def create_instrument(test_data_file, calibrated, pixel_number): """ Create instruments: PyRS and Mantid :param calibrated: :param pixel_number: :return: """ # instrument instrument = calibration_file_io.import_instrument_setup( xray_2k_instrument_file) # 2theta two_theta = 35. arm_length_shift = 0. center_shift_x = 0. center_shift_y = 0. rot_x_flip = 0. rot_y_flip = 0. rot_z_spin = 0. if False: center_shift_x = 1.0 * (random.random() - 0.5) * 2.0 center_shift_y = 1.0 * (random.random() - 0.5) * 2.0 arm_length_shift = (random.random() - 0.5) * 2.0 # 0.416 + (random.random() - 0.5) * 2.0 # calibration rot_x_flip = 2.0 * (random.random() - 0.5) * 2.0 rot_y_flip = 2.0 * (random.random() - 0.5) * 2.0 rot_z_spin = 2.0 * (random.random() - 0.5) * 2.0 # END-IF: arbitrary calibration test_calibration = AnglerCameraDetectorShift() test_calibration.center_shift_x = center_shift_x test_calibration.center_shift_y = center_shift_y test_calibration.center_shift_z = arm_length_shift test_calibration.rotation_x = rot_x_flip test_calibration.rotation_y = rot_y_flip test_calibration.rotation_z = rot_z_spin # reduction engine engine = reduction_manager.HB2BReductionManager() test_data_id, two_the_tmp = engine.load_data(data_file_name=test_data_file, target_dimension=pixel_number, load_to_workspace=True) # load instrument pyrs_reducer = reduce_hb2b_pyrs.PyHB2BReduction(instrument) pyrs_reducer.build_instrument(two_theta, arm_length_shift, center_shift_x, center_shift_y, rot_x_flip, rot_y_flip, rot_z_spin) mantid_reducer = None # mantid_reducer = reduce_hb2b_mtd.MantidHB2BReduction() # data_ws_name = engine.get_raw_data(test_data_id, is_workspace=True) # mantid_reducer.set_workspace(data_ws_name) # mantid_reducer.load_instrument(two_theta, xray_idf_name, test_calibration) return engine, pyrs_reducer, mantid_reducer
def peaks_alignment_score(x, engine, hb2b_setup, two_theta, roi_vec_set, plot=False): """ Cost function for peaks alignment :param x: :param engine: :param hb2b_setup: :param two_theta: :param roi_vec_set: list/array of ROI/mask vector :param plot: :return: """ peak_centers = '17.5,24.5,30.25,35.2,39.4,43.2,53.5' fit_windows = '16,19,23,26,29,32,33,37,38,41,42,44.5,51.5,55' # check assert isinstance(roi_vec_set, list), 'must be list' if len(roi_vec_set) < 2: raise RuntimeError('User must specify more than 1 ROI/MASK vector') else: num_reduced_set = len(roi_vec_set) # convert the input X array (to be refined) to geometry calibration values geom_calibration = AnglerCameraDetectorShift() geom_calibration.center_shift_x = x[0] geom_calibration.center_shift_y = x[1] geom_calibration.center_shift_z = x[2] geom_calibration.rotation_x = x[3] geom_calibration.rotation_y = x[4] geom_calibration.rotation_z = x[5] # reduce data reduced_data_set = [None] * num_reduced_set for i_roi in range(num_reduced_set): ws_name_i = 'reduced_data_{:02}'.format(i_roi) out_peak_pos_ws = 'peaks_positions_{:02}'.format(i_roi) fitted_ws = 'fitted_peaks_{:02}'.format(i_roi) # reduce reduced_i = convert_to_2theta(engine, two_theta, hb2b_setup, roi_vec_set[i_roi], geom_calibration, ws_name_i) # fit peaks FitPeaks(InputWorkspace=ws_name_i, OutputWorkspace=out_peak_pos_ws, StartWorkspaceIndex=0, StopWorkspaceIndex=0, PeakCenters=peak_centers, FitWindowBoundaryList=fit_windows, FittedPeaksWorkspace=fitted_ws, OutputPeakParametersWorkspace='hb2b_rotate_p30deg_reduced_FITS', # FIXME - need to give a good name too OutputParameterFitErrorsWorkspace='hb2b_rotate_p30deg_reduced_Errors') reduced_data_set[i_roi] = reduced_i, ws_name_i, out_peak_pos_ws, fitted_ws # END-FOR # calculate the quality of peak alignment for each pair of ROI residual = None for roi_i, roi_j in list(itertools.combinations(range(num_reduced_set), 2)): # get data r_t_i = reduced_data_set[roi_i] r_t_j = reduced_data_set[roi_j] # calculate residual/cost num_peaks = len(mtd[r_t_i[2]].readY(0)) residual_sq = np.zeros(shape=(num_peaks,), dtype='float') for p_index in range(num_peaks): pos_pos_i = mtd[r_t_i[2]].readY(0)[p_index] neg_pos_i = mtd[r_t_j[2]].readY(0)[p_index] if pos_pos_i < 0. and neg_pos_i < 0.: # both failed to fit residual_sq[p_index] = 20 ** 2 elif pos_pos_i * neg_pos_i < 0.: # 1 failed to fit residual_sq[p_index] = 10 ** 2 else: residual_sq[p_index] = (pos_pos_i - neg_pos_i) ** 2 # END-FOR residual_ij = np.sqrt(residual_sq) if residual is None: residual = residual_ij else: residual = np.concatenate([residual, residual_ij]) # END-IF-ELSE c_n_2 = math.factorial(num_reduced_set) / (math.factorial(2) * math.factorial(num_reduced_set - 2)) norm_cost = residual.sum() / c_n_2 # plot num_rows = 1 + num_reduced_set / 2 + num_reduced_set % 2 ax1 = plt.subplot(num_rows, 1, num_rows) ax1.margins(0.05) # Default margin is 0.05, value 0 means fit colors = ['black', 'red', 'blue', 'green', 'yellow'] for roi_i in range(num_reduced_set): r_t_i = reduced_data_set[roi_i] ax1.plot(r_t_i[0][0], r_t_i[0][1], color=colors[roi_i % 5]) ax1.set_title('Normalized Cost = {}'.format(norm_cost)) for roi_i in range(num_reduced_set): index_i = roi_i + 1 print('subplot: {}, {}, {}'.format(num_rows, 2, index_i)) ax2 = plt.subplot(num_rows, 2, index_i) ax2.plot(reduced_data_set[roi_i][0][0], reduced_data_set[roi_i][0][1], color='black') ax2.plot(mtd[reduced_data_set[roi_i][3]].readX(0), mtd[reduced_data_set[roi_i][3]].readY(0), color='red') ax2.set_title('{}'.format(roi_i)) if plot: plt.show() else: plt.savefig('Round{:010}.png'.format(GlobalParameter.global_curr_sequence)) GlobalParameter.global_curr_sequence += 1 # print ('Parameters: {}'.format(x)) # print ('Fitted Peaks +: {}'.format(mtd[P30_Fit].readY(0))) # print ('Fitted Peaks -: {}'.format(mtd[N30_Fit].readY(0))) print('Residual = {}'.format(norm_cost)) return residual
def create_instrument_load_data(instrument, calibrated, pixel_number): """ Create instruments: PyRS and Mantid and load data :param instrument: name of instrument :param calibrated: :param pixel_number: :return: """ # instrument if instrument == 'XRay-XRayMock': hydra_idf = xray_2k_instrument_file mantid_idf = xray_idf_name two_theta = xray_2theta test_data_file = test_xray_data elif instrument == 'HBZ': hydra_idf = hbz_instrument_file mantid_idf = hbz_idf two_theta = hbz_2theta test_data_file = test_hbz_data print('Loaded {} and {} to compare @ 2theta = {} degree' ''.format(hydra_idf, mantid_idf, two_theta)) else: raise RuntimeError('Instrument {} does not have test data and IDF'.format(instrument)) print('----------- IDF in Test: {} vs {} ---------------'.format(hydra_idf, mantid_idf)) instrument = calibration_file_io.import_instrument_setup(hydra_idf) # instrument geometry calibration if calibrated: # Note: README/TODO-ING: ONLY shift Y center_shift_x = int(1000. * (random.random() - 0.5) * 2.0) / 1000. center_shift_y = int(1000. * (random.random() - 0.5) * 2.0) / 1000. arm_length_shift = int(1000. * (random.random() - 0.5) * 2.0) / 1000. # 0.416 + (random.random() - 0.5) * 2.0 # calibration FIXME - Disable rotation calibration to find out the source of difference: 10-17 vs 10-7 rot_x_flip = int(1000. * 2.0 * (random.random() - 0.5) * 5.0) / 1000. rot_y_flip = int(1000. * 2.0 * (random.random() - 0.5) * 5.0) / 1000. rot_z_spin = int(1000. * 2.0 * (random.random() - 0.5) * 5.0) / 1000. print('[(Random) Calibration Setup]\n Shift Linear (X, Y, Z) = {}, {}, {}\n Shift Rotation ' '(X, Y, Z) = {}, {}, {}' ''.format(center_shift_x, center_shift_y, arm_length_shift, rot_x_flip, rot_y_flip, rot_z_spin)) else: arm_length_shift = center_shift_x = center_shift_y = 0. rot_x_flip = rot_y_flip = rot_z_spin = 0. # END-IF: arbitrary calibration test_calibration = AnglerCameraDetectorShift() test_calibration.center_shift_x = center_shift_x test_calibration.center_shift_y = center_shift_y test_calibration.center_shift_z = arm_length_shift test_calibration.rotation_x = rot_x_flip test_calibration.rotation_y = rot_y_flip test_calibration.rotation_z = rot_z_spin # reduction engine engine = reduction_manager.HB2BReductionManager() test_data_id, two_theta_tmp = engine.load_data(data_file_name=test_data_file, target_dimension=pixel_number, load_to_workspace=True) # load instrument pyrs_reducer = reduce_hb2b_pyrs.PyHB2BReduction(instrument) pyrs_reducer.build_instrument(two_theta, arm_length_shift, center_shift_x, center_shift_y, rot_x_flip, rot_y_flip, rot_z_spin) mantid_reducer = reduce_hb2b_mtd.MantidHB2BReduction() data_ws_name = engine.get_raw_data(test_data_id, is_workspace=True) mantid_reducer.set_workspace(data_ws_name) mantid_reducer.build_instrument(two_theta, mantid_idf, test_calibration) return engine, pyrs_reducer, mantid_reducer
def MinDifference(x, engine, hb2b_setup, positive_roi_vec, negative_roi_vec): """ Cost function to align the peaks! :param x: :return: """ def convert_to_2theta(two_theta, instrument_setup, roi_vec, geometry_shift, ws_name): # load instrument: as it changes pyrs_reducer = reduce_hb2b_pyrs.PyHB2BReduction( instrument_setup, 1.239) pyrs_reducer.build_instrument(two_theta, geometry_shift.center_shift_z, geometry_shift.center_shift_x, geometry_shift.center_shift_y, geometry_shift.rotation_x, geometry_shift.rotation_y, geometry_shift.rotation_z) # reduce data min_2theta = 8. max_2theta = 64. num_bins = 1800 # reduce PyRS (pure python) curr_id = engine.current_data_id vec_2theta, vec_hist = pyrs_reducer.reduce_to_2theta_histogram( counts_array=engine.get_counts(curr_id), mask=roi_vec, x_range=(min_2theta, max_2theta), num_bins=num_bins, is_point_data=True, use_mantid_histogram=False) CreateWorkspace(DataX=vec_2theta, DataY=vec_hist, DataE=np.sqrt(vec_hist), NSpec=1, OutputWorkspace=ws_name) return vec_2theta, vec_hist if False: WS_p30deg_Rot = test_rotate_2theta(idf_name, WS_p30deg, 'hb2b_rotate_p30deg_Rot', DetDistance=0.0, DetTTH=35.0, DetTTH_Shift=0.0, Beam_Center_X=-0.002, Beam_Center_Y=-0.007, DetFlit=x[0], DetSpin=0.0) WS_n30deg_Rot = test_rotate_2theta(idf_name, WS_n30deg, 'hb2b_rotate_n30deg_Rot', DetDistance=0.0, DetTTH=35.0, DetTTH_Shift=0.0, Beam_Center_X=-0.002, Beam_Center_Y=-0.007, DetFlit=x[0], DetSpin=0.0) convert_to_2theta(WS_p30deg_Rot, vanadium_P30) convert_to_2theta(WS_n30deg_Rot, vanadium_N30) else: # TODO - TONIGHT 0 - From here! geom_calibration = AnglerCameraDetectorShift() geom_calibration.center_shift_x = x[0] geom_calibration.center_shift_y = x[1] geom_calibration.center_shift_z = x[2] geom_calibration.rotation_x = x[3] geom_calibration.rotation_y = x[4] geom_calibration.rotation_z = x[5] positive_roi = convert_to_2theta(two_theta, hb2b_setup, positive_roi_vec, geom_calibration, 'positive_roi_ws') negative_roi = convert_to_2theta(two_theta, hb2b_setup, negative_roi_vec, geom_calibration, 'negative_roi_ws') # plt.plot(positive_roi[0], positive_roi[1], color='red') # plt.plot(negative_roi[0], negative_roi[1], color='green') # plt.show() N30_Fit = 'Fit_N30' P30_Fit = 'Fit_P30' FitPeaks( InputWorkspace='positive_roi_ws', OutputWorkspace=N30_Fit, StartWorkspaceIndex=0, StopWorkspaceIndex=0, PeakCenters='17.5,24.5,30.25,35.2,39.4,43.2,53.5', FitWindowBoundaryList='16,19,23,26,29,32,33,37,38,41,42,44.5,51.5,55', FittedPeaksWorkspace='hb2b_rotate_n30deg_reduced_Output', OutputPeakParametersWorkspace='hb2b_rotate_n30deg_reduced_FITS', OutputParameterFitErrorsWorkspace='hb2b_rotate_n30deg_reduced_Errors') FitPeaks( InputWorkspace='negative_roi_ws', OutputWorkspace=P30_Fit, StartWorkspaceIndex=0, StopWorkspaceIndex=0, PeakCenters='17.5,24.5,30.25,35.2,39.4,43.2,53.5', FitWindowBoundaryList='16,19,23,26,29,32,33,37,38,41,42,44.5,51.5,55', FittedPeaksWorkspace='hb2b_rotate_p30deg_reduced_Output', OutputPeakParametersWorkspace='hb2b_rotate_p30deg_reduced_FITS', OutputParameterFitErrorsWorkspace='hb2b_rotate_p23deg_reduced_Errors') Error3 = (mtd[N30_Fit].extractY()[0] - mtd[P30_Fit].extractY()[0]) print('Parameters: {}'.format(x)) print('Fitted Peaks +: {}'.format(mtd[P30_Fit].readY(0))) print('Fitted Peaks -: {}'.format(mtd[N30_Fit].readY(0))) print('Diff**2 = {}'.format(Error3 * Error3)) return (Error3 * Error3) * 1e8
def peaks_alignment_score(x, engine, hb2b_setup, two_theta, roi_vec_set, plot=False, ScalarReturn=False): """ Cost function for peaks alignment :param x: :param engine: :param hb2b_setup: :param two_theta: :param roi_vec_set: list/array of ROI/mask vector :param plot: :return: """ peak_centers = '17.5,24.5,30.25,35.2,39.4,43.2,53.5' fit_windows = '16,19,23,26,29,32,33,37,38,41,42,44.5,51.5,55' peak_pos = [17.5, 24.5, 30.25, 35.2, 39.4, 43.2, 53.5] peak_pos = [25.5, 30.25, 35.2, 39.4, 43.2, 50.7, 54., 57., 59] # check #assert isinstance(roi_vec_set, list), 'must be list' if len(roi_vec_set) < 2: raise RuntimeError('User must specify more than 1 ROI/MASK vector') else: num_reduced_set = len(roi_vec_set) num_peaks = len(peak_pos) # convert the input X array (to be refined) to geometry calibration values geom_calibration = AnglerCameraDetectorShift() geom_calibration.center_shift_x = x[0] geom_calibration.center_shift_y = x[1] geom_calibration.center_shift_z = x[2] geom_calibration.rotation_x = x[3] geom_calibration.rotation_y = x[4] geom_calibration.rotation_z = x[5] # load instrument: as it changes pyrs_reducer = reduce_hb2b_pyrs.PyHB2BReduction(hb2b_setup, 1.239) pyrs_reducer.build_instrument(two_theta, geom_calibration.center_shift_z, geom_calibration.center_shift_x, geom_calibration.center_shift_y, geom_calibration.rotation_x, geom_calibration.rotation_y, geom_calibration.rotation_z) Eta_val = pyrs_reducer.get_eta_value() # reduce data reduced_data_set = [None] * num_reduced_set if plot: fig, ax = plt.subplots(1, 1, figsize=(10, 10)) for i_roi in range(num_reduced_set): # Define Mask Mask = np.zeros_like(Eta_val) if abs(roi_vec_set[i_roi]) == roi_vec_set[i_roi]: index = np.where((Eta_val < (roi_vec_set[i_roi] + 5)) == ( Eta_val > (roi_vec_set[i_roi] - 5)))[0] else: index = np.where((Eta_val > (roi_vec_set[i_roi] - 5)) == ( Eta_val < (roi_vec_set[i_roi] + 5)))[0] Mask[index] = 1. #x_vec, y_vec = convert_to_2theta(engine, pyrs_reducer, Mask, 18, 63, 1800 ) vec_x, vec_y = convert_to_2theta(engine, pyrs_reducer, Mask, 18, 63, 1800) ax.plot(vec_x.T, vec_y.T, label=roi_vec_set[i_roi]) ax.set_ylabel('Int (cts.)') ax.set_ylabel('2theta (deg.)') handles, labels = ax.get_legend_handles_labels() fig.legend(handles, labels, loc='upper center') plt.show() return for i_roi in range(num_reduced_set): Peaks = [None] * num_peaks # Define Mask Mask = np.zeros_like(Eta_val) if abs(roi_vec_set[i_roi]) == roi_vec_set[i_roi]: index = np.where((Eta_val < (roi_vec_set[i_roi] + 5)) == ( Eta_val > (roi_vec_set[i_roi] - 5)))[0] else: index = np.where((Eta_val > (roi_vec_set[i_roi] - 5)) == ( Eta_val < (roi_vec_set[i_roi] + 5)))[0] Mask[index] = 1. for i_peak in range(num_peaks): # reduce Peaks[i_peak] = convert_to_2theta(engine, pyrs_reducer, Mask, peak_pos[i_peak] - 1, peak_pos[i_peak] + 1, 60)[1] reduced_data_set[i_roi] = Peaks # END-FOR # calculate the quality of peak alignment for each pair of ROI residual = None for i_roi in range(num_reduced_set): for peak_i, peak_j in list(itertools.combinations(range(num_peaks), 2)): # get data #residual_sq = 1. / np.min( np.corrcoef( reduced_data_set[i_roi][peak_i], reduced_data_set[i_roi][peak_j] ) ) temp_p1 = reduced_data_set[i_roi][peak_i] temp_p2 = reduced_data_set[i_roi][peak_j] residual_sq = ( 1. / np.correlate(temp_p1 / np.linalg.norm(temp_p1), temp_p2 / np.linalg.norm(temp_p2))) - 1. # residual_sq = np.correlate( reduced_data_set[i_roi][peak_i], reduced_data_set[i_roi][peak_j] ) if not np.isfinite(residual_sq): residual_sq = np.array([1000.]) if residual is None: residual = residual_sq else: residual = np.concatenate([residual, residual_sq]) # END-IF-ELSE c_n_2 = math.factorial(num_reduced_set) / ( math.factorial(2) * math.factorial(num_reduced_set - 2)) norm_cost = residual.sum() / c_n_2 print('Residual = {}'.format(norm_cost)) if ScalarReturn: return np.sum(residual) else: return residual
def CostFunction(x, engine, hb2b_setup, two_theta, positive_roi_vec, negative_roi_vec, plot=False): """ Cost function to align the peaks! :param x: :return: """ # Reduce geom_calibration = AnglerCameraDetectorShift() geom_calibration.center_shift_x = x[0] geom_calibration.center_shift_y = x[1] geom_calibration.center_shift_z = x[2] geom_calibration.rotation_x = x[3] geom_calibration.rotation_y = x[4] geom_calibration.rotation_z = x[5] positive_roi = convert_to_2theta(engine, two_theta, hb2b_setup, positive_roi_vec, geom_calibration, 'positive_roi_ws') negative_roi = convert_to_2theta(engine, two_theta, hb2b_setup, negative_roi_vec, geom_calibration, 'negative_roi_ws') # Fit peaks N30_Fit = 'Fit_N30' P30_Fit = 'Fit_P30' p30_fitted = 'hb2b_rotate_p30deg_reduced_Output' n30_fitted = 'hb2b_rotate_n30deg_reduced_Output' FitPeaks( InputWorkspace='positive_roi_ws', OutputWorkspace=P30_Fit, StartWorkspaceIndex=0, StopWorkspaceIndex=0, PeakCenters='17.5,24.5,30.25,35.2,39.4,43.2,53.5', FitWindowBoundaryList='16,19,23,26,29,32,33,37,38,41,42,44.5,51.5,55', FittedPeaksWorkspace=p30_fitted, OutputPeakParametersWorkspace='hb2b_rotate_p30deg_reduced_FITS', OutputParameterFitErrorsWorkspace='hb2b_rotate_p30deg_reduced_Errors') FitPeaks( InputWorkspace='negative_roi_ws', OutputWorkspace=N30_Fit, StartWorkspaceIndex=0, StopWorkspaceIndex=0, PeakCenters='17.5,24.5,30.25,35.2,39.4,43.2,53.5', FitWindowBoundaryList='16,19,23,26,29,32,33,37,38,41,42,44.5,51.5,55', FittedPeaksWorkspace=n30_fitted, OutputPeakParametersWorkspace='hb2b_rotate_n30deg_reduced_FITS', OutputParameterFitErrorsWorkspace='hb2b_rotate_n30deg_reduced_Errors') assert len(mtd[P30_Fit].readY(0)) == len( mtd[N30_Fit].readY(0)), 'Number of peaks fitted must be equal' # calculate residual/cost num_peaks = len(mtd[N30_Fit].readY(0)) residual_sq = np.zeros(shape=(num_peaks, ), dtype='float') for p_index in range(len(mtd[P30_Fit].readY(0))): pos_pos_i = mtd[P30_Fit].readY(0)[p_index] neg_pos_i = mtd[N30_Fit].readY(0)[p_index] if pos_pos_i < 0. and neg_pos_i < 0.: # both failed to fit residual_sq[p_index] = 20**2 elif pos_pos_i * neg_pos_i < 0.: # 1 failed to fit residual_sq[p_index] = 10**2 else: residual_sq[p_index] = (pos_pos_i - neg_pos_i)**2 # END-FOR residual = np.sqrt(residual_sq) # plot ax1 = plt.subplot(212) ax1.margins(0.05) # Default margin is 0.05, value 0 means fit ax1.plot(r[0], positive_roi[1], color='red') ax1.plot(negative_roi[0], negative_roi[1], color='green') ax1.set_title('Cost = {}'.format(residual)) ax2 = plt.subplot(221) # ax2.margins(2, 2) # Values >0.0 zoom out ax2.plot(positive_roi[0], positive_roi[1], color='black') ax2.plot(mtd[p30_fitted].readX(0), mtd[p30_fitted].readY(0), color='red') ax2.set_title('Positive') ax3 = plt.subplot(222) # ax3.margins(x=0, y=-0.25) # Values in (-0.5, 0.0) zooms in to center ax3.plot(negative_roi[0], negative_roi[1], color='black') ax3.plot(mtd[n30_fitted].readX(0), mtd[n30_fitted].readY(0), color='red') ax3.set_title('Negative') if plot: plt.show() else: plt.savefig('Round{:010}.png'.format( GlobalParameter.global_curr_sequence)) GlobalParameter.global_curr_sequence += 1 print('Parameters: {}'.format(x)) print('Fitted Peaks +: {}'.format(mtd[P30_Fit].readY(0))) print('Fitted Peaks -: {}'.format(mtd[N30_Fit].readY(0))) print('Residual = {}'.format(residual.sum())) return residual
def do_reduce_data(self): """ reduce data :return: """ try: cal_shift_x = gui_helper.parse_line_edit(self.ui.lineEdit_centerX, float, False, 'Center X', default=0.) cal_shift_y = gui_helper.parse_line_edit(self.ui.lineEdit_centerY, float, False, 'Center Y', default=0.) cal_shift_z = gui_helper.parse_line_edit(self.ui.lineEdit_centerZ, float, False, 'Center Z', default=0.) cal_rot_x = gui_helper.parse_line_edit(self.ui.lineEdit_rotationX, float, False, 'Rotation X', default=0.) cal_rot_y = gui_helper.parse_line_edit(self.ui.lineEdit_rotationY, float, False, 'Rotation Y', default=0.) cal_rot_z = gui_helper.parse_line_edit(self.ui.lineEdit_rotationZ, float, False, 'Rotation Z', default=0.) cal_wave_length = gui_helper.parse_line_edit( self.ui.lineEdit_wavelength, float, False, 'Rotation Z', default=1.) except RuntimeError as run_err: gui_helper.pop_message(self, 'Unable to parse calibration value', str(run_err), 'error') return # get data file try: two_theta = gui_helper.parse_line_edit(self.ui.lineEdit_2theta, float, True, 'Two theta', default=None) except RuntimeError as run_err: gui_helper.pop_message(self, '2-theta error', str(run_err), 'error') return # load instrument # self._core.reduction_engine.set_instrument(instrument) # # self._core.reduction_engine.load_instrument(two_theta, cal_shift_x, cal_shift_y, cal_shift_z, # cal_rot_x, cal_rot_y, cal_rot_z, # cal_wave_length) # reduce masks geom_calibration = AnglerCameraDetectorShift() geom_calibration.center_shift_x = cal_shift_x geom_calibration.center_shift_y = cal_shift_y geom_calibration.center_shift_z = cal_shift_z geom_calibration.rotation_x = cal_rot_x geom_calibration.rotation_y = cal_rot_y geom_calibration.rotation_z = cal_rot_z self._core.reduction_service.set_geometry_calibration(geom_calibration) for mask_id in self._core.reduction_service.get_mask_ids(): # mask_vec = self._core.reduction_engine.get_mask_vector(mask_id) self._core.reduction_service.reduce_to_2theta_histogram( data_id=self._curr_data_id, output_name=None, use_mantid_engine=False, mask=mask_id, two_theta=two_theta) """ data_id, output_name, use_mantid_engine, mask, two_theta, min_2theta=None, max_2theta=None, resolution_2theta=None """ vec_x, vec_y = self._core.reduction_service.get_reduced_data() self.ui.graphicsView_calibration.plot_data( vec_x, vec_y, self._mask_subplot_dict[mask_id]) if cal_wave_length: # TODO - Need to implement how to calibrate wave length raise NotImplementedError('Implement ASAP') return