コード例 #1
0
ファイル: dispatcher.py プロジェクト: obackhouse/adc-scripts
def run(mf, helper=None, method='2', which='ip', nroots=5, tol=1e-9,
        maxiter=100, maxspace=12, do_mp2=False, koopmans=False, verbose=False):
    ''' Runs the ADC method.

    Arguments:
        mf : scf.HF
            Mean-field method from pyscf, must be converged.
        helper : ADCHelper
            Specify the ADCHelper class, if None then it is handled
            automatically by the attributes mf and which.
        method : str
            One of '2', '2x', '3'
        which : str
            One of 'ip', 'ea' or 'ee'.
        nroots : int
            Number of states to solver for.
        tol : float
            Convergence tolerance for Davidson method.
        do_mp2 : bool
            Whether to compute the MP2 energy.
        koopmans : bool
            Target only quasiparticle-like states

    Returns:
        e : ndarray
            Excitation energies, may be in a nested list if an unrestricted
            reference or PBC is used.
        v : ndarray
            Eigenvectors, structured as above.
        mp2 : float
            MP2 correlation energy, if do_mp2 is True.
    '''

    if hasattr(mf, 'kpts'):
        return _run_pbc(mf, helper, method, which, nroots, tol, maxiter, maxspace, do_mp2, koopmans)

    if helper is None:
        helper = load_helper(mf, method=method, which=which)
    if callable(helper):
        helper = helper(mf)

    matvec, diag = helper.get_matvec()
    matvecs = lambda xs: [matvec(x) for x in xs]
    guesses = helper.get_guesses(diag, nroots, koopmans=koopmans)
    pick = get_picker(koopmans=koopmans, real_system=True, guess=guesses)
    kwargs = dict(tol=tol, nroots=nroots, pick=pick, max_cycle=maxiter,
                  max_space=maxspace, verbose=9 if verbose else 0)

    conv, e, v = lib.davidson_nosym1(matvecs, guesses, diag, **kwargs)

    if which == 'ip':
        e = utils.nested_apply(e, lambda x: -x)

    if do_mp2:
        mp2 = helper.mp2()
        if which == 'ea':
            mp2 *= -1
        return e, v, conv, mp2
    else:
        return e, v, conv
コード例 #2
0
ファイル: uhf.py プロジェクト: sokolov-group/pyscf
    def kernel(self, x0=None, nstates=None):
        '''TDHF diagonalization with non-Hermitian eigenvalue solver
        '''
        cpu0 = (logger.process_clock(), logger.perf_counter())
        self.check_sanity()
        self.dump_flags()
        if nstates is None:
            nstates = self.nstates
        else:
            self.nstates = nstates

        log = logger.Logger(self.stdout, self.verbose)

        vind, hdiag = self.gen_vind(self._scf)
        precond = self.get_precond(hdiag)
        if x0 is None:
            x0 = self.init_guess(self._scf, self.nstates)

        # We only need positive eigenvalues
        def pickeig(w, v, nroots, envs):
            realidx = numpy.where((abs(w.imag) < REAL_EIG_THRESHOLD) &
                                  (w.real > POSTIVE_EIG_THRESHOLD))[0]
            return lib.linalg_helper._eigs_cmplx2real(w, v, realidx,
                                                      real_eigenvectors=True)

        self.converged, w, x1 = \
                lib.davidson_nosym1(vind, x0, precond,
                                    tol=self.conv_tol,
                                    nroots=nstates, lindep=self.lindep,
                                    max_cycle=self.max_cycle,
                                    max_space=self.max_space, pick=pickeig,
                                    verbose=log)

        nmo = self._scf.mo_occ[0].size
        nocca = (self._scf.mo_occ[0]>0).sum()
        noccb = (self._scf.mo_occ[1]>0).sum()
        nvira = nmo - nocca
        nvirb = nmo - noccb
        e = []
        xy = []
        for i, z in enumerate(x1):
            x, y = z.reshape(2,-1)
            norm = lib.norm(x)**2 - lib.norm(y)**2
            if norm > 0:
                norm = 1/numpy.sqrt(norm)
                e.append(w[i])
                xy.append(((x[:nocca*nvira].reshape(nocca,nvira) * norm,  # X_alpha
                            x[nocca*nvira:].reshape(noccb,nvirb) * norm), # X_beta
                           (y[:nocca*nvira].reshape(nocca,nvira) * norm,  # Y_alpha
                            y[nocca*nvira:].reshape(noccb,nvirb) * norm)))# Y_beta
        self.e = numpy.array(e)
        self.xy = xy

        if self.chkfile:
            lib.chkfile.save(self.chkfile, 'tddft/e', self.e)
            lib.chkfile.save(self.chkfile, 'tddft/xy', self.xy)

        log.timer('TDDFT', *cpu0)
        self._finalize()
        return self.e, self.xy
コード例 #3
0
    def kernel(self, x0=None):
        '''TDHF diagonalization with non-Hermitian eigenvalue solver
        '''
        self.check_sanity()

        mo_energy = self._scf.mo_energy
        nocc = (self._scf.mo_occ>0).sum()
        eai = lib.direct_sum('a-i->ai', mo_energy[nocc:], mo_energy[:nocc])
        nvir = eai.shape[0]

        if x0 is None:
            x0 = self.init_guess(eai, self.nstates)

        precond = self.get_precond(eai.ravel())

        # We only need positive eigenvalues
        def pickeig(w, v, nroots, x0):
            realidx = numpy.where((abs(w.imag) < 1e-6) & (w.real > 0))[0]
            idx = realidx[w[realidx].real.argsort()]
            return w[idx].real, v[:,idx].real, idx

        w, x1 = lib.davidson_nosym1(self.get_vind, x0, precond,
                                    tol=self.conv_tol,
                                    nroots=self.nstates, lindep=self.lindep,
                                    max_space=self.max_space, pick=pickeig,
                                    verbose=self.verbose)[1:]
        self.e = w
        def norm_xy(z):
            x, y = z.reshape(2,nvir,nocc)
            norm = 2*(lib.norm(x)**2 - lib.norm(y)**2)
            norm = 1/numpy.sqrt(norm)
            return x*norm, y*norm
        self.xy = [norm_xy(z) for z in x1]

        return self.e, self.xy
コード例 #4
0
    def kernel(self, x0=None):
        '''TDHF diagonalization with non-Hermitian eigenvalue solver
        '''
        self.check_sanity()
        self.dump_flags()

        vind, hdiag = self.get_vind(self._scf)
        precond = self.get_precond(hdiag)
        if x0 is None:
            x0 = self.init_guess(self._scf, self.nstates)

        # We only need positive eigenvalues
        def pickeig(w, v, nroots, envs):
            realidx = numpy.where((abs(w.imag) < 1e-4) & (w.real > 0))[0]
            idx = realidx[w[realidx].real.argsort()]
            return w[idx].real, v[:,idx].real, idx

        w, x1 = lib.davidson_nosym1(vind, x0, precond,
                                    tol=self.conv_tol,
                                    nroots=self.nstates, lindep=self.lindep,
                                    max_space=self.max_space, pick=pickeig,
                                    verbose=self.verbose)[1:]
        mo_occ = self._scf.mo_occ
        self.e = w
        def norm_xy(z):
            x, y = z.reshape(2,-1)
            norm = 2*(lib.norm(x)**2 - lib.norm(y)**2)
            norm = 1/numpy.sqrt(norm)
            x *= norm
            y *= norm
            return _unpack(x, mo_occ), _unpack(y, mo_occ)
        self.xy = [norm_xy(z) for z in x1]

        return self.e, self.xy
コード例 #5
0
    def kernel(self, x0=None, nstates=None):
        '''TDHF diagonalization with non-Hermitian eigenvalue solver
        '''
        cpu0 = (logger.process_clock(), logger.perf_counter())
        self.check_sanity()
        self.dump_flags()
        if nstates is None:
            nstates = self.nstates
        else:
            self.nstates = nstates

        log = logger.Logger(self.stdout, self.verbose)

        vind, hdiag = self.gen_vind(self._scf)
        precond = self.get_precond(hdiag)
        if x0 is None:
            x0 = self.init_guess(self._scf, self.nstates)

        # We only need positive eigenvalues
        def pickeig(w, v, nroots, envs):
            realidx = numpy.where((abs(w.imag) < REAL_EIG_THRESHOLD)
                                  & (w.real > POSTIVE_EIG_THRESHOLD))[0]
            # If the complex eigenvalue has small imaginary part, both the
            # real part and the imaginary part of the eigenvector can
            # approximately be used as the "real" eigen solutions.
            return lib.linalg_helper._eigs_cmplx2real(w,
                                                      v,
                                                      realidx,
                                                      real_eigenvectors=True)

        self.converged, w, x1 = \
                lib.davidson_nosym1(vind, x0, precond,
                                    tol=self.conv_tol,
                                    nroots=nstates, lindep=self.lindep,
                                    max_cycle=self.max_cycle,
                                    max_space=self.max_space, pick=pickeig,
                                    verbose=log)

        nocc = (self._scf.mo_occ > 0).sum()
        nmo = self._scf.mo_occ.size
        nvir = nmo - nocc
        self.e = w

        def norm_xy(z):
            x, y = z.reshape(2, nocc, nvir)
            norm = lib.norm(x)**2 - lib.norm(y)**2
            norm = numpy.sqrt(.5 / norm)  # normalize to 0.5 for alpha spin
            return x * norm, y * norm

        self.xy = [norm_xy(z) for z in x1]

        if self.chkfile:
            lib.chkfile.save(self.chkfile, 'tddft/e', self.e)
            lib.chkfile.save(self.chkfile, 'tddft/xy', self.xy)

        log.timer('TDDFT', *cpu0)
        self._finalize()
        return self.e, self.xy
コード例 #6
0
    def kernel(self, x0=None, nstates=None):
        '''TDHF diagonalization with non-Hermitian eigenvalue solver
        '''
        self.check_sanity()
        self.dump_flags()
        if nstates is None:
            nstates = self.nstates
        else:
            self.nstates = nstates

        log = logger.Logger(self.stdout, self.verbose)

        vind, hdiag = self.gen_vind(self._scf)
        precond = self.get_precond(hdiag)
        if x0 is None:
            x0 = self.init_guess(self._scf, self.nstates)

        # We only need positive eigenvalues
        def pickeig(w, v, nroots, envs):
            realidx = numpy.where((abs(w.imag) < REAL_EIG_THRESHOLD) &
                                  (w.real > POSTIVE_EIG_THRESHOLD))[0]
            idx = realidx[w[realidx].real.argsort()]
            return w[idx].real, v[:,idx].real, idx

        self.converged, w, x1 = \
                lib.davidson_nosym1(vind, x0, precond,
                                    tol=self.conv_tol,
                                    nroots=nstates, lindep=self.lindep,
                                    max_space=self.max_space, pick=pickeig,
                                    verbose=log)

        nmo = self._scf.mo_occ[0].size
        nocca = (self._scf.mo_occ[0]>0).sum()
        noccb = (self._scf.mo_occ[1]>0).sum()
        nvira = nmo - nocca
        nvirb = nmo - noccb
        e = []
        xy = []
        for i, z in enumerate(x1):
            x, y = z.reshape(2,-1)
            norm = lib.norm(x)**2 - lib.norm(y)**2
            if norm > 0:
                norm = 1/numpy.sqrt(norm)
                e.append(w[i])
                xy.append(((x[:nocca*nvira].reshape(nocca,nvira) * norm,  # X_alpha
                            x[nocca*nvira:].reshape(noccb,nvirb) * norm), # X_beta
                           (y[:nocca*nvira].reshape(nocca,nvira) * norm,  # Y_alpha
                            y[nocca*nvira:].reshape(noccb,nvirb) * norm)))# Y_beta
        self.e = numpy.array(e)
        self.xy = xy

        if self.chkfile:
            lib.chkfile.save(self.chkfile, 'tddft/e', self.e)
            lib.chkfile.save(self.chkfile, 'tddft/xy', self.xy)

        log.note('Excited State energies (eV)\n%s', self.e * nist.HARTREE2EV)
        return self.e, self.xy
コード例 #7
0
    def kernel(self, x0=None, nstates=None):
        '''TDHF diagonalization with non-Hermitian eigenvalue solver
        '''
        cpu0 = (logger.process_clock(), logger.perf_counter())
        self.check_sanity()
        self.dump_flags()
        if nstates is None:
            nstates = self.nstates
        else:
            self.nstates = nstates

        log = logger.Logger(self.stdout, self.verbose)

        vind, hdiag = self.gen_vind(self._scf)
        precond = self.get_precond(hdiag)
        if x0 is None:
            x0 = self.init_guess(self._scf, self.nstates)

        ensure_real = self._scf.mo_coeff.dtype == numpy.double

        def pickeig(w, v, nroots, envs):
            realidx = numpy.where((abs(w.imag) < REAL_EIG_THRESHOLD)
                                  & (w.real > self.positive_eig_threshold))[0]
            # FIXME: Should the amplitudes be real? It also affects x2c-tdscf
            return lib.linalg_helper._eigs_cmplx2real(w, v, realidx,
                                                      ensure_real)

        self.converged, w, x1 = \
                lib.davidson_nosym1(vind, x0, precond,
                                    tol=self.conv_tol,
                                    nroots=nstates, lindep=self.lindep,
                                    max_cycle=self.max_cycle,
                                    max_space=self.max_space, pick=pickeig,
                                    verbose=log)

        nocc = (self._scf.mo_occ > 0).sum()
        nmo = self._scf.mo_occ.size
        nvir = nmo - nocc
        self.e = w

        def norm_xy(z):
            x, y = z.reshape(2, nocc, nvir)
            norm = lib.norm(x)**2 - lib.norm(y)**2
            norm = numpy.sqrt(1. / norm)
            return x * norm, y * norm

        self.xy = [norm_xy(z) for z in x1]

        if self.chkfile:
            lib.chkfile.save(self.chkfile, 'tddft/e', self.e)
            lib.chkfile.save(self.chkfile, 'tddft/xy', self.xy)

        log.timer('TDDFT', *cpu0)
        self._finalize()
        return self.e, self.xy
コード例 #8
0
    def kernel(self, x0=None):
        '''TDHF diagonalization with non-Hermitian eigenvalue solver
        '''
        self.check_sanity()
        self.dump_flags()

        vind, hdiag = self.get_vind(self._scf)
        precond = self.get_precond(hdiag)
        if x0 is None:
            x0 = self.init_guess(self._scf, self.nstates)

        # We only need positive eigenvalues
        def pickeig(w, v, nroots, envs):
            realidx = numpy.where((abs(w.imag) < 1e-6) & (w.real > 0))[0]
            idx = realidx[w[realidx].real.argsort()]
            return w[idx].real, v[:, idx].real, idx

        w, x1 = lib.davidson_nosym1(vind,
                                    x0,
                                    precond,
                                    tol=self.conv_tol,
                                    nroots=self.nstates,
                                    lindep=self.lindep,
                                    max_space=self.max_space,
                                    pick=pickeig,
                                    verbose=self.verbose)[1:]

        nmo = self._scf.mo_occ[0].size
        nocca = (self._scf.mo_occ[0] > 0).sum()
        noccb = (self._scf.mo_occ[1] > 0).sum()
        nvira = nmo - nocca
        nvirb = nmo - noccb
        e = []
        xy = []
        for i, z in enumerate(x1):
            x, y = z.reshape(2, -1)
            norm = lib.norm(x)**2 - lib.norm(y)**2
            if norm > 0:
                norm = 1 / numpy.sqrt(norm)
                e.append(w[i])
                xy.append((
                    (
                        x[:nocca * nvira].reshape(nvira, nocca) *
                        norm,  # X_alpha
                        x[nocca * nvira:].reshape(nvirb, noccb) *
                        norm),  # X_beta
                    (
                        y[:nocca * nvira].reshape(nvira, nocca) *
                        norm,  # Y_alpha
                        y[nocca * nvira:].reshape(nvirb, noccb) *
                        norm)))  # Y_beta
        self.e = numpy.array(e)
        self.xy = xy
        return self.e, self.xy
コード例 #9
0
    def kernel(self, x0=None):
        '''TDHF diagonalization with non-Hermitian eigenvalue solver
        '''
        logger.warn(
            self, 'PBC-TDDFT is an experimental feature. '
            'It is numerically sensitive to the accuracy of integrals '
            '(relating to cell.precision).')

        self.check_sanity()
        self.dump_flags()

        vind, hdiag = self.gen_vind(self._scf)
        precond = self.get_precond(hdiag)
        if x0 is None:
            x0 = self.init_guess(self._scf, self.nstates)

        real_system = (gamma_point(self._scf.kpts)
                       and self._scf.mo_coeff[0].dtype == numpy.double)

        # We only need positive eigenvalues
        def pickeig(w, v, nroots, envs):
            realidx = numpy.where((abs(w.imag) < REAL_EIG_THRESHOLD)
                                  & (w.real > POSTIVE_EIG_THRESHOLD))[0]
            return lib.linalg_helper._eigs_cmplx2real(w, v, realidx,
                                                      real_system)

        log = logger.Logger(self.stdout, self.verbose)
        precision = self.cell.precision * 1e-2
        hermi = 0

        self.converged, w, x1 = \
                lib.davidson_nosym1(vind, x0, precond,
                                    tol=self.conv_tol,
                                    nroots=self.nstates, lindep=self.lindep,
                                    max_space=self.max_space, pick=pickeig,
                                    fill_heff=purify_krlyov_heff(precision, hermi, log),
                                    verbose=self.verbose)
        mo_occ = self._scf.mo_occ
        self.e = w

        def norm_xy(z):
            x, y = z.reshape(2, -1)
            norm = 2 * (lib.norm(x)**2 - lib.norm(y)**2)
            norm = 1 / numpy.sqrt(norm)
            x *= norm
            y *= norm
            return _unpack(x, mo_occ), _unpack(y, mo_occ)

        self.xy = [norm_xy(z) for z in x1]

        return self.e, self.xy
コード例 #10
0
ファイル: rhf.py プロジェクト: chrinide/pyscf
    def kernel(self, x0=None, nstates=None):
        '''TDHF diagonalization with non-Hermitian eigenvalue solver
        '''
        self.check_sanity()
        self.dump_flags()
        if nstates is None:
            nstates = self.nstates
        else:
            self.nstates = nstates

        log = logger.Logger(self.stdout, self.verbose)

        vind, hdiag = self.gen_vind(self._scf)
        precond = self.get_precond(hdiag)
        if x0 is None:
            x0 = self.init_guess(self._scf, self.nstates)

        # We only need positive eigenvalues
        def pickeig(w, v, nroots, envs):
            realidx = numpy.where((abs(w.imag) < REAL_EIG_THRESHOLD) &
                                  (w.real > POSTIVE_EIG_THRESHOLD))[0]
            # If the complex eigenvalue has small imaginary part, both the
            # real part and the imaginary part of the eigenvector can
            # approximately be used as the "real" eigen solutions.
            return lib.linalg_helper._eigs_cmplx2real(w, v, realidx)

        self.converged, w, x1 = \
                lib.davidson_nosym1(vind, x0, precond,
                                    tol=self.conv_tol,
                                    nroots=nstates, lindep=self.lindep,
                                    max_space=self.max_space, pick=pickeig,
                                    verbose=log)

        nocc = (self._scf.mo_occ>0).sum()
        nmo = self._scf.mo_occ.size
        nvir = nmo - nocc
        self.e = w
        def norm_xy(z):
            x, y = z.reshape(2,nocc,nvir)
            norm = lib.norm(x)**2 - lib.norm(y)**2
            norm = numpy.sqrt(.5/norm)  # normalize to 0.5 for alpha spin
            return x*norm, y*norm
        self.xy = [norm_xy(z) for z in x1]

        if self.chkfile:
            lib.chkfile.save(self.chkfile, 'tddft/e', self.e)
            lib.chkfile.save(self.chkfile, 'tddft/xy', self.xy)

        log.note('Excited State energies (eV)\n%s', self.e * nist.HARTREE2EV)
        return self.e, self.xy
コード例 #11
0
    def kernel(self, x0=None, nstates=None):
        '''TDHF diagonalization with non-Hermitian eigenvalue solver
        '''
        self.check_sanity()
        self.dump_flags()
        if nstates is None:
            nstates = self.nstates
        else:
            self.nstates = nstates

        log = logger.Logger(self.stdout, self.verbose)

        vind, hdiag = self.gen_vind(self._scf)
        precond = self.get_precond(hdiag)
        if x0 is None:
            x0 = self.init_guess(self._scf, self.nstates)

        # We only need positive eigenvalues
        def pickeig(w, v, nroots, envs):
            realidx = numpy.where((abs(w.imag) < REAL_EIG_THRESHOLD)
                                  & (w.real > POSTIVE_EIG_THRESHOLD))[0]
            idx = realidx[w[realidx].real.argsort()]
            return w[idx].real, v[:, idx].real, idx

        self.converged, w, x1 = \
                lib.davidson_nosym1(vind, x0, precond,
                                    tol=self.conv_tol,
                                    nroots=nstates, lindep=self.lindep,
                                    max_space=self.max_space, pick=pickeig,
                                    verbose=log)

        nocc = (self._scf.mo_occ > 0).sum()
        nmo = self._scf.mo_occ.size
        nvir = nmo - nocc
        self.e = w

        def norm_xy(z):
            x, y = z.reshape(2, nocc, nvir)
            norm = lib.norm(x)**2 - lib.norm(y)**2
            norm = numpy.sqrt(.5 / norm)  # normalize to 0.5 for alpha spin
            return x * norm, y * norm

        self.xy = [norm_xy(z) for z in x1]

        if self.chkfile:
            lib.chkfile.save(self.chkfile, 'tddft/e', self.e)
            lib.chkfile.save(self.chkfile, 'tddft/xy', self.xy)

        log.note('Excited State energies (eV)\n%s', self.e * nist.HARTREE2EV)
        return self.e, self.xy
コード例 #12
0
    def kernel(self, x0=None):
        '''TDHF diagonalization with non-Hermitian eigenvalue solver
        '''
        self.check_sanity()
        self.dump_flags()

        vind, hdiag = self.gen_vind(self._scf)
        precond = self.get_precond(hdiag)
        if x0 is None:
            x0 = self.init_guess(self._scf, self.nstates)

        real_system = (gamma_point(self._scf.kpts)
                       and self._scf.mo_coeff[0][0].dtype == numpy.double)

        # We only need positive eigenvalues
        def pickeig(w, v, nroots, envs):
            realidx = numpy.where((abs(w.imag) < REAL_EIG_THRESHOLD)
                                  & (w.real > POSTIVE_EIG_THRESHOLD))[0]
            return lib.linalg_helper._eigs_cmplx2real(w, v, realidx,
                                                      real_system)

        log = logger.Logger(self.stdout, self.verbose)
        precision = self.cell.precision * 1e-2

        self.converged, w, x1 = \
                lib.davidson_nosym1(vind, x0, precond,
                                    tol=self.conv_tol,
                                    nroots=self.nstates, lindep=self.lindep,
                                    max_space=self.max_space, pick=pickeig,
                                    fill_heff=purify_krlyov_heff(precision, 0, log),
                                    verbose=self.verbose)

        mo_occ = self._scf.mo_occ
        e = []
        xy = []
        for i, z in enumerate(x1):
            xs, ys = z.reshape(2, -1)
            norm = lib.norm(xs)**2 - lib.norm(ys)**2
            if norm > 0:
                norm = 1 / numpy.sqrt(norm)
                xs *= norm
                ys *= norm
                e.append(w[i])
                xy.append((_unpack(xs, mo_occ), _unpack(ys, mo_occ)))
        self.e = numpy.array(e)
        self.xy = xy
        return self.e, self.xy
コード例 #13
0
    def kernel(self, x0=None):
        '''TDHF diagonalization with non-Hermitian eigenvalue solver
        '''
        logger.warn(
            self, 'PBC-TDDFT is an experimental feature. '
            'It is numerically sensitive to the accuracy of integrals '
            '(relating to cell.precision).')

        self.check_sanity()
        self.dump_flags()

        vind, hdiag = self.get_vind(self._scf)
        precond = self.get_precond(hdiag)
        if x0 is None:
            x0 = self.init_guess(self._scf, self.nstates)

        # We only need positive eigenvalues
        def pickeig(w, v, nroots, envs):
            realidx = numpy.where((abs(w.imag) < REAL_EIG_THRESHOLD)
                                  & (w.real > POSTIVE_EIG_THRESHOLD))[0]
            idx = realidx[w[realidx].real.argsort()]
            return w[idx].real, v[:, idx].real, idx

        self.converged, w, x1 = \
                lib.davidson_nosym1(vind, x0, precond,
                                    tol=self.conv_tol,
                                    nroots=self.nstates, lindep=self.lindep,
                                    max_space=self.max_space, pick=pickeig,
                                    verbose=self.verbose)
        mo_occ = self._scf.mo_occ
        self.e = w

        def norm_xy(z):
            x, y = z.reshape(2, -1)
            norm = 2 * (lib.norm(x)**2 - lib.norm(y)**2)
            norm = 1 / numpy.sqrt(norm)
            x *= norm
            y *= norm
            return _unpack(x, mo_occ), _unpack(y, mo_occ)

        self.xy = [norm_xy(z) for z in x1]

        return self.e, self.xy
コード例 #14
0
    def kernel(self, x0=None):
        '''TDHF diagonalization with non-Hermitian eigenvalue solver
        '''
        self.check_sanity()
        self.dump_flags()

        vind, hdiag = self.get_vind(self._scf)
        precond = self.get_precond(hdiag)
        if x0 is None:
            x0 = self.init_guess(self._scf, self.nstates)

        # We only need positive eigenvalues
        def pickeig(w, v, nroots, envs):
            realidx = numpy.where((abs(w.imag) < 1e-6) & (w.real > 0))[0]
            idx = realidx[w[realidx].real.argsort()]
            return w[idx].real, v[:, idx].real, idx

        w, x1 = lib.davidson_nosym1(vind,
                                    x0,
                                    precond,
                                    tol=self.conv_tol,
                                    nroots=self.nstates,
                                    lindep=self.lindep,
                                    max_space=self.max_space,
                                    pick=pickeig,
                                    verbose=self.verbose)[1:]

        mo_occ = self._scf.mo_occ
        e = []
        xy = []
        for i, z in enumerate(x1):
            xs, ys = z.reshape(2, -1)
            norm = lib.norm(xs)**2 - lib.norm(ys)**2
            if norm > 0:
                norm = 1 / numpy.sqrt(norm)
                xs *= norm
                ys *= norm
                e.append(w[i])
                xy.append((_unpack(xs, mo_occ), _unpack(ys, mo_occ)))
        self.e = numpy.array(e)
        self.xy = xy
        return self.e, self.xy
コード例 #15
0
    def kernel(self, x0=None):
        '''TDHF diagonalization with non-Hermitian eigenvalue solver
        '''
        self.check_sanity()

        mo_energy = self._scf.mo_energy
        nocc = (self._scf.mo_occ > 0).sum()
        eai = lib.direct_sum('a-i->ai', mo_energy[nocc:], mo_energy[:nocc])
        nvir = eai.shape[0]

        if x0 is None:
            x0 = self.init_guess(eai, self.nstates)

        precond = self.get_precond(eai.ravel())

        # We only need positive eigenvalues
        def pickeig(w, v, nroots, envs):
            realidx = numpy.where((abs(w.imag) < 1e-6) & (w.real > 0))[0]
            idx = realidx[w[realidx].real.argsort()]
            return w[idx].real, v[:, idx].real, idx

        w, x1 = lib.davidson_nosym1(self.get_vind,
                                    x0,
                                    precond,
                                    tol=self.conv_tol,
                                    nroots=self.nstates,
                                    lindep=self.lindep,
                                    max_space=self.max_space,
                                    pick=pickeig,
                                    verbose=self.verbose)[1:]
        self.e = w

        def norm_xy(z):
            x, y = z.reshape(2, nvir, nocc)
            norm = 2 * (lib.norm(x)**2 - lib.norm(y)**2)
            norm = 1 / numpy.sqrt(norm)
            return x * norm, y * norm

        self.xy = [norm_xy(z) for z in x1]

        return self.e, self.xy
コード例 #16
0
ファイル: kuhf.py プロジェクト: chrinide/pyscf
    def kernel(self, x0=None):
        '''TDHF diagonalization with non-Hermitian eigenvalue solver
        '''
        self.check_sanity()
        self.dump_flags()

        vind, hdiag = self.get_vind(self._scf)
        precond = self.get_precond(hdiag)
        if x0 is None:
            x0 = self.init_guess(self._scf, self.nstates)

        # We only need positive eigenvalues
        def pickeig(w, v, nroots, envs):
            realidx = numpy.where((abs(w.imag) < REAL_EIG_THRESHOLD) &
                                  (w.real > POSTIVE_EIG_THRESHOLD))[0]
            return lib.linalg_helper._eigs_cmplx2real(w, v, realidx)

        self.converged, w, x1 = \
                lib.davidson_nosym1(vind, x0, precond,
                                    tol=self.conv_tol,
                                    nroots=self.nstates, lindep=self.lindep,
                                    max_space=self.max_space, pick=pickeig,
                                    verbose=self.verbose)

        mo_occ = self._scf.mo_occ
        e = []
        xy = []
        for i, z in enumerate(x1):
            xs, ys = z.reshape(2,-1)
            norm = lib.norm(xs)**2 - lib.norm(ys)**2
            if norm > 0:
                norm = 1/numpy.sqrt(norm)
                xs *= norm
                ys *= norm
                e.append(w[i])
                xy.append((_unpack(xs, mo_occ), _unpack(ys, mo_occ)))
        self.e = numpy.array(e)
        self.xy = xy
        return self.e, self.xy
コード例 #17
0
ファイル: dispatcher.py プロジェクト: obackhouse/adc-scripts
def _run_pbc(mf, helper=None, method='2', which='ip', nroots=5, tol=1e-12,
             maxiter=100, maxspace=12, do_mp2=False, koopmans=False, verbose=False):
    if helper is None:
        helper = load_helper(mf, method=method, which=which)
    if callable(helper):
        helper = helper(mf)

    es = []
    vs = []
    mp2 = []
    convs = []

    for ki in range(helper.nkpts):
        matvec, diag = helper.get_matvec(ki)
        matvecs = lambda xs: [matvec(x) for x in xs]
        guesses = helper.get_guesses(ki, diag, nroots, koopmans=koopmans)
        pick = get_picker(koopmans=koopmans, real_system=False, guess=guesses)
        kwargs = dict(tol=tol, nroots=nroots, pick=pick, max_cycle=maxiter,
                      max_space=maxspace, verbose=9 if verbose else 0)

        conv, e, v = lib.davidson_nosym1(matvecs, guesses, diag, **kwargs)

        if which == 'ip':
            e = utils.nested_apply(e, lambda x: -x)

        es.append(e)
        vs.append(v)
        convs.append(conv)

    if do_mp2:
        mp2 = helper.mp2()
        if which == 'ea':
            mp2 *= -1
        return es, vs, convs, mp2
    else:
        return es, vs, convs
コード例 #18
0
 def davidson(self, *args, **kwargs):
     return lib.davidson_nosym1(*args, **kwargs)