コード例 #1
0
ファイル: test_core.py プロジェクト: Gayatri012/pysatMagVect
    def test_tracing_accuracy(self):
        x, y, z = pymv.geocentric_to_ecef(np.array([20.]), np.array([0.]),
                                          np.array([550.]))

        steps_goal = np.array([
            1., 3.3E-1, 1.E-1, 3.3E-2, 1.E-2, 3.3E-3, 1.E-3, 3.3E-4, 1.E-4
        ]) * 6371.  #, 3.3E-5, 1.E-5, 3.3E-6, 1.E-6, 3.3E-7])
        max_steps_goal = 1.E2 * 6371. / steps_goal

        out = []
        date = datetime.datetime(2000, 1, 1)
        for steps, max_steps in zip(steps_goal, max_steps_goal):
            #print ' '
            #print steps, max_steps
            trace_n = pymv.field_line_trace(np.array([x[0], y[0], z[0]]),
                                            date,
                                            1.,
                                            0.,
                                            step_size=steps,
                                            max_steps=max_steps)

            #print trace_n
            pt = trace_n[1, :]
            out.append(pt)
            #out.append(pymv.ecef_to_geocentric(pt[0], pt[1], pt[2]))

        final_pt = pds.DataFrame(out, columns=['x', 'y', 'z'])
        x = np.log10(
            np.abs(final_pt.ix[1:, 'x'].values -
                   final_pt.ix[:, 'x'].values[:-1]))
        y = np.log10(
            np.abs(final_pt.ix[1:, 'y'].values -
                   final_pt.ix[:, 'y'].values[:-1]))
        z = np.log10(
            np.abs(final_pt.ix[1:, 'z'].values -
                   final_pt.ix[:, 'z'].values[:-1]))

        try:
            plt.figure()
            plt.plot(np.log10(steps_goal[1:]), x)
            plt.plot(np.log10(steps_goal[1:]), y)
            plt.plot(np.log10(steps_goal[1:]), z)
            plt.xlabel('Log Step Size (km)')
            plt.ylabel('Log Change in Foot Point Position (km)')
            plt.savefig('Footpoint_position_vs_step_size.png')
        except:
            pass
コード例 #2
0
ファイル: test_core.py プロジェクト: Gayatri012/pysatMagVect
    def test_geocentric_to_ecef_to_geocentric(self):

        ecf_x, ecf_y, ecf_z = pymv.geocentric_to_ecef(omni['p_lat'],
                                                      omni['p_long'],
                                                      omni['p_alt'])
        lat, elong, alt = pymv.ecef_to_geocentric(ecf_x, ecf_y, ecf_z)

        idx, = np.where(elong < 0)
        elong[idx] += 360.

        d_lat = lat - omni['p_lat']
        d_long = elong - omni['p_long']
        d_alt = alt - omni['p_alt']

        flag1 = np.all(np.abs(d_lat) < 1.E-5)
        flag2 = np.all(np.abs(d_long) < 1.E-5)
        flag3 = np.all(np.abs(d_alt) < 1.E-5)
        assert flag1 & flag2 & flag3
コード例 #3
0
ファイル: test_core.py プロジェクト: Gayatri012/pysatMagVect
    def test_field_line_tracing_against_vitmo(self):
        """Compare model to http://omniweb.gsfc.nasa.gov/vitmo/cgm_vitmo.html"""

        # convert position to ECEF
        ecf_x, ecf_y, ecf_z = pymv.geocentric_to_ecef(omni['p_lat'],
                                                      omni['p_long'],
                                                      omni['p_alt'])
        trace_n = []
        trace_s = []
        date = datetime.datetime(2000, 1, 1)
        for x, y, z in zip(ecf_x, ecf_y, ecf_z):
            trace_n.append(
                pymv.field_line_trace(np.array([x, y, z]),
                                      date,
                                      1.,
                                      0.,
                                      step_size=0.5,
                                      max_steps=1.E6)[-1, :])
            trace_s.append(
                pymv.field_line_trace(np.array([x, y, z]),
                                      date,
                                      -1.,
                                      0.,
                                      step_size=0.5,
                                      max_steps=1.E6)[-1, :])
        trace_n = pds.DataFrame(trace_n, columns=['x', 'y', 'z'])
        trace_n['lat'], trace_n['long'], trace_n[
            'altitude'] = pymv.ecef_to_geocentric(trace_n['x'], trace_n['y'],
                                                  trace_n['z'])
        trace_s = pds.DataFrame(trace_s, columns=['x', 'y', 'z'])
        trace_s['lat'], trace_s['long'], trace_s[
            'altitude'] = pymv.ecef_to_geocentric(trace_s['x'], trace_s['y'],
                                                  trace_s['z'])

        # ensure longitudes are all 0-360
        idx, = np.where(omni['n_long'] < 0)
        omni.ix[idx, 'n_long'] += 360.
        idx, = np.where(omni['s_long'] < 0)
        omni.ix[idx, 's_long'] += 360.

        idx, = np.where(trace_n['long'] < 0)
        trace_n.ix[idx, 'long'] += 360.
        idx, = np.where(trace_s['long'] < 0)
        trace_s.ix[idx, 'long'] += 360.

        # compute difference between OMNI and local calculation
        # there is a difference near 0 longitude, ignore this area
        diff_n_lat = (omni['n_lat'] - trace_n['lat'])[4:-4]
        diff_n_lon = (omni['n_long'] - trace_n['long'])[4:-4]
        diff_s_lat = (omni['s_lat'] - trace_s['lat'])[4:-4]
        diff_s_lon = (omni['s_long'] - trace_s['long'])[4:-4]

        try:
            f = plt.figure()
            plt.plot(omni['n_long'], omni['n_lat'], 'r.', label='omni')
            plt.plot(omni['s_long'], omni['s_lat'], 'r.', label='_omni')
            plt.plot(trace_n['long'], trace_n['lat'], 'b.', label='UTD')
            plt.plot(trace_s['long'], trace_s['lat'], 'b.', label='_UTD')
            plt.title(
                'Comparison of Magnetic Footpoints for Field Lines through 20 Lat, 550 km'
            )
            plt.xlabel('Geographic Longitude')
            plt.ylabel('Geographic Latitude')
            plt.legend(loc=0)
            plt.xlim((0, 360.))
            plt.savefig('magnetic_footpoint_comparison.png')
        except:
            pass

        # better than 0.5 km accuracy expected for settings above
        assert np.all(np.std(diff_n_lat) < .5)
        assert np.all(np.std(diff_n_lon) < .5)
        assert np.all(np.std(diff_s_lat) < .5)
        assert np.all(np.std(diff_s_lon) < .5)
コード例 #4
0
ファイル: test_core.py プロジェクト: Gayatri012/pysatMagVect
    def test_unit_vector_plots(self):
        import matplotlib.pyplot as plt
        from mpl_toolkits.mplot3d import Axes3D
        import os
        on_travis = os.environ.get('ONTRAVIS') == 'True'

        # convert OMNI position to ECEF
        p_long = np.arange(0., 360., 12.)
        p_lat = 0. * p_long
        #p_lat = np.hstack((p_lat+5., p_lat+20.))
        #p_long = np.hstack((p_long, p_long))
        p_alt = 0 * p_long + 550.

        p_lats = [5., 10., 15., 20., 25., 30.]

        #ecf_x,ecf_y,ecf_z = pymv.geocentric_to_ecef(p_lat, p_long, p_alt)

        truthiness = []
        for i, p_lat in enumerate(p_lats):

            trace_s = []
            if not on_travis:
                fig = plt.figure()
                ax = fig.add_subplot(111, projection='3d')

            #
            date = datetime.datetime(2000, 1, 1)
            ecef_x, ecef_y, ecef_z = pymv.geocentric_to_ecef(
                p_lat, p_long, p_alt)
            for j, (x, y, z) in enumerate(zip(ecef_x, ecef_y, ecef_z)):

                # perform field line traces
                trace_n = pymv.field_line_trace(np.array([x, y, z]),
                                                date,
                                                1.,
                                                0.,
                                                step_size=0.5,
                                                max_steps=1.E6)
                trace_s = pymv.field_line_trace(np.array([x, y, z]),
                                                date,
                                                -1.,
                                                0.,
                                                step_size=0.5,
                                                max_steps=1.E6)
                # combine together, S/C position is first for both
                # reverse first array and join so plotting makes sense
                trace = np.vstack((trace_n[::-1], trace_s))
                trace = pds.DataFrame(trace, columns=['x', 'y', 'z'])
                # plot field-line
                if not on_travis:
                    ax.plot(trace['x'], trace['y'], trace['z'], 'b')
                    plt.xlabel('X')
                    plt.ylabel('Y')
                    ax.set_zlabel('Z')
                # clear stored data
                self.inst.data = pds.DataFrame()
                # downselect, reduce number of points
                trace = trace.ix[::1000, :]

                # compute magnetic field vectors
                # need to provide alt, latitude, and longitude in geodetic coords
                latitude, longitude, altitude = pymv.ecef_to_geodetic(
                    trace['x'], trace['y'], trace['z'])
                self.inst[:, 'latitude'] = latitude
                self.inst[:, 'longitude'] = longitude
                self.inst[:, 'altitude'] = altitude
                # store values for plotting locations for vectors
                self.inst[:, 'x'] = trace['x'].values
                self.inst[:, 'y'] = trace['y'].values
                self.inst[:, 'z'] = trace['z'].values
                self.inst.data = self.inst[self.inst['altitude'] > 250.]

                # also need to provide transformation from ECEF to S/C
                # going to leave that a null transformation so we can plot in ECF
                self.inst[:,
                          'sc_xhat_x'], self.inst[:,
                                                  'sc_xhat_y'], self.inst[:,
                                                                          'sc_xhat_z'] = 1., 0., 0.
                self.inst[:,
                          'sc_yhat_x'], self.inst[:,
                                                  'sc_yhat_y'], self.inst[:,
                                                                          'sc_yhat_z'] = 0., 1., 0.
                self.inst[:,
                          'sc_zhat_x'], self.inst[:,
                                                  'sc_zhat_y'], self.inst[:,
                                                                          'sc_zhat_z'] = 0., 0., 1.
                self.inst.data.index = pysat.utils.season_date_range(
                    pysat.datetime(2000, 1, 1),
                    pysat.datetime(2000, 1, 1) +
                    pds.DateOffset(seconds=len(self.inst.data) - 1),
                    freq='S')
                pymv.add_mag_drift_unit_vectors(self.inst)

                #if i % 2 == 0:
                length = 500
                vx = self.inst['unit_zon_x']
                vy = self.inst['unit_zon_y']
                vz = self.inst['unit_zon_z']
                if not on_travis:
                    ax.quiver3D(self.inst['x'] + length * vx,
                                self.inst['y'] + length * vy,
                                self.inst['z'] + length * vz,
                                vx,
                                vy,
                                vz,
                                length=500.,
                                color='green')  #, pivot='tail')
                length = 500
                vx = self.inst['unit_fa_x']
                vy = self.inst['unit_fa_y']
                vz = self.inst['unit_fa_z']
                if not on_travis:
                    ax.quiver3D(self.inst['x'] + length * vx,
                                self.inst['y'] + length * vy,
                                self.inst['z'] + length * vz,
                                vx,
                                vy,
                                vz,
                                length=500.,
                                color='purple')  #, pivot='tail')
                length = 500
                vx = self.inst['unit_mer_x']
                vy = self.inst['unit_mer_y']
                vz = self.inst['unit_mer_z']
                if not on_travis:
                    ax.quiver3D(self.inst['x'] + length * vx,
                                self.inst['y'] + length * vy,
                                self.inst['z'] + length * vz,
                                vx,
                                vy,
                                vz,
                                length=500.,
                                color='red')  #, pivot='tail')

                # check that vectors norm to 1
                mag1 = np.all(
                    np.sqrt(self.inst['unit_zon_x']**2 +
                            self.inst['unit_zon_y']**2 +
                            self.inst['unit_zon_z']**2) > 0.999999)
                mag2 = np.all(
                    np.sqrt(self.inst['unit_fa_x']**2 +
                            self.inst['unit_fa_y']**2 +
                            self.inst['unit_fa_z']**2) > 0.999999)
                mag3 = np.all(
                    np.sqrt(self.inst['unit_mer_x']**2 +
                            self.inst['unit_mer_y']**2 +
                            self.inst['unit_mer_z']**2) > 0.999999)
                # confirm vectors are mutually orthogonal
                dot1 = self.inst['unit_zon_x'] * self.inst[
                    'unit_fa_x'] + self.inst['unit_zon_y'] * self.inst[
                        'unit_fa_y'] + self.inst['unit_zon_z'] * self.inst[
                            'unit_fa_z']
                dot2 = self.inst['unit_zon_x'] * self.inst[
                    'unit_mer_x'] + self.inst['unit_zon_y'] * self.inst[
                        'unit_mer_y'] + self.inst['unit_zon_z'] * self.inst[
                            'unit_mer_z']
                dot3 = self.inst['unit_fa_x'] * self.inst[
                    'unit_mer_x'] + self.inst['unit_fa_y'] * self.inst[
                        'unit_mer_y'] + self.inst['unit_fa_z'] * self.inst[
                            'unit_mer_z']
                flag1 = np.all(np.abs(dot1) < 1.E-3)
                flag2 = np.all(np.abs(dot2) < 1.E-3)
                flag3 = np.all(np.abs(dot3) < 1.E-3)
                #print mag1, mag2, mag3, flag1, flag2, flag3
                #print np.sqrt(self.inst['unit_mer_x']**2 + self.inst['unit_mer_y']**2 + self.inst['unit_mer_z']**2)#, dot2, dot3
                truthiness.append(flag1 & flag2 & flag3 & mag1 & mag2 & mag3)

            if not on_travis:
                plt.savefig(''.join(
                    ('magnetic_unit_vectors_', str(int(p_lat)), '.png')))
        ## plot Earth
        #u = np.linspace(0, 2 * np.pi, 100)
        #v = np.linspace(60.*np.pi/180., 120.*np.pi/180., 100)
        #xx = 6371. * np.outer(np.cos(u), np.sin(v))
        #yy = 6371. * np.outer(np.sin(u), np.sin(v))
        #zz = 6371. * np.outer(np.ones(np.size(u)), np.cos(v))
        #ax.plot_surface(xx, yy, zz, rstride=4, cstride=4, color='darkgray')
        #plt.savefig('magnetic_unit_vectors_w_globe.png')
        #print truthiness
        assert np.all(truthiness)
コード例 #5
0
# Reduce the number of API calls to avoid exceeding the limit
reduction_factor = 100

for i, timestamp in enumerate(cdf['Timestamp']):

    # limit number of API calls
    if i%reduction_factor != 0 : continue 

    latitude_geocentric = cdf['Latitude'][i]
    longitude_geocentric = cdf['Longitude'][i]
    radius_geocentric = cdf['Radius'][i]

    altitude_geocentric = radius_geocentric/1000.0 - earth_radius # [km]

    # convert from geocentric to geodetic coordinates
    x, y, z = psmv.geocentric_to_ecef(
        latitude_geocentric, longitude_geocentric, altitude_geocentric)
     
    # calculate elevation
    latitude, longitude, altitude = psmv.ecef_to_geodetic(x, y, z)
    
    # calculate decimal year 
    decimal_year = pyasl.decimalYear(timestamp)

    # calculate experimental declination 
    bx, by, bz = cdf['B_NEC'][i]
    
    decl_swarm = np.arctan(by / bx)
    decl_swarm = np.rad2deg(decl_swarm)

    # make API call to fetch declination 
    payload = dict(