コード例 #1
0
    def process(self,
                event,
                timing,
                bazi=None,
                slow=None,
                restitute=False,
                *args,
                **kwargs):
        '''
      :param timing: CakeTiming. Uses the definition without the offset.
      :param fn_dump_center: filename to where center stations shall be dumped
      :param fn_beam: filename of beam trace
      :param model: earthmodel to use(optional)
      :param earthmodel to use(optional)
      :param network: network code(optional)
      :param station: station code(optional)
        '''
        logger.debug('start beam forming')
        stations = self.stations
        network_code = kwargs.get('responses', None)
        network_code = kwargs.get('network', '')
        station_code = kwargs.get('station', 'STK')
        c_station_id = (network_code, station_code)
        t_shifts = []
        lat_c, lon_c, z_c = self.c_lat_lon_z

        self.station_c = Station(lat=float(lat_c),
                                 lon=float(lon_c),
                                 elevation=float(z_c),
                                 depth=0.,
                                 name='Array Center',
                                 network=c_station_id[0],
                                 station=c_station_id[1][:5])
        fn_dump_center = kwargs.get('fn_dump_center', 'array_center.pf')
        fn_beam = kwargs.get('fn_beam', 'beam.mseed')
        if event:
            mod = cake.load_model(crust2_profile=(event.lat, event.lon))
            dist = ortho.distance_accurate50m(event, self.station_c)
            ray = timing.t(mod, (event.depth, dist), get_ray=True)

            if ray is None:
                logger.error(
                    'None of defined phases available at beam station:\n %s' %
                    self.station_c)
                return
            else:
                b = ortho.azimuth(self.station_c, event)
                if b >= 0.:
                    self.bazi = b
                elif b < 0.:
                    self.bazi = 360. + b
                self.slow = ray.p / (cake.r2d * cake.d2m)
        else:
            self.bazi = bazi
            self.slow = slow

        logger.info(
            'stacking %s with slowness %1.4f s/km at back azimut %1.1f '
            'degrees' %
            ('.'.join(c_station_id), self.slow * cake.km, self.bazi))

        lat0 = num.array([lat_c] * len(stations))
        lon0 = num.array([lon_c] * len(stations))
        lats = num.array([s.lat for s in stations])
        lons = num.array([s.lon for s in stations])
        ns, es = ortho.latlon_to_ne_numpy(lat0, lon0, lats, lons)
        theta = num.float(self.bazi * num.pi / 180.)
        R = num.array([[num.cos(theta), -num.sin(theta)],
                       [num.sin(theta), num.cos(theta)]])
        distances = R.dot(num.vstack((es, ns)))[1]
        channels = set()
        self.stacked = {}
        num_stacked = {}
        self.t_shifts = {}
        self.shifted_traces = []
        taperer = trace.CosFader(xfrac=0.05)
        if self.diff_dt_treat == 'downsample':
            self.traces.sort(key=lambda x: x.deltat)
        elif self.diff_dt_treat == 'oversample':
            dts = [t.deltat for t in self.traces]
            for tr in self.traces:
                tr.resample(min(dts))

        for tr in self.traces:
            if tr.nslc_id[:2] == c_station_id:
                continue
            tr = tr.copy(data=True)
            tr.ydata = tr.ydata.astype(
                num.float64) - tr.ydata.mean(dtype=num.float64)
            tr.taper(taperer)
            try:
                stack_trace = self.stacked[tr.channel]
                num_stacked[tr.channel] += 1
            except KeyError:
                stack_trace = tr.copy(data=True)
                stack_trace.set_ydata(num.zeros(len(stack_trace.get_ydata())))

                stack_trace.set_codes(network=c_station_id[0],
                                      station=c_station_id[1],
                                      location='',
                                      channel=tr.channel)

                self.stacked[tr.channel] = stack_trace
                channels.add(tr.channel)
                num_stacked[tr.channel] = 1

            nslc_id = tr.nslc_id

            try:
                stats = list(
                    filter(
                        lambda x: util.match_nslc('%s.%s.%s.*' % x.nsl(),
                                                  nslc_id), stations))
                stat = stats[0]
            except IndexError:
                break

            i = stations.index(stat)
            d = distances[i]
            t_shift = d * self.slow
            t_shifts.append(t_shift)
            tr.shift(t_shift)
            self.t_shifts[tr.nslc_id[:2]] = t_shift
            if self.normalize_std:
                tr.ydata = tr.ydata / tr.ydata.std()

            if num.abs(tr.deltat - stack_trace.deltat) > 0.000001:
                if self.diff_dt_treat == 'downsample':
                    stack_trace.downsample_to(tr.deltat)
                elif self.diff_dt_treat == 'upsample':
                    raise Exception(
                        'something went wrong with the upsampling, previously')
            stack_trace.add(tr)
            self.shifted_traces.append(tr)

        if self.post_normalize:
            for ch, tr in self.stacked.items():
                tr.set_ydata(tr.get_ydata() / num_stacked[ch])

        self.save_station(fn_dump_center)
        self.checked_nslc([stack_trace])
        self.save(stack_trace, fn_beam)
        return self.shifted_traces, stack_trace, t_shifts
コード例 #2
0
    def call(self):
        self.cleanup()
        c_station_id = ('_', 'STK')
        if self.unit == 's/deg':
            slow_factor = 1. / onedeg
        elif self.unit == 's/km':
            slow_factor = 1. / 1000.

        slow = self.slow * slow_factor
        if self.stacked_traces is not None:
            self.add_traces(self.stacked_traces)
        viewer = self.get_viewer()
        if self.station_c:
            viewer.stations.pop(c_station_id)

        stations = self.get_stations()
        if len(stations) == 0:
            self.fail('No station meta information found')

        traces = list(self.chopper_selected_traces(fallback=True))
        traces = [tr for trs in traces for tr in trs]
        visible_nslcs = [tr.nslc_id for tr in traces]
        stations = [
            x for x in stations
            if util.match_nslcs("%s.%s.%s.*" % x.nsl(), visible_nslcs)
        ]
        if not self.lat_c or not self.lon_c or not self.z_c:
            self.lat_c, self.lon_c, self.z_c = self.center_lat_lon(stations)
            self.set_parameter('lat_c', self.lat_c)
            self.set_parameter('lon_c', self.lon_c)

        self.station_c = Station(lat=float(self.lat_c),
                                 lon=float(self.lon_c),
                                 elevation=float(self.z_c),
                                 depth=0.,
                                 name='Array Center',
                                 network=c_station_id[0],
                                 station=c_station_id[1])

        viewer.add_stations([self.station_c])
        lat0 = num.array([self.lat_c] * len(stations))
        lon0 = num.array([self.lon_c] * len(stations))
        lats = num.array([s.lat for s in stations])
        lons = num.array([s.lon for s in stations])
        ns, es = ortho.latlon_to_ne_numpy(lat0, lon0, lats, lons)
        theta = num.float(self.bazi * num.pi / 180.)
        R = num.array([[num.cos(theta), -num.sin(theta)],
                       [num.sin(theta), num.cos(theta)]])
        distances = R.dot(num.vstack((es, ns)))[1]
        channels = set()
        self.stacked = {}
        num_stacked = {}
        self.t_shifts = {}
        shifted_traces = []
        taperer = trace.CosFader(xfrac=0.05)
        if self.diff_dt_treat == 'downsample':
            traces.sort(key=lambda x: x.deltat)
        elif self.diff_dt_treat == 'oversample':
            dts = [t.deltat for t in traces]
            for tr in traces:
                tr.resample(min(dts))

        for tr in traces:
            if tr.nslc_id[:2] == c_station_id:
                continue
            tr = tr.copy(data=True)
            tr.ydata = tr.ydata.astype(num.float64)
            tr.ydata -= tr.ydata.mean(dtype=num.float64)
            tr.taper(taperer)
            try:
                stack_trace = self.stacked[tr.channel]
                num_stacked[tr.channel] += 1
            except KeyError:
                stack_trace = tr.copy(data=True)
                stack_trace.set_ydata(num.zeros(len(stack_trace.get_ydata())))

                stack_trace.set_codes(network=c_station_id[0],
                                      station=c_station_id[1],
                                      location='',
                                      channel=tr.channel)

                self.stacked[tr.channel] = stack_trace
                channels.add(tr.channel)
                num_stacked[tr.channel] = 1

            nslc_id = tr.nslc_id

            try:
                stats = [
                    x for x in stations
                    if util.match_nslc('%s.%s.%s.*' % x.nsl(), nslc_id)
                ]

                stat = stats[0]
            except IndexError:
                break

            i = stations.index(stat)
            d = distances[i]
            t_shift = d * slow
            tr.shift(t_shift)
            stat = viewer.get_station(tr.nslc_id[:2])
            self.t_shifts[stat] = t_shift
            if self.normalize_std:
                tr.ydata = tr.ydata / tr.ydata.std()

            if num.abs(tr.deltat - stack_trace.deltat) > 0.000001:
                if self.diff_dt_treat == 'downsample':
                    stack_trace.downsample_to(tr.deltat)
                elif self.diff_dt_treat == 'upsample':
                    print(
                        'something went wrong with the upsampling, previously')
            stack_trace.add(tr)

            if self.add_shifted:
                tr.set_station('%s_s' % tr.station)
                shifted_traces.append(tr)

        if self.post_normalize:
            for ch, tr in self.stacked.items():
                tr.set_ydata(tr.get_ydata() / num_stacked[ch])

        self.cleanup()

        for ch, tr in self.stacked.items():
            if num_stacked[ch] > 1:
                self.add_trace(tr)

        if self.add_shifted:
            self.add_traces(shifted_traces)