def sample_refinement(pdb_filename, kT=1.0, smallmoves=3, shearmoves=5, backbone_angle_max=7, cycles=9, jobs=1, job_output='refine_output'): """ Performs fullatom structural refinement on the input <pdb_filename> by perturbing backbone torsion angles with a maximum perturbation of <backbone_angle_max> for <cycles> trials of <smallmoves> perturbations of a random residue's phi or psi and <shearmoves> perturbations of a random residue's phi and the preceding residue's psi followed by gradient based backbone torsion angle minimization and sidechain packing with an acceptance criteria scaled by <kT>. <jobs> trajectories are performed, continually exporting structures to a PyMOL instance. Output structures are named <job_output>_(job#).pdb. """ # 1. create a pose from the desired PDB file pose = Pose() pose_from_file(pose, pdb_filename) # 2. create a reference copy of the pose in fullatom starting_pose = Pose() starting_pose.assign(pose) # 3. create a standard ScoreFunction #### implement the desired ScoreFunction here scorefxn = get_fa_scorefxn() # create_score_function('standard') #### If you wish to use the ClassRelax protocol, uncomment the following #### line and comment-out the protocol setup below #refinement = protocols.relax.ClassicRelax( scorefxn ) #### Setup custom high-resolution refinement protocol #### backbone refinement protocol # 4. create a MoveMap, all backbone torsions free movemap = MoveMap() movemap.set_bb(True) # 5. create a SmallMover # a SmallMover perturbs a random (free in the MoveMap) residue's phi or psi # torsion angle for an input number of times and accepts of rejects this # change based on the Metropolis Criteria using the "rama" ScoreType and # the parameter kT # set the maximum angle to backbone_angle_max, apply it smallmoves times smallmover = protocols.simple_moves.SmallMover(movemap, kT, smallmoves) # angle_max is secondary structure dependent, however secondary structure # has not been evaulated in this protocol, thus they are all set # to the same value0 smallmover.angle_max(backbone_angle_max) # sets all at once #### use the overloaded version of the SmallMover.angle_max method if you #### want to use secondary structure biased moves #smallmover.angle_max('H', backbone_angle_max) #smallmover.angle_max('E', backbone_angle_max) #smallmover.angle_max('L', backbone_angle_max) # 6. create a ShearMover # a ShearMover is identical to a SmallMover except that the angles perturbed # are instead a random (free in the MoveMap) residue's phi and the # preceding residue's psi, this reduces the downstream structural change # set the maximum angle to backbone_angle_max, apply it shearmoves times shearmover = protocols.simple_moves.ShearMover(movemap, kT, shearmoves) # same angle_max restictions as SmallMover shearmover.angle_max(backbone_angle_max) #### use the overloaded version of the SmallMover.angle_max method if you #### want to use secondary structure biased moves #shearmover.angle_max('H', backbone_angle_max) #shearmover.angle_max('E', backbone_angle_max) #shearmover.angle_max('L', backbone_angle_max) # 7. create a MinMover, for backbone torsion minimization minmover = protocols.minimization_packing.MinMover() minmover.movemap(movemap) minmover.score_function(scorefxn) #### sidechain refinement protocol, simple packing # 8. setup a PackRotamersMover to_pack = standard_packer_task(starting_pose) to_pack.restrict_to_repacking() # prevents design, packing only to_pack.or_include_current(True) # considers the original sidechains packmover = protocols.minimization_packing.PackRotamersMover( scorefxn, to_pack) #### assess the new structure # 9. create a PyMOLMover pymover = PyMOLMover() # uncomment the line below to load structures into successive states #pymover.keep_history(True) #### the PyMOLMover slows down the protocol SIGNIFICANTLY but provides #### very informative displays #### the keep_history flag (when True) tells the PyMOLMover to store new #### structures into successive states, for a single trajectory, this #### allows you to see intermediate changes (depending on where the #### PyMOLMover is applied), when using a JobDistributor or otherwise #### displaying multiple trajectories with a single protocol, the output #### can get confusing to interpret, by changing the pose's PDBInfo.name #### the structure will load into a new PyMOL state #### try uncommenting the lines below to see different output #pymover.update_energy(True) # see the total score in color # 10. export the original structure, and scores, to PyMOL pymover.apply(pose) scorefxn(pose) pymover.send_energy(pose) # 11. setup a RepeatMover on a TrialMover of a SequenceMover (wow!) # -setup a TrialMover # a. create a SequenceMover of the previous moves #### add any other moves you desire combined_mover = SequenceMover() combined_mover.add_mover(smallmover) combined_mover.add_mover(shearmover) combined_mover.add_mover(minmover) combined_mover.add_mover(packmover) #### explore the protocol using the PyMOLMover, try viewing structures #### before they are accepted or rejected combined_mover.add_mover(pymover) # b. create a MonteCarlo object to define success/failure mc = MonteCarlo(pose, scorefxn, kT) # must reset for each trajectory! # c. create the TrialMover trial = TrialMover(combined_mover, mc) #### explore the protocol using the PyMOLMover, try viewing structures #### after acceptance/rejection, comment-out the lines below #original_trial = TrialMover(combined_mover, mc) #trial = SequenceMover() #trial.add_mover(original_trial) #trial.add_mover(pymover) #### for each trajectory, try cycles number of applications # -create the RepeatMover refinement = RepeatMover(trial, cycles) #### # 12. create a (Py)JobDistributor jd = PyJobDistributor(job_output, jobs, scorefxn) jd.native_pose = starting_pose # 13. store the score evaluations for output # printing the scores as they are produced would be difficult to read, # Rosetta produces a lot of verbose output when running scores = [0] * (jobs + 1) scores[0] = scorefxn(starting_pose) # 14. perform the refinement protocol counter = 0 # for exporting to PyMOL while not jd.job_complete: # a. set necessary variables for the new trajectory # -reload the starting pose pose.assign(starting_pose) # -change the pose's PDBInfo.name, for the PyMOLMover counter += 1 pose.pdb_info().name(job_output + '_' + str(counter)) # -reset the MonteCarlo object (sets lowest_score to that of p) mc.reset(pose) #### if you create a custom protocol, you may have additional #### variables to reset, such as kT #### if you create a custom protocol, this section will most likely #### change, many protocols exist as single Movers or can be #### chained together in a sequence (see above) so you need #### only apply the final Mover # b. apply the refinement protocol refinement.apply(pose) #### # c. output the lowest scoring decoy structure for this trajectory # -recover and output the decoy structure to a PDB file mc.recover_low(pose) jd.output_decoy(pose) # -export the final structure to PyMOL for each trajectory pose.pdb_info().name(job_output + '_' + str(counter) + '_final') pymover.apply(pose) pymover.send_energy(pose) # see the total score in color # -store the final score for this trajectory scores[counter] = scorefxn(pose) # 15. output the score evaluations print('Original Score\t:\t', scores[0]) for i in range(1, len(scores)): # print out the job scores print(job_output + '_' + str(i) + '\t:\t', scores[i]) return scores # for other protocols
def sample_single_loop_modeling(pdb_filename, loop_begin, loop_end, loop_cutpoint, frag_filename, frag_length, outer_cycles_low=2, inner_cycles_low=5, init_temp_low=2.0, final_temp_low=0.8, outer_cycles_high=5, inner_cycles_high=10, init_temp_high=2.2, final_temp_high=0.6, jobs=1, job_output='loop_output'): """ Performs simple single loop construction on the input <pdb_filename> with loop from <loop_begin> to <loop_end> with a cutpoint at <loop_cutpoint> using fragments of length <frag_length> in the file <frag_filename>. <jobs> trajectories are performed, each using a low resolution (centroid) simulated annealing with <outer_cycles> rounds and <inner_cycles> steps per round decrementing "temperature" from <init_temp> to <final_temp> geometrically. Output structures are named <job_output>_(job#).pdb. """ # 1. create a pose from the desired PDB file p = Pose() pose_from_file(p, pdb_filename) # 2. create a reference copy of the pose in fullatom starting_p = Pose() starting_p.assign(p) #### if you are constructing multiple loops simultaneously, changes will #### occur in most of the steps below # 3. create the Loop object # (note: Loop objects merely specify residues, they contain no # conformation data) my_loop = protocols.loops.Loop(loop_begin, loop_end, loop_cutpoint) #### if using multiple loops, add additional Loop objects # 4. use the Loop to set the pose FoldTree protocols.loops.set_single_loop_fold_tree(p, my_loop) #### alternate FoldTree setup, if you uncomment the lines below, #### comment-out the set_single_loop_foldtree line above (line 189) #### -create an empty FoldTree #ft = FoldTree() #### -make it a single edge the length of pose #ft.simple_tree(p.total_residue()) #### -insert a jump corresponding to the single loop region #ft.add_jump(loop_begin - 2, loop_end + 2, loop_cutpoint) #### -give the pose this FoldTree (set it to this object), this will #### erase any previous FoldTree held by the pose #p.fold_tree(ft) #### there is also a fold_tree_from_loops method in exposed which sets up #### a FoldTree but it is different from set_single_loop_foldtree in #### that is creates jumps +/- 1 residue from their corresponding loop #### endpoints and requires a third argument, the FoldTree to setup # 5. sets the cut-point residues as cut-point variants protocols.loops.add_single_cutpoint_variant(p, my_loop) # 6. create the MoveMap, allow the loop region backbone and # all chi torsions to be free movemap = MoveMap() movemap.set_bb_true_range(loop_begin, loop_end) movemap.set_chi(True) # sets all chi torsions free # 7. setup the fragment Mover # this "try--except" is used to catch improper fragment files try: fragset = core.fragment.ConstantLengthFragSet(frag_length, frag_filename) #### the ConstantLengthFragSet is overloaded, this same #### ConstantLengthFragSet can be obtained with different syntax # to obtain custom fragments, see Generating Fragment Files below except: raise IOError('Make sure frag_length matches the fragments in\n\ frag_file and that frag_file is valid') fragment_mover = protocols.simple_moves.ClassicFragmentMover( fragset, movemap) # 8. create a Mover for loop modeling using CCD (low resolution) ccd_closure = protocols.loops.loop_closure.ccd.CCDLoopClosureMover( my_loop, movemap) # 9. create ScoreFunctions # for centroid, use the default centroid ScoreFunction with chainbreak on scorefxn_low = create_score_function('cen_std') # the chainbreak ScoreType exists to penalize broken bonds # try creating a broken pose in the interpreter and use a ScoreFunction # with a chainbreak score to investigate its impact, the score is 0.0 # except when a bond is broken # this penalizes failures caused by CCD failing to close the loop scorefxn_low.set_weight(core.scoring.chainbreak, 1) # for fullatom, used for packing and scoring final output scorefxn_high = get_fa_scorefxn( ) # create_score_function_ws_patch('standard', 'score12') # 10. setup sidechain packing Mover task_pack = core.pack.task.TaskFactory.create_packer_task(starting_p) task_pack.restrict_to_repacking() # prevents design, packing only task_pack.or_include_current(True) # considers original sidechains pack = protocols.minimization_packing.PackRotamersMover( scorefxn_high, task_pack) # 11. setup the high resolution refinement # by creating a Loops object, # (note: Loops is basically a list of Loop objects), sample_loops = protocols.loops.Loops() # giving it the loop to remodel, sample_loops.add_loop(my_loop) # and creating a fullatom CCD Mover (high resolution) # this Mover is somewhat abnormal since it handles everything itself, it: # -creates its own MoveMap for the loop regions # -creates its own ScoreFunction (default to get_fa_scorefxn()) # -creates its own FoldTree for the pose based on the loops # -creates its own MonteCarlo object for monitoring the pose # -performs "simulated annealing" with 3 outer cycles and 90 inner # cycles, very similar to the protocol outlined ere # -creates its own backbone Movers (SmallMover, ShearMover) # -creates its own PackRotamersMover, it does NOT restrict repacking # to the loop regions and can alter all sidechain conformations loop_refine = LoopMover_Refine_CCD(sample_loops) # some of these parameters or objects can be set but the protocol # executed by this Mover is effectively untouchable #loop_refine.set_score_function(scorefxn_high) # in beta v2 and above loop_refine.temp_initial(init_temp_high) loop_refine.temp_final(init_temp_high) loop_refine.outer_cycles(outer_cycles_high) loop_refine.max_inner_cycles(inner_cycles_high) # 12. create centroid <--> fullatom conversion Movers to_centroid = SwitchResidueTypeSetMover('centroid') to_fullatom = SwitchResidueTypeSetMover('fa_standard') # and a Mover to recover sidechain conformations # when a protocol samples backbone torsion space in centroid, # the sidechain conformations are neglected, when it is transferred # to fullatom, we typically set the sidechain conformations to their # "original" values and perform sidechain packing, # a ReturnSidechainMover saves a pose's sidechains (in this case # staring_pose) and when applied, inserts these conformations # into the input pose recover_sidechains = protocols.simple_moves.ReturnSidechainMover( starting_p) # 13. create a reference copy of the pose in centroid # the first stage of each trajectory is in centroid # so a centroid reference is needed and the pose must start in centroid to_centroid.apply(p) starting_p_centroid = Pose() starting_p_centroid.assign(p) # 14. create the geometric "temperature" increment for simulated annealing gamma = pow((final_temp_low / init_temp_low), (1.0 / (outer_cycles_low * inner_cycles_low))) # 15. create a PyMOLMover for exporting structures to PyMOL pymov = PyMOLMover() # uncomment the line below to load structures into successive states #pymov.keep_history(True) scorefxn_high(starting_p) # for exporting the scores pymov.apply(starting_p) pymov.send_energy(starting_p) # 16. create a (Py)JobDistributor # a PyJobDistributor uses the job_output argument to name all output files # and performs the specified number (int) of jobs # a ScoreFunction is required since the PyJobDistributor output .fasc file # contains scoring information about each output PDB jd = PyJobDistributor(job_output, jobs, scorefxn_high) jd.native_pose = starting_p # 17. perform the loop modeling protocol counter = 0 # for exporting to PyMOL while not jd.job_complete: # a. set necessary variables for the new trajectory # -reload the starting pose (centroid) p.assign(starting_p_centroid) # -change the pose's PDBInfo.name, for exporting to PyMOL counter += 1 p.pdb_info().name(job_output + '_' + str(counter) + '_cen') # -reset the starting "temperature" (to init_temp) kT = init_temp_low # -create a MonteCarlo object for this trajectory # a MonteCarlo object assesses pass/fail by the Metropolis Criteria # and also records information on the lowest scoring pose mc = MonteCarlo(p, scorefxn_low, kT) # b. "randomize" the loop #### this section may change if you intend to use multiple loops or #### alter the sampling method to "randomize" the loop # -by breaking it open, for i in range(loop_begin, loop_end + 1): p.set_phi(i, -180) p.set_psi(i, 180) pymov.apply(p) # -and then inserting fragments # the number of insertions performed is somewhat arbitrary for i in range(loop_begin, loop_end + 1): fragment_mover.apply(p) pymov.apply(p) #### # low resolution loop modeling: # c. simulated annealing incrementing kT geometrically # from init_temp to final_temp #### this section may change if you intend to use multiple loops or #### alter the sampling method for low resolution modeling for i in range(1, outer_cycles_low + 1): # -start with the lowest scoring pose mc.recover_low(p) # loads mc's lowest scoring pose into p # -take several steps of in the simulated annealing by for j in range(1, inner_cycles_low + 1): # >increasing the "temperature" kT = kT * gamma mc.set_temperature(kT) # >inserting a fragment, fragment_mover.apply(p) pymov.apply(p) # >performing CCD, ccd_closure.apply(p) pymov.apply(p) # >and assessing the Metropolis Criteria mc.boltzmann(p) #### # the LoopMover_Refine_CCD makes A LOT of moves, DO NOT expect to # see useful results if you use the PyMOLMover keep_history option, the large # number of intermediates will slow processing to a halt # d. convert the best structure (lowest scoring) into fullatom by: # -recovering the best (centroid) structure (lowest scoring), mc.recover_low(p) # loads mc's lowest scoring pose into p # -switching the ResidueTypeSet to fullatom (from centroid), to_fullatom.apply(p) # -recovering the original sidechain conformations, recover_sidechains.apply(p) # -and packing the result (since the backbone conformation has changed) pack.apply(p) pymov.apply(p) p.pdb_info().name(job_output + '_' + str(counter) + '_fa') # high-resolution refinement: #### this section may change if you intend to use multiple loops or #### alter the sampling method for high resolution refinement # e. apply the LoopMover_Refine_CCD loop_refine.apply(p) # f. output the decoy (pose result from this trajectory) # include the loop RMSD (Lrsmd) # -output a PDB file using the PyJobDistributor lrms = protocols.loops.loop_rmsd(p, starting_p, sample_loops, True) jd.additional_decoy_info = ' Lrmsd: ' + str(lrms) jd.output_decoy(p) # -export the structure to PyMOL pymov.apply(p) pymov.send_energy(p)
def interface_ddG(pose, mutant_position, mutant_aa, movable_jumps, scorefxn='', cutoff=8.0, out_filename=''): # 1. create a reference copy of the pose wt = Pose() # the "wild-type" wt.assign(pose) # 2. setup a specific default ScoreFunction if not scorefxn: # this is a modified version of the scoring function discussed in # PNAS 2002 (22)14116-21, without environment dependent hbonding scorefxn = ScoreFunction() scorefxn.set_weight(fa_atr, 0.44) scorefxn.set_weight(fa_rep, 0.07) scorefxn.set_weight(fa_sol, 1.0) scorefxn.set_weight(hbond_bb_sc, 0.5) scorefxn.set_weight(hbond_sc, 1.0) # 3. create a copy of the pose for mutation mutant = Pose() mutant.assign(pose) # 4. mutate the desired residue # the pack_radius argument of mutate_residue (see below) is redundant # for this application since the area around the mutation is already # repacked mutant = mutate_residue(mutant, mutant_position, mutant_aa, 0.0, scorefxn) # 5. calculate the "interaction energy" # the method calc_interaction_energy is exposed in PyRosetta however it # does not alter the protein conformation after translation and may miss # significant interactions # an alternate method for manually separating and scoring is provided called # calc_binding_energy (see Interaction Energy vs. Binding Energy below) wt_score = calc_binding_energy(wt, scorefxn, mutant_position, cutoff) mut_score = calc_binding_energy(mutant, scorefxn, mutant_position, cutoff) #### the method calc_interaction_energy separates an input pose by #### 500 Angstroms along the jump defined in a Vector1 of jump numbers #### for movable jumps, a ScoreFunction must also be provided #### if setup_foldtree has not been applied, calc_interaction_energy may be #### wrong (since the jumps may be wrong) #wt_score = calc_interaction_energy(wt, scorefxn, movable_jumps) #mut_score = calc_interaction_energy(mutant, scorefxn, movable_jumps) ddg = mut_score - wt_score # 6. output data (optional) # -export the mutant structure to PyMOL (optional) mutant.pdb_info().name(pose.sequence()[mutant_position - 1] + str(pose.pdb_info().number(mutant_position)) + mutant.sequence()[mutant_position - 1]) pymover = PyMOLMover() scorefxn(mutant) pymover.apply(mutant) pymover.send_energy(mutant) # -write the mutant structure to a PDB file if out_filename: mutant.dump_pdb(out_filename) return ddg
def scanning(pdb_filename, partners, mutant_aa='A', interface_cutoff=8.0, output=False, trials=1, trial_output=''): """ Performs "scanning" at an interface within <pdb_filename> between <partners> by mutating relevant residues to <mutant_aa> and repacking residues within <pack_radius> Angstroms, further repacking all residues within <interface_cutoff> of the interface residue, scoring the complex and subtracting the score of a pose with the partners separated by 500 Angstroms. <trials> scans are performed (to average results) with summaries written to <trial_output>_(trial#).txt. Structures are exported to a PyMOL instance. """ # 1. create a pose from the desired PDB file pose = Pose() pose_from_file(pose, pdb_filename) # 2. setup the docking FoldTree and other related parameters dock_jump = 1 movable_jumps = Vector1([dock_jump]) protocols.docking.setup_foldtree(pose, partners, movable_jumps) # 3. create ScoreFuncions for the Interface and "ddG" calculations # the pose's Energies objects MUST be updated for the Interface object to # work normally scorefxn = get_fa_scorefxn() # create_score_function('standard') scorefxn(pose) # needed for proper Interface calculation # setup a "ddG" ScoreFunction, custom weights ddG_scorefxn = ScoreFunction() ddG_scorefxn.set_weight(core.scoring.fa_atr, 0.44) ddG_scorefxn.set_weight(core.scoring.fa_rep, 0.07) ddG_scorefxn.set_weight(core.scoring.fa_sol, 1.0) ddG_scorefxn.set_weight(core.scoring.hbond_bb_sc, 0.5) ddG_scorefxn.set_weight(core.scoring.hbond_sc, 1.0) # 4. create an Interface object for the pose interface = Interface(dock_jump) interface.distance(interface_cutoff) interface.calculate(pose) # 5. create a PyMOLMover for sending output to PyMOL (optional) pymover = PyMOLMover() pymover.keep_history(True) # for multiple trajectories pymover.apply(pose) pymover.send_energy(pose) # 6. perform scanning trials # the large number of packing operations introduces a lot of variability, # for best results, perform several trials and average the results, # these score changes are useful to QUALITATIVELY defining "hotspot" # residues # this script does not use a PyJobDistributor since no PDB files are output for trial in range(trials): # store the ddG values in a dictionary ddG_mutants = {} for i in range(1, pose.total_residue() + 1): # for residues at the interface if interface.is_interface(i) == True: # this way you can TURN OFF output by providing False arguments # (such as '', the default) filename = '' if output: filename = pose.pdb_info().name()[:-4] + '_' +\ pose.sequence()[i-1] +\ str(pose.pdb_info().number(i)) + '->' + mutant_aa # determine the interace score change upon mutation ddG_mutants[i] = interface_ddG(pose, i, mutant_aa, movable_jumps, ddG_scorefxn, interface_cutoff, filename) # output results print('=' * 80) print('Trial', str(trial + 1)) print( 'Mutants (PDB numbered)\t\"ddG\" (interaction dependent score change)' ) residues = list(ddG_mutants.keys() ) # list(...) conversion is for python3 compatbility residues.sort() # easier to read display = [ pose.sequence()[i - 1] + str(pose.pdb_info().number(i)) + mutant_aa + '\t' + str(ddG_mutants[i]) + '\n' for i in residues ] print(''.join(display)[:-1]) print('=' * 80) # write to file f = open(trial_output + '_' + str(trial + 1) + '.txt', 'w') f.writelines(display) f.close() #### alternate output using scanning_analysis (see below), only display #### mutations with "deviant" score changes print('Likely Hotspot Residues') for hotspot in scanning_analysis(trial_output): print(hotspot) print('=' * 80)
def pose_scoring(pose, display_residues = []): """ Extracts and displays various score evaluations on the input <pose> and its <display_residues> including: total score score term evaluations per-residue score radius of gyration (approximate) """ # this object is contained in PyRosetta v2.0 and above # create a PyMOLMover for exporting structures directly to PyMOL pymover = PyMOLMover() # 1. score the pose using the default full-atom (fa) ScoreFunction # a ScoreFunction is essentially a list of weights indicating which # ScoreTypes are "on" and how they are scaled when summed together # ScoreTypes define what scoring methods are performed on the pose # some ScoreTypes are centroid or fullatom specific, others are not # there are (at least) 5 ways to obtain the general fullatom ScoreFunction # the 1st (a) and 2nd (b) methods are only present since PyRosetta v2.0 # # a. this method returns the hard-coded set of weights for the standard # fullatom ScoreFunction, which is currently called "ref2015" fa_scorefxn = get_fa_scorefxn() # b. this method returns a ScoreFunction with its weights set based on # files stored in the database/scoring/weights (.wts files) full_scorefxn = create_score_function('ref2015') # c. this method sets the weights based on 'ref2015.wts' and then # corrects them based on 'docking.wts_patch' ws_patch_scorefxn = create_score_function('ref2015', 'docking') # create_score_function_ws_patch('ref2015', 'docking') # d. this method returns a ScoreFunction with its weights set by loading # weights from 'ref2015' followed by an adjustment by setting # weights from 'docking.wts_patch' patch_scorefxn = create_score_function('ref2015') patch_scorefxn.apply_patch_from_file('docking') # e. here an empty ScoreFunction is created and the weights are set manually scorefxn = ScoreFunction() scorefxn.set_weight(core.scoring.fa_atr, 0.800) # full-atom attractive score scorefxn.set_weight(core.scoring.fa_rep, 0.440) # full-atom repulsive score scorefxn.set_weight(core.scoring.fa_sol, 0.750) # full-atom solvation score scorefxn.set_weight(core.scoring.fa_intra_rep, 0.004) # f.a. intraresidue rep. score scorefxn.set_weight(core.scoring.fa_elec, 0.700) # full-atom electronic score scorefxn.set_weight(core.scoring.pro_close, 1.000) # proline closure scorefxn.set_weight(core.scoring.hbond_sr_bb, 1.170) # short-range hbonding scorefxn.set_weight(core.scoring.hbond_lr_bb, 1.170) # long-range hbonding scorefxn.set_weight(core.scoring.hbond_bb_sc, 1.170) # backbone-sidechain hbonding scorefxn.set_weight(core.scoring.hbond_sc, 1.100) # sidechain-sidechain hbonding scorefxn.set_weight(core.scoring.dslf_fa13, 1.000) # disulfide full-atom score scorefxn.set_weight(core.scoring.rama, 0.200) # ramachandran score scorefxn.set_weight(core.scoring.omega, 0.500) # omega torsion score scorefxn.set_weight(core.scoring.fa_dun, 0.560) # fullatom Dunbrack rotamer score scorefxn.set_weight(core.scoring.p_aa_pp, 0.320) scorefxn.set_weight(core.scoring.ref, 1.000) # reference identity score # ScoreFunction a, b, and e above have the same weights and thus return # the same score for an input pose. Likewise, c and d should return the # same scores. # 2. output the ScoreFunction evaluations #ws_patch_scorefxn(pose) # to prevent verbose output on the next line print( '='*80 ) print( 'ScoreFunction a:', fa_scorefxn(pose) ) print( 'ScoreFunction b:', full_scorefxn(pose) ) print( 'ScoreFunction c:', ws_patch_scorefxn(pose) ) print( 'ScoreFunction d:', patch_scorefxn(pose) ) print( 'ScoreFunction e:', scorefxn(pose) ) pose_score = scorefxn(pose) # 3. obtain the pose Energies object and all the residue total scores energies = pose.energies() residue_energies = [energies.residue_total_energy(i) for i in range(1, pose.total_residue() + 1)] # 4. obtain the non-zero weights of the ScoreFunction, active ScoreTypes weights = [core.scoring.ScoreType(s) for s in range(1, int(core.scoring.end_of_score_type_enumeration) + 1) if scorefxn.weights()[core.scoring.ScoreType(s)]] # 5. obtain all the pose energies using the weights list # Energies.residue_total_energies returns an EMapVector of the unweighted # score values, here they are multiplied by their weights # remember when performing individual investigation, these are the raw # unweighted score! residue_weighted_energies_matrix = [ [energies.residue_total_energies(i)[w] * scorefxn.weights()[w] for i in range(1, pose.total_residue() + 1)] for w in weights] # Unfortunately, hydrogen bonding scores are NOT stored in the structure # returned by Energies.residue_total_energies # 6. hydrogen bonding information must be extracted separately pose_hbonds = core.scoring.hbonds.HBondSet() core.scoring.hbonds.fill_hbond_set( pose , False , pose_hbonds ) # 7. create a dictionary with the pose residue numbers as keys and the # residue hydrogen bonding information as values # hydrogen bonding information is stored as test in the form: # (donor residue) (donor atom) => (acceptor residue) (accecptor atom) |score hbond_dictionary = {} for residue in range(1, pose.total_residue() + 1): hbond_text = '' for hbond in range(1, pose_hbonds.nhbonds() + 1): hbond = pose_hbonds.hbond(hbond) acceptor_residue = hbond.acc_res() donor_residue = hbond.don_res() if residue == acceptor_residue or residue == donor_residue: hbond_text += str(donor_residue).ljust(4) + ' ' + \ str(pose.residue(donor_residue).atom_name(\ hbond.don_hatm() )).strip().ljust(4) + \ ' => ' + str(acceptor_residue).ljust(4) + ' ' + \ str(pose.residue(acceptor_residue).atom_name(\ hbond.acc_atm() )).strip().ljust(4) + \ ' |score: ' + str(hbond.energy()) + '\n' hbond_dictionary[residue] = hbond_text # 8. approximate the radius of gyration # there is an rg ScoreType in PyRosetta for performing this computation so # a ScoreFunction can be made as an Rg calculator, likewise you can # bias a structure towards more or less compact structures using this # NOTE: this is NOT the true radius of gyration for a protein, it uses # the Residue.nbr_atom coordinates to save time, this nbr_atom is the # Residue atom closest to the Residue's center of geometry RadG = ScoreFunction() RadG.set_weight(core.scoring.rg , 1) pose_radg = RadG(pose) # 9. output the pose information # the information is not expressed sequentially as it is produced because # several PyRosetta objects and methods output intermediate information # to screen, this would produce and unattractive output print( '='*80 ) print( 'Loaded from' , pose.pdb_info().name() ) print( pose.total_residue() , 'residues' ) print( 'Radius of Gyration ~' , pose_radg ) print( 'Total Rosetta Score:' , pose_score ) scorefxn.show(pose) # this object is contained in PyRosetta v2.0 and above pymover.apply(pose) pymover.send_energy(pose) # 10. output information on the requested residues for i in display_residues: print( '='*80 ) print( 'Pose numbered Residue' , i ) print( 'Total Residue Score:' , residue_energies[i-1] ) print( 'Score Breakdown:\n' + '-'*45 ) # loop over the weights, extract the scores from the matrix for w in range(len(weights)): print( '\t' + core.scoring.name_from_score_type(weights[w]).ljust(20) + ':\t' ,\ residue_weighted_energies_matrix[w][i-1] ) print( '-'*45 ) # print the hydrogen bond information print( 'Hydrogen bonds involving Residue ' + str(i) + ':' ) print( hbond_dictionary[i][:-1] ) print( '='*80 )
hset = ras.get_hbonds() hset.show(ras) hset.show(ras, 24) pose = pose_from_file("../test/data/workshops/1YY9.clean.pdb") rsd1_num = pose.pdb_info().pdb2pose('D', 102) rsd2_num = pose.pdb_info().pdb2pose('A', 408) print(rsd1_num) print(rsd2_num) rsd1 = pose.residue(rsd1_num) rsd2 = pose.residue(rsd2_num) emap = EMapVector() scorefxn.eval_ci_2b(rsd1, rsd2, pose, emap) print(emap[fa_atr]) print(emap[fa_rep]) print(emap[fa_sol]) pymol = PyMOLMover() ras.pdb_info().name("ras") pymol.send_energy(ras) pymol.send_energy(ras, "fa_atr") pymol.send_energy(ras, "fa_sol") pymol.update_energy(True) pymol.energy_type(fa_atr) pymol.apply(ras) # no longer supported: pymol.label_energy(ras, "fa_rep") # no longer supported: pymol.send_hbonds(ras)