コード例 #1
0
ファイル: spintW.py プロジェクト: youngpong/pysal
def ODW(Wo, Wd, transform='r'):
    """
    Constructs an o*d by o*d origin-destination style spatial weight for o*d
    flows using standard spatial weights on o origins and d destinations. Input
    spatial weights must be binary or able to be sutiably transformed to binary.

    Parameters
    ----------
    Wo          : W object for origin locations
                  o x o spatial weight object amongst o origins

    Wd          : W object for destination locations
                  d x d spatial weight object amongst d destinations

    transform   : Transformation for standardization of final OD spatial weight; default
                  is 'r' for row standardized
    Returns
    -------
    W           : spatial contiguity W object for assocations between flows
                 o*d x o*d spatial weight object amongst o*d flows between o
                 origins and d destinations
    
    Examples
    --------

    >>> O = pysal.weights.lat2W(2,2)
    >>> D = pysal.weights.lat2W(2,2)
    >>> OD = pysal.weights.spintW.ODW(O,D)
    >>> OD.weights[0]
    [0.25, 0.25, 0.25, 0.25]
    >>> OD.neighbors[0]
    array([ 5,  6,  9, 10], dtype=int32)
    >>> OD.full()[0][0]
    array([ 0.  ,  0.  ,  0.  ,  0.  ,  0.  ,  0.25,  0.25,  0.  ,  0.  ,
            0.25,  0.25,  0.  ,  0.  ,  0.  ,  0.  ,  0.  ])

    """
    if Wo.transform is not 'b':
        try:
            Wo.tranform = 'b'
        except:
            raise AttributeError(
                'Wo is not binary and cannot be transformed to '
                'binary. Wo must be binary or suitably transformed to binary.')
    if Wd.transform is not 'b':
        try:
            Wd.tranform = 'b'
        except:
            raise AttributeError(
                'Wd is not binary and cannot be transformed to '
                'binary. Wd must be binary or suitably transformed to binary.')
    Wo = Wo.sparse
    Wo.eliminate_zeros()
    Wd = Wd.sparse
    Wd.eliminate_zeros()
    Ww = kron(Wo, Wd, format='csr')
    Ww.eliminate_zeros()
    Ww = WSP2W(WSP(Ww))
    Ww.transform = transform
    return Ww
コード例 #2
0
 def _distance_to_W(self, ids=None):
     if self.binary:
         self.dmat[self.dmat > 0] = 1
         self.dmat.eliminate_zeros()
         tempW = WSP2W(WSP(self.dmat), silent_island_warning=self.silent)
         neighbors = tempW.neighbors
         weight_keys = tempW.weights.keys()
         weight_vals = tempW.weights.values()
         weights = dict(zip(weight_keys, map(list, weight_vals)))
         return neighbors, weights
     else:
         weighted = self.dmat.power(self.alpha)
         weighted[weighted == np.inf] = 0
         weighted.eliminate_zeros()
         tempW = WSP2W(WSP(weighted), silent_island_warning=self.silent)
         neighbors = tempW.neighbors
         weight_keys = tempW.weights.keys()
         weight_vals = tempW.weights.values()
         weights = dict(zip(weight_keys, map(list, weight_vals)))
         return neighbors, weights