コード例 #1
0
ファイル: networkw.py プロジェクト: xrzhou/pysal
def w_distance(wed, threshold, cost=None, alpha=-1.0, binary=True, ids=None):
    '''
    Generate a Weights object based on a threshold
     distance using a WED

    Parameters
    ----------
    wed: PySAL Winged Edged Data Structure
    distance: float network threshold distance for neighbor membership
    cost: defaults to length, can be any cost dicationary {(edge): cost}

    Returns
    -------
    ps.W(neighbors): PySAL Weights Dict
    '''

    if cost is None:
        cost = edge_length(wed)
    if ids:
        ids = np.array(ids)
    else:
        ids = np.arange(len(wed.node_list))
    neighbors = {}
    if binary is True:
        for node in wed.node_list:
            near, pred = threshold_distance(wed, cost, node, threshold)
            neighbors[ids[node]] = near
        return ps.W(neighbors, None, ids)
    elif binary is False:
        weights = {}
        for node in wed.node_list:
            wt = []
            near, pred = threshold_distance(wed, cost, node, threshold)
            near.remove(node)
            neighbors[ids[node]] = near
            for end in near:
                path = [end]
                previous = pred[end]
                while previous != node:
                    path.append(previous)
                    end = previous
                    previous = pred[end]
                path.append(node)
                cum_cost = 0
                for p in range(len(path) - 1):
                    cum_cost += cost[(path[p], path[p + 1])]
                wt.append(cum_cost ** alpha)
            weights[ids[node]] = wt
        return ps.W(neighbors, weights, ids)
コード例 #2
0
def poly2Weights(ssdo, contiguityType="ROOK", rowStandard=True):
    """Uses GP Polygon Neighbor Tool to construct contiguity relationships
    and stores them in PySAL Sparse Spatial Weights class.
    
    INPUTS:
    ssdo (class): instance of SSDataObject [1]
    contiguityType {str, ROOK}: ROOK or QUEEN contiguity
    rowStandard {bool, True}: whether to row standardize the spatial weights
    
    NOTES:
    (1) Data must already be obtained using ssdo.obtainData() or ssdo.obtainDataGA ()
    """

    neighbors = {}
    weights = {}
    polyNeighDict = WU.polygonNeighborDict(ssdo.inputFC,
                                           ssdo.masterField,
                                           contiguityType=contiguityType)

    for masterID, neighIDs in UTILS.iteritems(polyNeighDict):
        orderID = ssdo.master2Order[masterID]
        neighbors[orderID] = [ssdo.master2Order[i] for i in neighIDs]

    w = PYSAL.W(neighbors)
    if rowStandard:
        w.transform = 'R'
    return w
コード例 #3
0
ファイル: networkw.py プロジェクト: xrzhou/pysal
def w_links(wed):
    """
    Generate Weights object for links in a WED

    Parameters
    ----------
    wed: PySAL Winged Edged Data Structure

    Returns

    ps.W(neighbors): PySAL Weights Dict
    """
    nodes = wed.node_edge.keys()
    neighbors = {}
    for node in nodes:
        lnks = wed.enum_links_node(node)
        # put i,j s.t. i < j
        lnks = [tuple(sorted(lnk)) for lnk in lnks]
        for comb in combinations(range(len(lnks)), 2):
            l, r = comb
            if lnks[l] not in neighbors:
                neighbors[lnks[l]] = []
            neighbors[lnks[l]].append(lnks[r])
            if lnks[r] not in neighbors:
                neighbors[lnks[r]] = []
            neighbors[lnks[r]].append(lnks[l])
    return ps.W(neighbors)
コード例 #4
0
 def setUp(self):
     self.neighbors = {'c': ['b'], 'b': ['c', 'a'], 'a': ['b']}
     self.weights = {'c': [1.0], 'b': [1.0, 1.0], 'a': [1.0]}
     self.id_order = ['a', 'b', 'c']
     self.weights = {'c': [1.0], 'b': [1.0, 1.0], 'a': [1.0]}
     self.w = pysal.W(self.neighbors, self.weights, self.id_order)
     self.y = np.array([0, 1, 2])
コード例 #5
0
ファイル: util.py プロジェクト: sukri12/pysal
def WSP2W(wsp):
    """
    Convert a pysal WSP object (thin weights matrix) to a pysal W object.

    Parameters
    ----------
    wsp     : WSP
              PySAL sparse weights object

    Returns
    -------
    w       : W
              PySAL weights object

    Examples
    --------
    >>> import pysal

    Build a 10x10 scipy.sparse matrix for a rectangular 2x5 region of cells
    (rook contiguity), then construct a PySAL sparse weights object (wsp).

    >>> sp = pysal.weights.lat2SW(2, 5)
    >>> wsp = pysal.weights.WSP(sp)
    >>> wsp.n
    10
    >>> print wsp.sparse[0].todense()
    [[0 1 0 0 0 1 0 0 0 0]]

    Convert this sparse weights object to a standard PySAL weights object.

    >>> w = pysal.weights.WSP2W(wsp)
    >>> w.n
    10
    >>> print w.full()[0][0]
    [ 0.  1.  0.  0.  0.  1.  0.  0.  0.  0.]

    """
    wsp.sparse
    indices = wsp.sparse.indices
    data = wsp.sparse.data
    indptr = wsp.sparse.indptr
    id_order = wsp.id_order
    if id_order:
        # replace indices with user IDs
        indices = [id_order[i] for i in indices]
    else:
        id_order = range(wsp.n)
    neighbors, weights = {}, {}
    start = indptr[0]
    for i in xrange(wsp.n):
        oid = id_order[i]
        end = indptr[i + 1]
        neighbors[oid] = indices[start:end]
        weights[oid] = data[start:end]
        start = end
    ids = copy.copy(wsp.id_order)
    w = pysal.W(neighbors, weights, ids)
    w._sparse = copy.deepcopy(wsp.sparse)
    w._cache['sparse'] = w._sparse
    return w
コード例 #6
0
ファイル: networkw.py プロジェクト: xrzhou/pysal
def w_knn(wed, n, cost=None, ids=None):
    '''
    Generate w Weights object based on the k-nearest
     network neighbors.

    Parameters
    ----------
    wed: PySAL Winged Edged Data Structure
    n: integer number of neighbors for each node
    cost: defaults to length, can be any cost dictionary

    Returns
    -------
    ps.W(neighbors): PySAL Weights Dict
    '''

    if cost is None:
        cost = edge_length(wed)
    if ids:
        ids = np.array(ids)
    else:
        ids = np.arange(len(wed.node_list))
    neighbors = {}
    for node in wed.node_list:
        neighbors[node] = knn_distance(wed, cost, node, n=n)
    return ps.W(neighbors, id_order=ids)
コード例 #7
0
ファイル: Wsets.py プロジェクト: youngpong/pysal
def w_union(w1, w2, silent_island_warning=False):
    """
    Returns a binary weights object, w, that includes all neighbor pairs that
    exist in either w1 or w2.

    Parameters
    ----------

    w1                      : W 
                              object
    w2                      : W 
                              object
    silent_island_warning   : boolean
                              Switch to turn off (default on) print statements
                              for every observation with islands

    Returns
    -------

    w       : W 
              object

    Notes
    -----
    ID comparisons are performed using ==, therefore the integer ID 2 is
    equivalent to the float ID 2.0. Returns a matrix with all the unique IDs
    from w1 and w2.

    Examples
    --------

    Construct rook weights matrices for two regions, one is 4x4 (16 areas)
    and the other is 6x4 (24 areas). A union of these two weights matrices
    results in the new weights matrix matching the larger one.

    >>> import pysal
    >>> w1 = pysal.lat2W(4,4)
    >>> w2 = pysal.lat2W(6,4)
    >>> w = pysal.weights.w_union(w1, w2)
    >>> w1[0] == w[0]
    True
    >>> w1.neighbors[15]
    [11, 14]
    >>> w2.neighbors[15]
    [11, 14, 19]
    >>> w.neighbors[15]
    [19, 11, 14]
    >>>

    """
    neighbors = dict(w1.neighbors.items())
    for i in w2.neighbors:
        if i in neighbors:
            add_neigh = set(neighbors[i]).union(set(w2.neighbors[i]))
            neighbors[i] = list(add_neigh)
        else:
            neighbors[i] = copy.copy(w2.neighbors[i])
    return pysal.W(neighbors, silent_island_warning=silent_island_warning)
コード例 #8
0
ファイル: Wsets.py プロジェクト: youngpong/pysal
def w_subset(w1, ids, silent_island_warning=False):
    """
    Returns a binary weights object, w, that includes only those
    observations in ids.

    Parameters
    ----------

    w1                      : W 
                              object
    ids                     : list
                              A list containing the IDs to be include in the returned weights
                              object.
    silent_island_warning   : boolean
                              Switch to turn off (default on) print statements
                              for every observation with islands

    Returns
    -------

    w       : W 
              object

    Examples
    --------

    Construct a rook weights matrix for a 6x4 region (24 areas). By default
    PySAL assigns integer IDs to the areas in a region. By passing in a list
    of integers from 0 to 15, the first 16 areas are extracted from the
    previous weights matrix, and only those joins relevant to the new region
    are retained.

    >>> import pysal
    >>> w1 = pysal.lat2W(6,4)
    >>> ids = range(16)
    >>> w = pysal.weights.w_subset(w1, ids)
    >>> w1[0] == w[0]
    True
    >>> w1.neighbors[15]
    [11, 14, 19]
    >>> w.neighbors[15]
    [11, 14]
    >>>

    """

    neighbors = {}
    ids_set = set(list(ids))
    for i in ids:
        if i in w1.neighbors:
            neigh_add = ids_set.intersection(set(w1.neighbors[i]))
            neighbors[i] = list(neigh_add)
        else:
            neighbors[i] = []

    return pysal.W(neighbors,
                   id_order=list(ids),
                   silent_island_warning=silent_island_warning)
コード例 #9
0
 def test_islands(self):
     w = pysal.W(neighbors={
         'a': ['b'],
         'b': ['a', 'c'],
         'c': ['b'],
         'd': []
     })
     self.assertEqual(w.islands, ['d'])
     self.assertEqual(self.w3x3.islands, [])
コード例 #10
0
 def test_max_neighbors(self):
     w = pysal.W(neighbors={
         'a': ['b'],
         'b': ['a', 'c'],
         'c': ['b'],
         'd': []
     })
     self.assertEqual(w.max_neighbors, 2)
     self.assertEqual(self.w3x3.max_neighbors, 4)
コード例 #11
0
def generateWeightsUsingShapefile(shapeFilePath,
                                  idVariable=None,
                                  weights=None,
                                  kind="queen",
                                  k=None,
                                  binary=False):
    # use weights from shapefile for purely geographic
    w = None
    if weights == None:
        if kind == "queen":
            w = pysal.queen_from_shapefile(shapeFilePath,
                                           idVariable=idVariable)
        if kind == "rook":
            w = pysal.rook_from_shapefile(shapeFilePath, idVariable=idVariable)
        if kind == "knn" and type(k) == int:
            w = pysal.knnW_from_shapefile(shapefile=shapeFilePath,
                                          k=k,
                                          idVariable=idVariable)
        if kind == "band":
            threshold = pysal.min_threshold_dist_from_shapefile(
                shapeFilePath, idVariable=idVariable)
            if binary == True:
                w = pysal.weights.DistanceBand.from_shapefile(
                    shapeFilePath,
                    threshold=threshold,
                    binary=True,
                    idVariable=idVariable)
            else:
                w = pysal.threshold_continuousW_from_shapefile(
                    shapefile=shapeFilePath,
                    threshold=threshold,
                    idVariable=idVariable)
        if kind == "kernel":
            w = pysal.adaptive_kernelW_from_shapefile(shapeFilePath,
                                                      diagonal=True,
                                                      k=5,
                                                      idVariable=idVariable)

    # else use user defined weights to create "space" instead of "place"
    else:
        if kind == "rook":
            w = pysal.rook_from_shapefile(shapeFilePath, idVariable=idVariable)
        if kind == "knn":
            w = pysal.knnW_from_shapefile(shapeFilePath,
                                          k=k,
                                          idVariable=idVariable)
        else:
            w = pysal.queen_from_shapefile(shapeFilePath,
                                           idVariable=idVariable)
        neighbors = w.neighbor_offsets
        w = pysal.W(neighbors, weights=weights)

    # row standardize the matrix. better to do it here and use it somewhere else.
    w.transform = 'r'
    if binary == True:
        w.transform = 'b'
    return w
コード例 #12
0
ファイル: test_util.py プロジェクト: sukri12/pysal
 def test_full(self):
     neighbors = {'first': ['second'], 'second': ['first',
                                                  'third'], 'third': ['second']}
     weights = {'first': [1], 'second': [1, 1], 'third': [1]}
     w = pysal.W(neighbors, weights)
     wf, ids = pysal.full(w)
     wfo = np.array([[0., 1., 0.], [1., 0., 1.], [0., 1., 0.]])
     np.testing.assert_array_almost_equal(wfo, wf, decimal=8)
     idso = ['first', 'second', 'third']
     self.assertEquals(idso, ids)
コード例 #13
0
def generateWeightsFromScratch(neighbors, weights=None):
    w = None
    if weights == None:
        w = pysal.w(neighbors)
    else:
        w = pysal.W(neighbors, weights=weights)

    # row standardize the matrix. better to do it here and use it somewhere else.
    w.transform = 'r'
    return w
コード例 #14
0
def higher_order_sp(wsp, k=2):
    """
    Contiguity weights for a sparse W for order k

    Arguments
    =========

    wsp:  WSP instance

    k: Order of contiguity

    Return
    ------

    wk: WSP instance
        binary sparse contiguity of order k

    Notes
    -----
    Lower order contiguities are removed.

    Examples
    -------

    >>> import pysal
    >>> w25 = pysal.lat2W(5,5)
    >>> w25.n
    25
    >>> ws25 = w25.sparse
    >>> ws25o3 = pysal.weights.higher_order_sp(ws25,3)
    >>> w25o3 = pysal.weights.higher_order(w25,3)
    >>> w25o3[12]
    {1: 1.0, 3: 1.0, 5: 1.0, 9: 1.0, 15: 1.0, 19: 1.0, 21: 1.0, 23: 1.0}
    >>> pysal.weights.WSP2W(ws25o3)[12]
    {1: 1.0, 3: 1.0, 5: 1.0, 9: 1.0, 15: 1.0, 19: 1.0, 21: 1.0, 23: 1.0}
    >>>     
    """


    wk = wsp**k
    rk,ck = wk.nonzero()
    sk = set(zip(rk,ck))
    for j in range(1,k):
        wj = wsp**j
        rj,cj = wj.nonzero()
        sj = set(zip(rj,cj))
        sk.difference_update(sj)
    d= {}
    for pair in sk:
        k,v = pair
        if d.has_key(k):
            d[k].append(v)
        else:
            d[k] = [v]
    return pysal.weights.WSP(pysal.W(neighbors=d).sparse)
コード例 #15
0
def gpd_contiguity(gpdf):
    """
    Contiguity weights
    https://github.com/pysal/pysal/blob/master/pysal/weights/_contW_binning.py
    """
    polygons = gpd_polygons(gpdf)
    neighbors = pysal.weights.\
        Contiguity.ContiguityWeightsPolygons(polygons).w
    # neighbors = pysal.weights.\
    # Contiguity.ContiguityWeightsPolygons(polygons, 2).w    # for rook
    return pysal.W(neighbors)
コード例 #16
0
ファイル: test_spatial_lag.py プロジェクト: youngpong/pysal
 def setUp(self):
     self.neighbors = {'c': ['b'], 'b': ['c', 'a'], 'a': ['b']}
     self.weights = {'c': [1.0], 'b': [1.0, 1.0], 'a': [1.0]}
     self.id_order = ['a', 'b', 'c']
     self.weights = {'c': [1.0], 'b': [1.0, 1.0], 'a': [1.0]}
     self.w = pysal.W(self.neighbors, self.weights, self.id_order)
     self.y = np.array([0, 1, 2])
     self.wlat = pysal.lat2W(3, 3)
     self.ycat = ['a', 'b', 'a', 'b', 'c', 'b', 'c', 'b', 'c']
     self.ycat2 = ['a', 'c', 'c', 'd', 'b', 'a', 'd', 'd', 'c']
     self.ym = np.vstack((self.ycat, self.ycat2)).T
     self.random_seed = 503
コード例 #17
0
def layerToW(layer, wType='ROOK'):

    polys = []
    ids = []
    v2p = defaultdict(set)
    iterator = layer.getFeatures()
    if wType == 'QUEEN':
        i = 0
        for feat in iterator:
            geom = feat.geometry()
            if geom.wkbType() == 6:  #multipolygon
                polys = geom.asMultiPolygon()
            else:
                polys = [geom.asPolygon()]  # polygon

            for poly in polys:
                for ring in poly:
                    for v in ring:
                        v2p[v].add(i)

            i += 1
    else:  #Rook
        e2p = defaultdict(set)

        i = 0
        for feat in iterator:
            geom = feat.geometry()
            if geom.wkbType() == 6:  #multipolygon
                polys = geom.asMultiPolygon()
            else:
                polys = [geom.asPolygon()]  #polygon

            for poly in polys:
                for ring in poly:
                    nv = len(ring)
                    for o, d in zip(ring[:-1], ring[1:]):
                        key = tuple(sorted([o, d], key=lambda e: (e[0], e[1])))
                        e2p[key].add(i)
                        #e2p[d,o].add(i)
            i += 1
        v2p = e2p

    n = i
    neighbors = defaultdict(set)
    for v in v2p:
        vn = v2p[v]
        if len(vn) > 1:
            for i, j in combinations(vn, 2):
                neighbors[i].add(j)
                neighbors[j].add(i)

    return pysal.W(neighbors)
コード例 #18
0
def get_weight(query_res, w_type='knn', num_ngbrs=5):
    """
        Construct PySAL weight from return value of query
        @param query_res dict-like: query results with attributes and neighbors
    """

    neighbors = {x['id']: x['neighbors'] for x in query_res}
    print 'len of neighbors: %d' % len(neighbors)

    built_weight = ps.W(neighbors)
    built_weight.transform = 'r'

    return built_weight
コード例 #19
0
def spw_from_shapefile(shapefile, idVariable=None):
    polygons = pysal.open(shapefile, 'r').read()
    polygons = map(shapely.geometry.asShape, polygons)
    perimeters = [p.length for p in polygons]
    Wsrc = pysal.rook_from_shapefile(shapefile)
    new_weights = {}
    for i in Wsrc.neighbors:
        a = polygons[i]
        p = perimeters[i]
        new_weights[i] = [
            a.intersection(polygons[j]).length / p for j in Wsrc.neighbors[i]
        ]
    return pysal.W(Wsrc.neighbors, new_weights)
コード例 #20
0
ファイル: test__contW_lists.py プロジェクト: youngpong/pysal
 def build_W(self, shapefile, type, idVariable=None):
     """ Building 2 W's the hard way.  We need to do this so we can test both rtree and binning """
     dbname = os.path.splitext(shapefile)[0] + '.dbf'
     db = pysal.open(dbname)
     shpObj = pysal.open(shapefile)
     neighbor_data = ContiguityWeightsLists(shpObj, type).w
     neighbors = {}
     weights = {}
     if idVariable:
         ids = db.by_col[idVariable]
         self.assertEqual(len(ids), len(set(ids)))
         for key in neighbor_data:
             id = ids[key]
             if id not in neighbors:
                 neighbors[id] = set()
             neighbors[id].update([ids[x] for x in neighbor_data[key]])
         for key in neighbors:
             neighbors[key] = list(neighbors[key])
         binningW = pysal.W(neighbors, id_order=ids)
     else:
         neighbors[key] = list(neighbors[key])
         binningW = pysal.W(neighbors)
     return binningW
コード例 #21
0
ファイル: util.py プロジェクト: youngpong/pysal
def dwg2w(g, weight_name='weight'):
    """
    Returns a PySAL W object from a directed-weighted graph

    Parameters
    ----------

    g: networkx digraph

    weight_name: name of weight attribute of g

    Returns
    -------
    w: PySAL W 

    Example
    -------
    >>> w = ps.lat2W()
    >>> w.transform = 'r'
    >>> g = w2dwg(w)
    >>> w1 = dwg2w(g)
    >>> w1.n
    25
    >>> w1.neighbors[0]
    [1, 5]
    >>> w1.neighbors[1]
    [0, 2, 6]
    >>> w1.weights[0]
    [0.5, 0.5]
    >>> w1.weights[1]
    [0.33333333333333331, 0.33333333333333331, 0.33333333333333331]
    """

    neighbors = {}
    weights = {}
    for node in g.nodes_iter():
        neighbors[node] = []
        weights[node] = []
        for neighbor in g.neighbors_iter(node):
            neighbors[node].append(neighbor)
            weight = g.get_edge_data(node, neighbor)
            if weight:
                weights[node].append(weight[weight_name])
            else:
                weights[node].append(1)
    return ps.W(neighbors=neighbors, weights=weights)
コード例 #22
0
ファイル: w_from_geojson.py プロジェクト: darribas/pysalREST
def queen_geojson(gjobj):
    """
    Constructs a PySAL queen contiguity W from a geojson object.

    This is a modification to Serge's code that performs a search for
    """
    features = list(find_features(gjobj))[0]

    polys = []
    ids = []
    i = 0
    for feature in features:
        polys.append(ps.cg.asShape(feature['geometry']))
        ids.append(i)
        i += 1
    polygons = PolygonCollection(dict(zip(ids, polys)))
    neighbors = ps.weights.Contiguity.ContiguityWeightsPolygons(polygons).w
    return ps.W(neighbors)
コード例 #23
0
ファイル: moran.py プロジェクト: uekeueke/crankshaft
def get_weight(query_res, w_type='queen', num_ngbrs=5):
    """
        Construct PySAL weight from return value of query
        :param query_res: query results with attributes and neighbors
    """
    if w_type == 'knn':
        row_normed_weights = [1.0 / float(num_ngbrs)] * num_ngbrs
        weights = {x['id']: row_normed_weights for x in query_res}
    elif w_type == 'queen':
        weights = {
            x['id']: [1.0 / len(x['neighbors'])] *
            len(x['neighbors']) if len(x['neighbors']) > 0 else []
            for x in query_res
        }

    neighbors = {x['id']: x['neighbors'] for x in query_res}

    return ps.W(neighbors, weights)
コード例 #24
0
ファイル: spatialinventory.py プロジェクト: m4sth0/sauventory
    def rm_nan_weight(self, w, array):
        """Remove nan values from weight matrix

        Keyword arguments:
            w    Spatial weight matrix.
            array Numpy array for inventory values.

        Returns:
            Weight matrix,array reduced by nan value entries and number of
            NaN values.
        """
        # Check array shape.
        print(array.shape)
        if array.shape != (w.n, 1):
            # Reshape input array to N,1 dimension.
            array = array.reshape((w.n, 1))
        # Get list of weight ids.
        idlist = range(len(w.id_order))
        # Id list of weight object. !! Ids could be string objects !!
        wid = w.id_order
        # Get indices for nan values in array.
        nanarrayids = [i for i in idlist if np.isnan(array[i])]
        nanids = [wid[i] for i in nanarrayids]
        nonanwids = [i for i in wid if i not in nanids]
        # Filter NaN value indecies from weight matrix dictionaries.
        newneighbors = {
            i: filter(lambda x: x not in nanids, w.neighbors[i])
            for i in nonanwids
        }
        newweights = {
            i: w.weights[i][:len(newneighbors[i])]
            for i in nonanwids
        }
        # Create new weight matrix with reduced nan free items.
        neww = pysal.W(newneighbors, newweights, nonanwids)
        # remove nan values from corresponding input array.
        newarray = np.array([array[i] for i in idlist if i not in nanarrayids],
                            dtype='d')

        logger.info("Found %d NAN values in input array -> "
                    "All will be removed prior to Moran's I statistic" %
                    (len(nanids)))

        return (neww, newarray, len(nanids))
コード例 #25
0
ファイル: pyc4_helper.py プロジェクト: jcervas/C4
def spw_from_shapefile(shapefile, norm=False):
    polygons = ps.open(shapefile, 'r').read()
    spolygons = list(map(asShape, polygons))
    spolygons = [fix_mp(p) for p in spolygons]
    perimeters = [p.length if norm else 1. for p in spolygons]
    Wsrc = ps.queen_from_shapefile(shapefile)
    new_weights, edges = {}, {}
    for i in Wsrc.neighbors:
        a = spolygons[i]
        p = perimeters[i]
        new_weights[i] = []
        for j in Wsrc.neighbors[i]:

            intersect = a.intersection(spolygons[j])
            new_weights[i].append(intersect.length)

        edges[i] = a.length - sum(new_weights[i])  # /a.length

    return edges, ps.W(Wsrc.neighbors, new_weights)
コード例 #26
0
def get_weight(query_res, w_type='knn', num_ngbrs=5):
    """
        Construct PySAL weight from return value of query
        @param query_res dict-like: query results with attributes and neighbors
    """
    # if w_type.lower() == 'knn':
    #     row_normed_weights = [1.0 / float(num_ngbrs)] * num_ngbrs
    #     weights = {x['id']: row_normed_weights for x in query_res}
    # else:
    #     weights = {x['id']: [1.0 / len(x['neighbors'])] * len(x['neighbors'])
    #                         if len(x['neighbors']) > 0
    #                         else [] for x in query_res}

    neighbors = {x['id']: x['neighbors'] for x in query_res}
    print 'len of neighbors: %d' % len(neighbors)

    built_weight = ps.W(neighbors)
    built_weight.transform = 'r'

    return built_weight
コード例 #27
0
def filter_by_distance_rank(infile, dist, rankfield):
    '''Thins out a point geodataset so that the selected points represent
    the maximum rankfield value of all points within the specified distance.
    Output is a geopandas dataframe.

    infile: (string) path, filename, and extension of input geodata file (e.g., shapefile)
    dist: (number, float or integer) minimum distance, in projection units
    rankfield: (string) fieldname of a numeric ranking field
    '''
    indf = pysal.pdio.read_files(infile)
    wdist = pysal.weights.DistanceBand.from_dataframe(indf, dist, silent=True)
    wdw = wdist.weights
    wdn = wdist.neighbors

    for fid in wdist:
        nwpairs = [(k, indf[rankfield][k]) for k in fid[1].iterkeys()]
        newdic = dict(nwpairs)
        wdw.update({fid[0]: newdic.values()})
        wdn.update({fid[0]: newdic.keys()})

    wnew = pysal.W(wdn, wdw, silent_island_warning=True)
    keeplst = []
    procd = []

    for nwfid in wnew:
        idx = nwfid[0]
        if len(nwfid[1].keys()) > 0:
            fdict = nwfid[1]
            iwght = indf[rankfield][idx]
            fdict.update({idx: iwght})
            winner = fdict.keys()[fdict.values().index(max(fdict.values()))]
            if winner not in procd:
                keeplst.append(winner)
                procd = procd + wdn[winner]
                procd.append(winner)
        else:
            keeplst.append(idx)
            procd.append(idx)

    keeplst = list(set(keeplst))
    return indf.iloc[keeplst]
コード例 #28
0
ファイル: util.py プロジェクト: youngpong/pysal
def adjl2w(adjacency_list, nodetype=str):
    """
    Create a PySAL W object from an adjacency list file

    Parameters
    ----------

    adjacency_list: list of adjacencies
                    for directed graphs list only outgoing adjacencies

    nodetype: type for node (str, int, float)


    Returns
    -------
    W: PySAL W


    Example
    -------
    >>> al = [[1], [0,2], [1,3], [2]]
    >>> w = adjl2w(al)
    >>> w.n
    4
    >>> w.neighbors['0']
    ['1']
    >>> w = adjl2w(al, nodetype=int)
    >>> w.n
    4
    >>> w.neighbors[0]
    [1]


    """

    adjacency_list = [map(nodetype, neighs) for neighs in adjacency_list]
    return ps.W(
        dict([(nodetype(i), neighs)
              for i, neighs in enumerate(adjacency_list)]))
コード例 #29
0
ファイル: test_user.py プロジェクト: youngpong/pysal
 def test_threshold_binaryW_from_array(self):
     points = [(10, 10), (20, 10), (40, 10), (15, 20), (30, 20), (30, 30)]
     w = pysal.threshold_binaryW_from_array(points, threshold=11.2)
     self.assertEquals(w.weights, {
         0: [1, 1],
         1: [1, 1],
         2: [],
         3: [1, 1],
         4: [1],
         5: [1]
     })
     self.assertTrue(
         neighbor_equality(
             w,
             pysal.W({
                 0: [1, 3],
                 1: [0, 3],
                 2: [],
                 3: [0, 1],
                 4: [5],
                 5: [4]
             })))
コード例 #30
0
 def Show(self):
     self.dialog.Fit()
     if self.dialog.ShowModal() == wx.ID_OK:
         import pysal
         time_gstar    = dict()
         time_gstar_z  = dict()
         
         if self.rdo_createweight.GetValue():
             if len(self.txt_p_neighbors.GetValue()):
                 self.n_p_neighbors = int(self.txt_p_neighbors.GetValue())
             
             if len(self.txt_f_neighbors.GetValue()):
                 self.n_f_neighbors = int(self.txt_f_neighbors.GetValue())
                
             if self.n_p_neighbors ==0 and self.n_f_neighbors==0:
                 return False
             
             n_previous = self.n_p_neighbors
             n_future   = self.n_f_neighbors
             tneighbors = self.create_time_w(n_previous, n_future)
             tweights   = pysal.W(tneighbors)
             dlg = wx.FileDialog(
                 self.main, message="Save the time weights file as ...", 
                 defaultFile=self.shape_name +'.time.gal', 
                 wildcard="Weights file (*.gal)|*.gal|All files (*.*)|*.*", 
                 style=wx.SAVE)
             if dlg.ShowModal() == wx.ID_OK:
                 save_weight_path = dlg.GetPath()
                 o = pysal.open(save_weight_path,'w')
                 o.write(tweights)
                 o.close()
             dlg.Destroy()
             self.weight_path = save_weight_path
         self.dialog.Destroy()
         return self.weight_path
     self.dialog.Destroy()
     return False