コード例 #1
0
 def test_as_pyscf_method(self):
     mol = gto.M(atom='''
         O  0.   0.       0.
         H  0.   -0.757   0.587
         H  0.   0.757    0.587
                 ''', verbose=0)
     mol1 = geometric_solver.optimize(scf.RHF(mol))
     self.assertAlmostEqual(lib.finger(mol1.atom_coords()),
                            2.19951175503979, 4)
コード例 #2
0
ファイル: test_geometric_solver.py プロジェクト: sunqm/pyscf
 def test_optimize(self):
     mol = gto.M(atom='''
         O  0.   0.       0.
         H  0.   -0.757   0.587
         H  0.   0.757    0.587
                 ''',
                 symmetry=True, verbose=0)
     mol1 = geometric_solver.optimize(scf.RHF(mol))
     self.assertAlmostEqual(lib.finger(mol1.atom_coords()),
                            3.038506469458414, 4)
     self.assertEqual(mol1.symmetry, 'C2v')
コード例 #3
0
 def test_optimize(self):
     mol = gto.M(atom='''
         O  0.   0.       0.
         H  0.   -0.757   0.587
         H  0.   0.757    0.587
                 ''',
                 symmetry=True,
                 verbose=0)
     mol1 = geometric_solver.optimize(scf.RHF(mol))
     self.assertAlmostEqual(lib.finger(mol1.atom_coords()),
                            3.038506469458414, 4)
     self.assertEqual(mol1.symmetry, 'C2v')
コード例 #4
0
def Q3OptimizerDriver(pre_energy, mol , HF, R, conv_params):
    if pre_energy ==True:
        opt_pre = optimize(pre_energy, **conv_params)
        opt_geom = opt_pre.tofile(working_dir+'/opt-geom.xyz')
    else:
        if theory==KS:
            if shell == O:
                SPE =scf.UKS(mol).run()
            else shell == R:
                SPE =scf.RKS(mol).run()
        else theory == HF:
            if shell == O:
                SPE =scf.UHF(mol).run()
            else shell == R:
                SPE =scf.RHF(mol).run()
コード例 #5
0
ファイル: 02-as_pyscf_method.py プロジェクト: zzy2014/pyscf
def f(mol):
    e, g = grad_scan(mol)
    r = mol.atom_coords()
    penalty = np.linalg.norm(r[0] - r[1])**2 * 0.1
    e += penalty
    g[0] += (r[0] - r[1]) * 2 * 0.1
    g[1] -= (r[0] - r[1]) * 2 * 0.1
    print('Customized |g|', np.linalg.norm(g))
    return e, g


#
# Function as_pyscf_method is a wrapper that convert the "energy-gradients"
# function to berny_solver.  The "energy-gradients" function takes the Mole
# object as geometry input, and returns the energy and gradients of that
# geometry.
#
fake_method = as_pyscf_method(mol, f)
new_mol = berny_solver.optimize(fake_method)

print('Old geometry (Bohr)')
print(mol.atom_coords())

print('New geometry (Bohr)')
print(new_mol.atom_coords())

#
# Geometry can be also optimized with geomeTRIC library
#
new_mol = geometric_solver.optimize(fake_method)
コード例 #6
0
'''

import numpy
from pyscf import gto, scf, cc, qmmm
from pyscf.geomopt import berny_solver

mol = gto.M(atom='''
C       1.1879  -0.3829 0.0000
C       0.0000  0.5526  0.0000
O       -1.1867 -0.2472 0.0000
H       -1.9237 0.3850  0.0000
H       2.0985  0.2306  0.0000
H       1.1184  -1.0093 0.8869
H       1.1184  -1.0093 -0.8869
H       -0.0227 1.1812  0.8852
H       -0.0227 1.1812  -0.8852
            ''',
            basis='3-21g')

numpy.random.seed(1)
coords = numpy.random.random((5, 3)) * 10
charges = (numpy.arange(5) + 1.) * -.001
mf = qmmm.mm_charge(scf.RHF(mol), coords, charges)
#mf.verbose=4
#mf.kernel()
mol1 = berny_solver.optimize(mf)

from pyscf.geomopt import geometric_solver
mycc = cc.CCSD(mf)
mol1 = geometric_solver.optimize(mycc)
コード例 #7
0
ファイル: 01-geomeTRIC.py プロジェクト: xubwa/pyscf-doc
'''
Use geomeTRIC library to optimize the molecular geometry.
'''

from pyscf import gto, scf
from pyscf.geomopt.geometric_solver import optimize

mol = gto.M(atom='N 0 0 0; N 0 0 1.2', basis='ccpvdz')
mf = scf.RHF(mol)

#
# geometry optimization for HF.  There are two entries to invoke the geomeTRIC
# optimization
#
# method 1: import the optimize function from pyscf.geomopt.geometric_solver
mol_eq = optimize(mf)
print(mol_eq.atom_coords())

# method 2: create the optimizer from Gradients class
mol_eq = mf.Gradients().optimizer(solver='geomeTRIC').kernel()

#
# geometry optimization for CASSCF
#
from pyscf import mcscf
mf = scf.RHF(mol)
mc = mcscf.CASSCF(mf, 4, 4)
conv_params = {
    'convergence_energy': 1e-4,  # Eh
    'convergence_grms': 3e-3,    # Eh/Bohr
    'convergence_gmax': 4.5e-3,  # Eh/Bohr
コード例 #8
0
print("Initial energy: {:.8e}".format(mc.e_tot[0]))
mc.nuc_grad_iroot = 0


def my_call(env):
    carts = env['mol'].atom_coords() * BOHR
    h2co_geom_analysis(carts)


conv_params = {
    'convergence_energy': 1e-6,  # Eh
    'convergence_grms': 3e-5,  # Eh/Bohr
    'convergence_gmax': 4.5e-5,  # Eh/Bohr
    'convergence_drms': 1.2e-5,  # Angstrom
    'convergence_dmax': 1.8e-5,  # Angstrom
}
conv, mol_eq = optimize(mc, callback=my_call, **conv_params)

molcas_geom = np.asarray([[0.550219, -0.000000, -0.000000],
                          [-0.690238, -0.000000, -0.000000],
                          [1.139489, -0.000000, 0.937479],
                          [1.139489, -0.000000, -0.937479]])

print(
    "SA(2) tPBE(6,6)/6-31g optimized geometry of first root of formaldehdye:")
h2co_geom_analysis(mol_eq.atom_coords() * BOHR)
print(
    "OpenMolcas's opinion using analytical gradient implementation (note OpenMolcas and PySCF have different quadrature grids):"
)
h2co_geom_analysis(molcas_geom)
コード例 #9
0
ファイル: 14-with_solvent.py プロジェクト: zzy2014/pyscf
#!/usr/bin/env python
#
# Author: Qiming Sun <*****@*****.**>
#
'''
Geometry optimization with solvent model
'''

from pyscf import gto, scf, dft
from pyscf import solvent
from pyscf.geomopt import geometric_solver

mol = gto.M(atom='''
C        0.000000    0.000000             -0.542500
O        0.000000    0.000000              0.677500
H        0.000000    0.9353074360871938   -1.082500
H        0.000000   -0.9353074360871938   -1.082500
            ''',
            verbose=4)
mf = solvent.ddCOSMO(scf.RHF(mol))
new_mol = geometric_solver.optimize(mf)
コード例 #10
0
Raises:
    Q3_Error: Invalid Input
"""

conv_params = { # These are the default settings
    'convergence_energy': 1e-6,  # Eh
    'convergence_grms': 3e-4,    # Eh/Bohr
    'convergence_gmax': 4.5e-4,  # Eh/Bohr
    'convergence_drms': 1.2e-3,  # Angstrom
    'convergence_dmax': 1.8e-3,  # Angstrom
}

def Q3OptimizerDriver(pre_energy, mol , HF, R, conv_params):
    if pre_energy ==True:
        opt_pre = optimize(pre_energy, **conv_params)
        opt_geom = opt_pre.tofile(working_dir+'/opt-geom.xyz')
    else:
        if theory==KS:
            if shell == O:
                SPE =scf.UKS(mol).run()
            else shell == R:
                SPE =scf.RKS(mol).run()
        else theory == HF:
            if shell == O:
                SPE =scf.UHF(mol).run()
            else shell == R:
                SPE =scf.RHF(mol).run()

        SPE_opt = optimize(SPE, **conv_params)
        opt_geom = mol_eq.tofile(working_dir+'opt-geom.xyz')
コード例 #11
0
ファイル: 20-callback.py プロジェクト: zzy2014/pyscf
mol = gto.M(atom='''
C        0.000000    0.000000             -0.542500
O        0.000000    0.000000              0.677500
H        0.000000    0.9353074360871938   -1.082500
H        0.000000   -0.9353074360871938   -1.082500
            ''',
            basis='3-21g')

mf = scf.RHF(mol)


# Run analyze function in callback
def cb(envs):
    mf = envs['g_scanner'].base
    mf.analyze(verbose=4)


#
# Method 1: Pass callback to optimize function
#
geometric_solver.optimize(mf, callback=cb)

berny_solver.optimize(mf, callback=cb)

#
# Method 2: Add callback to geometry optimizer
#
opt = mf.nuc_grad_method().as_scanner().optimizer()
opt.callback = cb
opt.kernel()
コード例 #12
0
ファイル: 10-with_qmmm.py プロジェクト: chrinide/pyscf
'''

import numpy
from pyscf import gto, scf, cc, qmmm
from pyscf.geomopt import berny_solver

mol = gto.M(atom='''
C       1.1879  -0.3829 0.0000
C       0.0000  0.5526  0.0000
O       -1.1867 -0.2472 0.0000
H       -1.9237 0.3850  0.0000
H       2.0985  0.2306  0.0000
H       1.1184  -1.0093 0.8869
H       1.1184  -1.0093 -0.8869
H       -0.0227 1.1812  0.8852
H       -0.0227 1.1812  -0.8852
            ''',
            basis='3-21g')

numpy.random.seed(1)
coords = numpy.random.random((5,3)) * 10
charges = (numpy.arange(5) + 1.) * -.001
mf = qmmm.mm_charge(scf.RHF(mol), coords, charges)
#mf.verbose=4
#mf.kernel()
mol1 = berny_solver.optimize(mf)

from pyscf.geomopt import geometric_solver
mycc = cc.CCSD(mf)
mol1 = geometric_solver.optimize(mycc)
コード例 #13
0
ファイル: 01-geomeTRIC.py プロジェクト: chrinide/pyscf
#!/usr/bin/env python

'''
Use geomeTRIC library to optimize the molecular geometry.
'''

from pyscf import gto, scf
from pyscf.geomopt.geometric_solver import optimize

mol = gto.M(atom='N 0 0 0; N 0 0 1.2', basis='ccpvdz')
mf = scf.RHF(mol)

#
# geometry optimization for HF
#
mol_eq = optimize(mf)
print(mol_eq.atom_coords())

#
# geometry optimization for CASSCF
#
from pyscf import mcscf
mf = scf.RHF(mol)
mc = mcscf.CASSCF(mf, 4, 4)
conv_params = {
    'convergence_energy': 1e-4,  # Eh
    'convergence_grms': 3e-3,    # Eh/Bohr
    'convergence_gmax': 4.5e-3,  # Eh/Bohr
    'convergence_drms': 1.2e-2,  # Angstrom
    'convergence_dmax': 1.8e-2,  # Angstrom
}