GPs_dim" + str(i) + "_RBF") gpmodel = GPRegression(self.X_hat, self.dX[:, i], kernel, name="GPs_model_dim" + str(i), jitter=1e-5) self.GP_dyn.append(gpmodel) self.option = option print("for the dynamics model, input dim {} and output dim {}".format(self.X_hat.size()[1], self.dX.size()[1])) self.Kff_inv = torch.zeros((self.dX.size()[1], self.X_hat.size()[0], self.X_hat.size()[0])) self.K_var = torch.zeros(self.dX.size()[1], 1) self.Beta = torch.zeros((self.dX.size()[1], self.X_hat.size()[0])) self.lengthscale = torch.zeros((self.dX.size()[1], self.X_hat.size()[1])) self.noise = torch.zeros((self.dX.size()[1], 1)) if self.option == 'SSGP': self.Xu = torch.zeros((self.dX.size()[1], inducing_size))
def test_mean_function_SGPR_FITC(): X, y, Xnew, ynew, kernel, mean_fn = _pre_test_mean_function() Xu = X[::20].clone() gpmodule = SparseGPRegression(X, y, kernel, Xu, mean_function=mean_fn, approx="FITC") train(gpmodule) _post_test_mean_function(gpmodule, Xnew, ynew)
def test_mean_function_SGPR_FITC(): X, y, Xnew, ynew, kernel, mean_fn = _pre_test_mean_function() Xu = X[::20].clone() model = SparseGPRegression(X, y, kernel, Xu, mean_function=mean_fn, approx="FITC") model.optimize(optim.Adam({"lr": 0.01})) _post_test_mean_function(model, Xnew, ynew)
def test_inference_sgpr(): N = 1000 X = dist.Uniform(torch.zeros(N), torch.ones(N)*5).sample() y = 0.5 * torch.sin(3*X) + dist.Normal(torch.zeros(N), torch.ones(N)*0.5).sample() kernel = RBF(input_dim=1) Xu = torch.arange(0., 5.5, 0.5) sgpr = SparseGPRegression(X, y, kernel, Xu) train(sgpr) Xnew = torch.arange(0., 5.05, 0.05) loc, var = sgpr(Xnew, full_cov=False) target = 0.5 * torch.sin(3*Xnew) assert_equal((loc - target).abs().mean().item(), 0, prec=0.07)
def __init__(self, X_s, y_s, X_o, y_o, option='GP', inducing_size=100, name='GP_ADF_RTSS'): """ :param X_s: training inputs for the state transition model N by D tensor :param y_s: training outputs for the state transition model N by E tensor :param X_o: training inputs for the observation model N by E tensor :param y_o: training outputs for the observation model N by F tensor :param state_dim: dimension for the state, D :param observation_dim: dimension for the output, E :param transition_kernel: kernel function for the :param observation_kernel: :param options: """ super(GP_ADF_RTSS, self).__init__(name) if option not in ['SSGP', 'GP']: raise ValueError('undefined regression option for gp model!') assert(X_s.dim() == 2 and y_s.dim() == 2 and X_o.dim() == 2 and y_o.dim() == 2), "all data inputs can only have 2 dimensions" # # use RBF kernel for state transition model and observation model # self.state_transition_kernel = RBF(input_dim=state_dim, lengthscale=torch.ones(state_dim) * 0.1) # self.observation_kernel = RBF(input_dim=observation_dim, lengthscale=torch.ones(observation_dim) * 0.1) self.X_s = X_s self.y_s = y_s self.X_o = X_o self.y_o = y_o # print(X_s.dtype) # print(y_s.dtype) # print(X_o.dtype) # print(y_o.dtype) # choose the model type and initialize based on the option self.state_transition_model_list = [] self.observation_model_list = [] if option == 'SSGP': for i in range(self.y_s.size()[1]): kernel = RBF(input_dim=self.X_s.size()[1], lengthscale=torch.ones(self.X_s.size()[1]) * 10., variance=torch.tensor(5.0),name="GPs_dim" + str(i) + "_RBF") range_lis = range(0, X_s.size()[0]) random.shuffle(range_lis) Xu = X_s[range_lis[0:inducing_size], :] # need to set the name for different model, otherwise pyro will clear the parameter storage ssgpmodel = SparseGPRegression(X_s, y_s[:, i], kernel, Xu, name="SSGPs_model_dim" + str(i), jitter=1e-5) self.state_transition_model_list.append(ssgpmodel) for i in range(self.y_o.size()[1]): kernel = RBF(input_dim=self.X_o.size()[1], lengthscale=torch.ones(self.X_o.size()[1]) * 10, variance=torch.tensor(5.0), name="GPo_dim" + str(i) + "_RBF") range_lis = range(0, y_o.size()[0]) random.shuffle(range_lis) Xu = X_o[range_lis[0:inducing_size], :] ssgpmodel = SparseGPRegression(X_o, y_o[:, i], kernel, Xu, name="SSGPo_model_dim" + str(i), noise=torch.tensor(2.)) self.state_transition_model_list.append(ssgpmodel) else: for i in range(self.y_s.size()[1]): kernel = RBF(input_dim=self.X_s.size()[1], lengthscale=torch.ones(self.X_s.size()[1]) * 10., variance=torch.tensor(5.0), name="GPs_dim" + str(i) + "_RBF") gpmodel = GPRegression(X_s, y_s[:, i], kernel, name="GPs_model_dim" + str(i), jitter=1e-5) self.state_transition_model_list.append(gpmodel) for i in range(self.y_o.size()[1]): kernel = RBF(input_dim=self.X_o.size()[1], lengthscale=torch.ones(self.X_o.size()[1]) * 10., variance=torch.tensor(5.0), name="GPo_dim" + str(i) + "_RBF") gpmodel = GPRegression(X_o, y_o[:, i], kernel, name="GPo_model_dim"+ str(i), noise=torch.tensor(2.)) self.observation_model_list.append(gpmodel) self.option = option # # if model_file: # self.load_model(model_file) self.mu_s_curr = torch.zeros(y_s.size()[1]) self.sigma_s_curr = torch.eye(y_s.size()[1]) self.mu_o_curr = torch.zeros(y_o.size()[1]) self.sigma_o_curr = torch.eye(y_s.size()[1]) self.mu_hat_s_curr = torch.zeros(y_s.size()[1]) self.sigma_hat_s_curr = torch.eye(y_s.size()[1]) self.mu_hat_s_prev = torch.zeros(y_s.size()[1]) self.sigma_hat_s_prev = torch.eye(y_s.size()[1]) # For backwards smoothing self.mu_hat_s_curr_lis = [] self.sigma_hat_s_curr_lis = [] self.mu_s_curr_lis = [] self.sigma_s_curr_lis = [] self.sigma_Xpf_Xcd_lis = [] self.Kff_s_inv = torch.zeros((y_s.size()[1], X_s.size()[0], X_s.size()[0])) self.Kff_o_inv = torch.zeros((y_o.size()[1], X_o.size()[0], X_o.size()[0])) self.K_s_var = torch.zeros(y_s.size()[1], 1) self.K_o_var = torch.zeros(y_o.size()[1], 1) self.Beta_s = torch.zeros((y_s.size()[1], X_s.size()[0])) self.Beta_o = torch.zeros((y_o.size()[1], X_o.size()[0])) self.lengthscale_s = torch.zeros((y_s.size()[1], X_s.size()[1])) self.lengthscale_o = torch.zeros((y_o.size()[1], X_o.size()[1])) self.noise_s = torch.zeros((y_s.size()[1], 1)) self.noise_o = torch.zeros((y_o.size()[1], 1)) if self.option == 'SSGP': self.Xu_s = torch.zeros((y_s.size()[1], inducing_size)) self.Xu_o = torch.zeros((y_o.size()[1], inducing_size)) self.noise_s = torch.zeros((y_s.size()[1], inducing_size)) self.noise_o = torch.zeros((y_o.size()[1], inducing_size)) print("for state transition model, input dim {} and output dim {}".format(X_s.size()[1], y_s.size()[1])) print("for observation model, input dim {} and output dim {}".format(X_o.size()[1], y_o.size()[1]))